
Cubic fourfolds with an involution

Lisa Marquand

AMS Spring Central Sectional Meeting

April 16th 2023

Lisa Marquand (AMS Spring Sectional) Cubic involutions April 16th 2023 1 / 11



Special cubic fourfolds

Let X ⊂ P5 be a smooth cubic fourfold. The cubics in this talk are all
special cubic fourfolds - i.e there exists a rank two lattice

h2 ∈ Kd ⊂ A(X ) := H4(X ,Z) ∩ H2,2(X ).

We let Cd ⊂ M denote the locus of special cubic fourfolds admitting a
labeling of discriminant d .

C8 is the locus of cubic fourfolds containing a plane,

C12 is the closure of the locus of cubics containing a cubic scroll,

C14 is the closure of the Pfaffian locus.
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Associated K3s and rationality conjectures

Definition

A polarised K3 surface (S , L) of degree d is associated to X if there exists
an isomorphism of Hodge structures

K⊥
d

∼= H2(S ,Z)prim.

In this case, the transcendental cohomology T (X ) ↪→ U3 ⊕ E 2
8 .

It is conjectured that a cubic fourfold is rational if and only if there
exists an associated K3 surface (Harris, Hassett, Kuztnesov).

If T (X ) does not embed into the K3 lattice, we say X is potentially
irrational.

We will show that cubic fourfolds with involutions display the full range of
behaviours in relation to these conjectures.
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Involutions of a cubic fourfold

Any automorphism of X ⊂ P5 is induced by an automorphism of the
ambient projective space.

There are three possibilities: ϕ1, ϕ2, ϕ3.

ϕi fixes a linear subspace of P5 codimension 6− i contained in X .

The existence of an involution forces a cubic fourfold to have large
algebraic lattice A(X ), and so they have very rich geometry.

If rank(T (X )) > 10, the trancscendental lattice T (X ) embeds into
the K3 lattice.

Further, if the group of symplectic automorphisms is neither trivial
nor isomorphic to Z/2Z, then there exists an associated K3 surface
(Ouchi).
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Theorem A: Involutions of a cubic fourfold

Theorem (M.)

Let X be a general cubic fourfold with ϕi involution fixing a linear
subspace of codimension i of P5. Then we have
A(X )prim := H4(X ,Z)prim ∩ H2,2(X ) and T (X ) below:

A(X )prim T (X ) Generators

ϕ1 E6(2) U2 ⊕ D3
4 Planes

ϕ2 E8(2) A2 ⊕ U2 ⊕ E8(2) Cubic scrolls

ϕ3 M U ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ E8(2) Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of
D9(2)⊕ ⟨24⟩.

LPZ: studied the case of ϕ1 in detail - the existence is equivalent to
being an Eckardt cubic.

For ϕ2, the A(X )prim was identified by Laza, Zheng using lattice
theoretic methods, but the geometry was not explored.
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Rationality Consequences

We see cubic fourfolds with involutions display a wide range of rationality
behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕi as before.

1 For ϕ2, such a X does not have an associated K3 surface. X is
potentially irrational.

2 For ϕ1, such a X does not have an associated K3 surface, but does
have an associated twisted K3 surface (S , α) for α ∈ Br(S)2. X is
potentially irrational.

3 For ϕ3, such a X has an associated K3 surface, and is predicted to be
rational.

The involutions ϕ1 and ϕ3 are both anti-symplectic involutions. Cubics
admitting these involutions seem to display similar geometry, however,
behave very differently in regard to these conjectures.
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Cubic fourfold with a plane

Let X ⊂ P5 admit an anti-symplectic involution ϕ.

For both involutions, there exists many planes P ⊂ X that are
invariant under the involution.

We project from the plane: BlPX → P2, and obtain a quadric bundle
over P2.

We say X is trivially rational if there exists a rational section of this
quadric bundle.

We associate to X a twisted K3 surface (S , α) where α ∈ Br(S)[2].

Lemma (Kuznetsov ’16)

Let P ⊂ X be a cubic fourfold containing a plane. The following are
equivalent:

1 there exists a rational section of the quadric bundle BlPX → P2;

2 the associated Brauer class is trivial.

Moreover, both conditions imply that X is rational.
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Using our explicit description of A(X ) for X with an involution ϕ3, we get
the following result:

Proposition (M.)

Let X be a cubic fourfold with anti-symplectic involution ϕ3. Then X is
not trivially rational, and the associated Brauer class is non-trivial.

Despite the rationality not following from the obvious quadric bundle
structure, we do establish rationality by investigating which divisors Cd
such an X belongs to.
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Hassett Maximal Cubics

Definition

We say that a cubic fourfold X is Hassett maximal if

X ∈
⋂
C̸=∅

Cd .

We denote the locus of Hassett maximal cubic fourfolds by Z.

The Fermat cubic fourfold belongs to Z.

It is known that dimZ ≥ 13 (Yang, Yu ’21) - it contains moduli of
L-polarised cubic fourfolds with rank(L) = 7.
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Rationality of cubics with ϕ3

Theorem (M.)

Let Mϕ3 denote the 10-dimensional moduli space of cubic fourfolds with
involution of type ϕ3. Then Mϕ ⊂ Z. In particular, X ∈ Mϕ3 is rational.

Cubic fourfolds in the intersection C8 ∩ C14 have been well studied (Auel,
Bolognesi-Russo-Staglianò). Using their work we show:

Corollary (M.)

A cubic fourfold X with involution ϕ3 is Pfaffian.
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Thank you!
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