Cubic fourfolds with an involution

Lisa Marquand

AMS Spring Central Sectional Meeting

April 16th 2023

Special cubic fourfolds

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold. The cubics in this talk are all special cubic fourfolds - i.e there exists a rank two lattice

$$
h^{2} \in K_{d} \subset A(X):=H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X) .
$$

Special cubic fourfolds

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold. The cubics in this talk are all special cubic fourfolds - i.e there exists a rank two lattice

$$
h^{2} \in K_{d} \subset A(X):=H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X)
$$

We let $\mathcal{C}_{d} \subset \mathcal{M}$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

Special cubic fourfolds

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold. The cubics in this talk are all special cubic fourfolds - i.e there exists a rank two lattice

$$
h^{2} \in K_{d} \subset A(X):=H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X) .
$$

We let $\mathcal{C}_{d} \subset \mathcal{M}$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

- \mathcal{C}_{8} is the locus of cubic fourfolds containing a plane,

Special cubic fourfolds

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold. The cubics in this talk are all special cubic fourfolds - i.e there exists a rank two lattice

$$
h^{2} \in K_{d} \subset A(X):=H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X)
$$

We let $\mathcal{C}_{d} \subset \mathcal{M}$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

- \mathcal{C}_{8} is the locus of cubic fourfolds containing a plane,
- \mathcal{C}_{12} is the closure of the locus of cubics containing a cubic scroll,

Special cubic fourfolds

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold. The cubics in this talk are all special cubic fourfolds - i.e there exists a rank two lattice

$$
h^{2} \in K_{d} \subset A(X):=H^{4}(X, \mathbb{Z}) \cap H^{2,2}(X)
$$

We let $\mathcal{C}_{d} \subset \mathcal{M}$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

- \mathcal{C}_{8} is the locus of cubic fourfolds containing a plane,
- \mathcal{C}_{12} is the closure of the locus of cubics containing a cubic scroll,
- \mathcal{C}_{14} is the closure of the Pfaffian locus.

Associated K3s and rationality conjectures

Definition

A polarised $K 3$ surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$
K_{d}^{\perp} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}
$$

Associated K3s and rationality conjectures

Definition

A polarised $K 3$ surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$
K_{d}^{\perp} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}
$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^{3} \oplus E_{8}^{2}$.

Associated $K 3$ s and rationality conjectures

Definition

A polarised $K 3$ surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$
K_{d}^{\perp} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}
$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^{3} \oplus E_{8}^{2}$.

- It is conjectured that a cubic fourfold is rational if and only if there exists an associated K3 surface (Harris, Hassett, Kuztnesov).

Associated K3s and rationality conjectures

Definition

A polarised $K 3$ surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$
K_{d}^{\perp} \cong H^{2}(S, \mathbb{Z})_{\text {prim }}
$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^{3} \oplus E_{8}^{2}$.

- It is conjectured that a cubic fourfold is rational if and only if there exists an associated $K 3$ surface (Harris, Hassett, Kuztnesov).
- If $T(X)$ does not embed into the $K 3$ lattice, we say X is potentially irrational.

Associated K3s and rationality conjectures

Definition

A polarised $K 3$ surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$
K_{d}^{\perp} \cong H^{2}(S, \mathbb{Z})_{\text {prim }} .
$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^{3} \oplus E_{8}^{2}$.

- It is conjectured that a cubic fourfold is rational if and only if there exists an associated K3 surface (Harris, Hassett, Kuztnesov).
- If $T(X)$ does not embed into the $K 3$ lattice, we say X is potentially irrational.

We will show that cubic fourfolds with involutions display the full range of behaviours in relation to these conjectures.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: $\phi_{1}, \phi_{2}, \phi_{3}$.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: $\phi_{1}, \phi_{2}, \phi_{3}$.
- ϕ_{i} fixes a linear subspace of \mathbb{P}^{5} codimension $6-i$ contained in X.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: $\phi_{1}, \phi_{2}, \phi_{3}$.
- ϕ_{i} fixes a linear subspace of \mathbb{P}^{5} codimension $6-i$ contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice $A(X)$, and so they have very rich geometry.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: $\phi_{1}, \phi_{2}, \phi_{3}$.
- ϕ_{i} fixes a linear subspace of \mathbb{P}^{5} codimension $6-i$ contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice $A(X)$, and so they have very rich geometry.
- If $\operatorname{rank}(T(X))>10$, the trancscendental lattice $T(X)$ embeds into the $K 3$ lattice.

Involutions of a cubic fourfold

- Any automorphism of $X \subset \mathbb{P}^{5}$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: $\phi_{1}, \phi_{2}, \phi_{3}$.
- ϕ_{i} fixes a linear subspace of \mathbb{P}^{5} codimension $6-i$ contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice $A(X)$, and so they have very rich geometry.
- If $\operatorname{rank}(T(X))>10$, the trancscendental lattice $T(X)$ embeds into the $K 3$ lattice.
- Further, if the group of symplectic automorphisms is neither trivial nor isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$, then there exists an associated $K 3$ surface (Ouchi).

Theorem A: Involutions of a cubic fourfold

Theorem (M.)

Let X be a general cubic fourfold with ϕ_{i} involution fixing a linear subspace of codimension i of \mathbb{P}^{5}. Then we have $A(X)_{\text {prim }}:=H^{4}(X, \mathbb{Z})_{\text {prim }} \cap H^{2,2}(X)$ and $T(X)$ below:

Theorem A: Involutions of a cubic fourfold

Theorem (M.)

Let X be a general cubic fourfold with ϕ_{i} involution fixing a linear subspace of codimension i of \mathbb{P}^{5}. Then we have $A(X)_{\text {prim }}:=H^{4}(X, \mathbb{Z})_{\text {prim }} \cap H^{2,2}(X)$ and $T(X)$ below:

	$A(X)_{\text {prim }}$	$T(X)$	Generators
ϕ_{1}	$E_{6}(2)$	$U^{2} \oplus D_{4}^{3}$	Planes
ϕ_{2}	$E_{8}(2)$	$A_{2} \oplus U^{2} \oplus E_{8}(2)$	Cubic scrolls
ϕ_{3}	M	$U \oplus\langle 2\rangle \oplus\langle-2\rangle \oplus E_{8}(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_{9}(2) \oplus\langle 24\rangle$.

Theorem A: Involutions of a cubic fourfold

Theorem (M.)

Let X be a general cubic fourfold with ϕ_{i} involution fixing a linear subspace of codimension i of \mathbb{P}^{5}. Then we have $A(X)_{\text {prim }}:=H^{4}(X, \mathbb{Z})_{\text {prim }} \cap H^{2,2}(X)$ and $T(X)$ below:

	$A(X)_{\text {prim }}$	$T(X)$	Generators
ϕ_{1}	$E_{6}(2)$	$U^{2} \oplus D_{4}^{3}$	Planes
ϕ_{2}	$E_{8}(2)$	$A_{2} \oplus U^{2} \oplus E_{8}(2)$	Cubic scrolls
ϕ_{3}	M	$U \oplus\langle 2\rangle \oplus\langle-2\rangle \oplus E_{8}(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_{9}(2) \oplus\langle 24\rangle$.

- LPZ: studied the case of ϕ_{1} in detail - the existence is equivalent to being an Eckardt cubic.

Theorem A: Involutions of a cubic fourfold

Theorem (M.)

Let X be a general cubic fourfold with ϕ_{i} involution fixing a linear subspace of codimension i of \mathbb{P}^{5}. Then we have $A(X)_{\text {prim }}:=H^{4}(X, \mathbb{Z})_{\text {prim }} \cap H^{2,2}(X)$ and $T(X)$ below:

	$A(X)_{\text {prim }}$	$T(X)$	Generators
ϕ_{1}	$E_{6}(2)$	$U^{2} \oplus D_{4}^{3}$	Planes
ϕ_{2}	$E_{8}(2)$	$A_{2} \oplus U^{2} \oplus E_{8}(2)$	Cubic scrolls
ϕ_{3}	M	$U \oplus\langle 2\rangle \oplus\langle-2\rangle \oplus E_{8}(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_{9}(2) \oplus\langle 24\rangle$.

- LPZ: studied the case of ϕ_{1} in detail - the existence is equivalent to being an Eckardt cubic.
- For ϕ_{2}, the $A(X)_{\text {prim }}$ was identified by Laza, Zheng using lattice theoretic methods, but the geometry was not explored.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)
Let X be a general cubic fourfold with an involution ϕ_{i} as before.
(1) For ϕ_{2}, such a X does not have an associated $K 3$ surface. X is potentially irrational.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)
Let X be a general cubic fourfold with an involution ϕ_{i} as before.
(1) For ϕ_{2}, such a X does not have an associated $K 3$ surface. X is potentially irrational.
(2) For ϕ_{1}, such a X does not have an associated $K 3$ surface, but does have an associated twisted $K 3$ surface (S, α) for $\alpha \in \operatorname{Br}(S)_{2}$. X is potentially irrational.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)
Let X be a general cubic fourfold with an involution ϕ_{i} as before.
(1) For ϕ_{2}, such a X does not have an associated $K 3$ surface. X is potentially irrational.
(2) For ϕ_{1}, such a X does not have an associated $K 3$ surface, but does have an associated twisted $K 3$ surface (S, α) for $\alpha \in \operatorname{Br}(S)_{2}$. X is potentially irrational.
(3) For ϕ_{3}, such a X has an associated $K 3$ surface, and is predicted to be rational.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)
Let X be a general cubic fourfold with an involution ϕ_{i} as before.
(1) For ϕ_{2}, such a X does not have an associated $K 3$ surface. X is potentially irrational.
(2) For ϕ_{1}, such a X does not have an associated $K 3$ surface, but does have an associated twisted $K 3$ surface (S, α) for $\alpha \in \operatorname{Br}(S)_{2}$. X is potentially irrational.
(3) For ϕ_{3}, such a X has an associated $K 3$ surface, and is predicted to be rational.

Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_{i} as before.
(1) For ϕ_{2}, such a X does not have an associated $K 3$ surface. X is potentially irrational.
(2) For ϕ_{1}, such a X does not have an associated $K 3$ surface, but does have an associated twisted $K 3$ surface (S, α) for $\alpha \in \operatorname{Br}(S)_{2}$. X is potentially irrational.
(3) For ϕ_{3}, such a X has an associated $K 3$ surface, and is predicted to be rational.

The involutions ϕ_{1} and ϕ_{3} are both anti-symplectic involutions. Cubics admitting these involutions seem to display similar geometry, however, behave very differently in regard to these conjectures.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $B I_{P} X \rightarrow \mathbb{P}^{2}$, and obtain a quadric bundle over \mathbb{P}^{2}.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $B I_{P} X \rightarrow \mathbb{P}^{2}$, and obtain a quadric bundle over \mathbb{P}^{2}.
- We say X is trivially rational if there exists a rational section of this quadric bundle.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $B I_{P} X \rightarrow \mathbb{P}^{2}$, and obtain a quadric bundle over \mathbb{P}^{2}.
- We say X is trivially rational if there exists a rational section of this quadric bundle.
- We associate to X a twisted $K 3$ surface (S, α) where $\alpha \in \operatorname{Br}(S)[2]$.

Cubic fourfold with a plane

Let $X \subset \mathbb{P}^{5}$ admit an anti-symplectic involution ϕ.

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $B I_{P} X \rightarrow \mathbb{P}^{2}$, and obtain a quadric bundle over \mathbb{P}^{2}.
- We say X is trivially rational if there exists a rational section of this quadric bundle.
- We associate to X a twisted $K 3$ surface (S, α) where $\alpha \in \operatorname{Br}(S)[2]$.

Lemma (Kuznetsov '16)

Let $P \subset X$ be a cubic fourfold containing a plane. The following are equivalent:
(1) there exists a rational section of the quadric bundle $B I_{P} X \rightarrow \mathbb{P}^{2}$;
(2) the associated Brauer class is trivial.

Moreover, both conditions imply that X is rational.

Using our explicit description of $A(X)$ for X with an involution ϕ_{3}, we get the following result:

Using our explicit description of $A(X)$ for X with an involution ϕ_{3}, we get the following result:

Proposition (M.)

Let X be a cubic fourfold with anti-symplectic involution ϕ_{3}. Then X is not trivially rational, and the associated Brauer class is non-trivial.

Using our explicit description of $A(X)$ for X with an involution ϕ_{3}, we get the following result:

Proposition (M.)

Let X be a cubic fourfold with anti-symplectic involution ϕ_{3}. Then X is not trivially rational, and the associated Brauer class is non-trivial.

Despite the rationality not following from the obvious quadric bundle structure, we do establish rationality by investigating which divisors \mathcal{C}_{d} such an X belongs to.

Hassett Maximal Cubics

Definition

We say that a cubic fourfold X is Hassett maximal if

$$
X \in \bigcap_{\mathcal{C} \neq \emptyset} \mathcal{C}_{d}
$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z}.

Hassett Maximal Cubics

Definition
We say that a cubic fourfold X is Hassett maximal if

$$
X \in \bigcap_{\mathcal{C} \neq \emptyset} \mathcal{C}_{d}
$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z}.

- The Fermat cubic fourfold belongs to \mathcal{Z}.

Hassett Maximal Cubics

Definition

We say that a cubic fourfold X is Hassett maximal if

$$
X \in \bigcap_{\mathcal{C} \neq \emptyset} \mathcal{C}_{d}
$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z}.

- The Fermat cubic fourfold belongs to \mathcal{Z}.
- It is known that $\operatorname{dim} Z \geq 13$ (Yang, Yu '21) - it contains moduli of L-polarised cubic fourfolds with $\operatorname{rank}(L)=7$.

Rationality of cubics with ϕ_{3}

Theorem (M.)
Let $\mathcal{M}_{\phi_{3}}$ denote the 10-dimensional moduli space of cubic fourfolds with involution of type ϕ_{3}. Then $\mathcal{M}_{\phi} \subset \mathcal{Z}$. In particular, $X \in \mathcal{M}_{\phi_{3}}$ is rational.

Rationality of cubics with ϕ_{3}

Theorem (M.)

Let $\mathcal{M}_{\phi_{3}}$ denote the 10-dimensional moduli space of cubic fourfolds with involution of type ϕ_{3}. Then $\mathcal{M}_{\phi} \subset \mathcal{Z}$. In particular, $X \in \mathcal{M}_{\phi_{3}}$ is rational.

Cubic fourfolds in the intersection $\mathcal{C}_{8} \cap \mathcal{C}_{14}$ have been well studied (Auel, Bolognesi-Russo-Staglianò). Using their work we show:

Corollary (M.)

A cubic fourfold X with involution ϕ_{3} is Pfaffian.

Thank you!

