

Cubic fourfolds with an involution

Lisa Marquand

AMS Spring Central Sectional Meeting

April 16th 2023

1/11

$$h^2 \in K_d \subset A(X) := H^4(X,\mathbb{Z}) \cap H^{2,2}(X).$$

$$h^2 \in K_d \subset A(X) := H^4(X,\mathbb{Z}) \cap H^{2,2}(X).$$

We let $C_d \subset M$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

$$h^2 \in \mathcal{K}_d \subset \mathcal{A}(X) := H^4(X,\mathbb{Z}) \cap H^{2,2}(X).$$

We let $C_d \subset M$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

 $\bullet \ \mathcal{C}_8$ is the locus of cubic fourfolds containing a plane,

$$h^2 \in \mathcal{K}_d \subset \mathcal{A}(X) := H^4(X,\mathbb{Z}) \cap H^{2,2}(X).$$

We let $C_d \subset M$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

- $\bullet \ \mathcal{C}_8$ is the locus of cubic fourfolds containing a plane,
- C_{12} is the closure of the locus of cubics containing a cubic scroll,

$$h^2 \in \mathcal{K}_d \subset \mathcal{A}(X) := H^4(X,\mathbb{Z}) \cap H^{2,2}(X).$$

We let $C_d \subset M$ denote the locus of special cubic fourfolds admitting a labeling of discriminant d.

- $\bullet \ \mathcal{C}_8$ is the locus of cubic fourfolds containing a plane,
- $\bullet \ \mathcal{C}_{12}$ is the closure of the locus of cubics containing a cubic scroll,
- $\bullet \ \mathcal{C}_{14}$ is the closure of the Pfaffian locus.

Associated K3s and rationality conjectures

Definition

A polarised K3 surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

 $K_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}.$

Associated K3s and rationality conjectures

Definition

A polarised K3 surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

 $K_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}.$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^3 \oplus E_8^2$.

A polarised K3 surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

 $K_d^{\perp} \cong H^2(S, \mathbb{Z})_{\text{prim}}.$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^3 \oplus E_8^2$.

• It is conjectured that a cubic fourfold is rational if and only if there exists an associated K3 surface (Harris, Hassett, Kuztnesov).

A polarised K3 surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$K_d^{\perp} \cong H^2(S,\mathbb{Z})_{\text{prim}}.$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^3 \oplus E_8^2$.

- It is conjectured that a cubic fourfold is rational if and only if there exists an associated K3 surface (Harris, Hassett, Kuztnesov).
- If T(X) does not embed into the K3 lattice, we say X is **potentially** irrational.

A polarised K3 surface (S, L) of degree d is associated to X if there exists an isomorphism of Hodge structures

$$K_d^{\perp} \cong H^2(S,\mathbb{Z})_{\text{prim}}.$$

In this case, the transcendental cohomology $T(X) \hookrightarrow U^3 \oplus E_8^2$.

- It is conjectured that a cubic fourfold is rational if and only if there exists an associated K3 surface (Harris, Hassett, Kuztnesov).
- If T(X) does not embed into the K3 lattice, we say X is **potentially** irrational.

We will show that cubic fourfolds with involutions display the full range of behaviours in relation to these conjectures.

Involutions of a cubic fourfold

• Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.

- Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: ϕ_1, ϕ_2, ϕ_3 .

- Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: ϕ_1, ϕ_2, ϕ_3 .
- ϕ_i fixes a linear subspace of \mathbb{P}^5 codimension 6 i contained in X.

- Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: ϕ_1, ϕ_2, ϕ_3 .
- ϕ_i fixes a linear subspace of \mathbb{P}^5 codimension 6 i contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice A(X), and so they have very rich geometry.

- Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: ϕ_1, ϕ_2, ϕ_3 .
- ϕ_i fixes a linear subspace of \mathbb{P}^5 codimension 6 i contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice A(X), and so they have very rich geometry.
- If rank(T(X)) > 10, the transscendental lattice T(X) embeds into the K3 lattice.

- Any automorphism of $X \subset \mathbb{P}^5$ is induced by an automorphism of the ambient projective space.
- There are three possibilities: ϕ_1, ϕ_2, ϕ_3 .
- ϕ_i fixes a linear subspace of \mathbb{P}^5 codimension 6 i contained in X.
- The existence of an involution forces a cubic fourfold to have large algebraic lattice A(X), and so they have very rich geometry.
- If rank(T(X)) > 10, the transscendental lattice T(X) embeds into the K3 lattice.
- Further, if the group of symplectic automorphisms is neither trivial nor isomorphic to $\mathbb{Z}/2\mathbb{Z}$, then there exists an associated K3 surface (Ouchi).

Theorem (M.)

Let X be a general cubic fourfold with ϕ_i involution fixing a linear subspace of codimension i of \mathbb{P}^5 . Then we have $A(X)_{prim} := H^4(X, \mathbb{Z})_{prim} \cap H^{2,2}(X)$ and T(X) below:

Theorem (M.)

Let X be a general cubic fourfold with ϕ_i involution fixing a linear subspace of codimension i of \mathbb{P}^5 . Then we have $A(X)_{prim} := H^4(X, \mathbb{Z})_{prim} \cap H^{2,2}(X)$ and T(X) below:

	$A(X)_{prim}$	T(X)	Generators
ϕ_1	$E_{6}(2)$	$U^2 \oplus D_4^3$	Planes
ϕ_2	$E_8(2)$	$A_2 \oplus U^2 \oplus E_8(2)$	Cubic scrolls
ϕ_3	M	$\bigcup \oplus \langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_9(2) \oplus \langle 24 \rangle$.

Theorem (M.)

Let X be a general cubic fourfold with ϕ_i involution fixing a linear subspace of codimension i of \mathbb{P}^5 . Then we have $A(X)_{prim} := H^4(X, \mathbb{Z})_{prim} \cap H^{2,2}(X)$ and T(X) below:

	$A(X)_{prim}$	<i>T</i> (<i>X</i>)	Generators
ϕ_1	$E_{6}(2)$	$U^2\oplus D^3_4$	Planes
ϕ_2	$E_8(2)$	$A_2 \oplus U^2 \oplus E_8(2)$	Cubic scrolls
ϕ_3	M	$U \oplus \langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_9(2) \oplus \langle 24 \rangle$.

• LPZ: studied the case of ϕ_1 in detail - the existence is equivalent to being an Eckardt cubic.

Theorem (M.)

Let X be a general cubic fourfold with ϕ_i involution fixing a linear subspace of codimension i of \mathbb{P}^5 . Then we have $A(X)_{prim} := H^4(X, \mathbb{Z})_{prim} \cap H^{2,2}(X)$ and T(X) below:

	$A(X)_{prim}$	<i>T</i> (<i>X</i>)	Generators
ϕ_1	$E_{6}(2)$	$U^2\oplus D^3_4$	Planes
ϕ_2	$E_8(2)$	$A_2 \oplus U^2 \oplus E_8(2)$	Cubic scrolls
ϕ_3	M	$U \oplus \langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)$	Planes

M is the unique rank 10 even lattice obtained as an index 2 overlattice of $D_9(2) \oplus \langle 24 \rangle$.

- LPZ: studied the case of ϕ_1 in detail the existence is equivalent to being an Eckardt cubic.
- For φ₂, the A(X)_{prim} was identified by Laza, Zheng using lattice theoretic methods, but the geometry was not explored.

Lisa Marquand (AMS Spring Sectional)

Cubic involutions

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_i as before.

• For ϕ_2 , such a X does not have an associated K3 surface. X is **potentially irrational**.

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_i as before.

- For ϕ_2 , such a X does not have an associated K3 surface. X is **potentially irrational**.
- **2** For ϕ_1 , such a X does not have an associated K3 surface, but does have an associated twisted K3 surface (S, α) for $\alpha \in Br(S)_2$. X is potentially irrational.

6/11

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_i as before.

- For ϕ_2 , such a X does not have an associated K3 surface. X is potentially irrational.
- **2** For ϕ_1 , such a X does not have an associated K3 surface, but does have an associated twisted K3 surface (S, α) for $\alpha \in Br(S)_2$. X is potentially irrational.
- For φ₃, such a X has an associated K3 surface, and is predicted to be rational.

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_i as before.

- For ϕ_2 , such a X does not have an associated K3 surface. X is potentially irrational.
- **2** For ϕ_1 , such a X does not have an associated K3 surface, but does have an associated twisted K3 surface (S, α) for $\alpha \in Br(S)_2$. X is potentially irrational.
- For φ₃, such a X has an associated K3 surface, and is predicted to be rational.

We see cubic fourfolds with involutions display a wide range of rationality behaviour.

Theorem (M.)

Let X be a general cubic fourfold with an involution ϕ_i as before.

- For ϕ_2 , such a X does not have an associated K3 surface. X is potentially irrational.
- **2** For ϕ_1 , such a X does not have an associated K3 surface, but does have an associated twisted K3 surface (S, α) for $\alpha \in Br(S)_2$. X is potentially irrational.
- For φ₃, such a X has an associated K3 surface, and is predicted to be rational.

The involutions ϕ_1 and ϕ_3 are both anti-symplectic involutions. Cubics admitting these involutions seem to display similar geometry, however, behave very differently in regard to these conjectures.

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

• For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: Bl_PX → P², and obtain a quadric bundle over P².

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $Bl_PX \to \mathbb{P}^2$, and obtain a quadric bundle over \mathbb{P}^2 .
- We say X is trivially rational if there exists a rational section of this quadric bundle.

7/11

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $Bl_PX \to \mathbb{P}^2$, and obtain a quadric bundle over \mathbb{P}^2 .
- We say X is trivially rational if there exists a rational section of this quadric bundle.
- We associate to X a twisted K3 surface (S, α) where $\alpha \in Br(S)[2]$.

Let $X \subset \mathbb{P}^5$ admit an anti-symplectic involution ϕ .

- For both involutions, there exists many planes $P \subset X$ that are invariant under the involution.
- We project from the plane: $Bl_PX \to \mathbb{P}^2$, and obtain a quadric bundle over \mathbb{P}^2 .
- We say X is trivially rational if there exists a rational section of this quadric bundle.
- We associate to X a twisted K3 surface (S, α) where $\alpha \in Br(S)[2]$.

Lemma (Kuznetsov '16)

Let $P \subset X$ be a cubic fourfold containing a plane. The following are equivalent:

- there exists a rational section of the quadric bundle $Bl_PX \to \mathbb{P}^2$;
- **2** the associated Brauer class is trivial.

Moreover, both conditions imply that X is rational.

Using our explicit description of A(X) for X with an involution ϕ_3 , we get the following result:

8/11

Using our explicit description of A(X) for X with an involution ϕ_3 , we get the following result:

Proposition (M.)

Let X be a cubic fourfold with anti-symplectic involution ϕ_3 . Then X is not trivially rational, and the associated Brauer class is non-trivial.

Using our explicit description of A(X) for X with an involution ϕ_3 , we get the following result:

Proposition (M.)

Let X be a cubic fourfold with anti-symplectic involution ϕ_3 . Then X is not trivially rational, and the associated Brauer class is non-trivial.

Despite the rationality not following from the obvious quadric bundle structure, we do establish rationality by investigating which divisors C_d such an X belongs to.

We say that a cubic fourfold X is **Hassett maximal** if

$$X\in \bigcap_{\mathcal{C}\neq\emptyset}\mathcal{C}_d.$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z} .

We say that a cubic fourfold X is **Hassett maximal** if

$$X\in \bigcap_{\mathcal{C}\neq \emptyset}\mathcal{C}_d.$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z} .

• The Fermat cubic fourfold belongs to \mathcal{Z} .

We say that a cubic fourfold X is **Hassett maximal** if

$$X\in \bigcap_{\mathcal{C}\neq \emptyset}\mathcal{C}_d.$$

We denote the locus of Hassett maximal cubic fourfolds by \mathcal{Z} .

- The Fermat cubic fourfold belongs to \mathcal{Z} .
- It is known that dim $Z \ge 13$ (Yang, Yu '21) it contains moduli of L-polarised cubic fourfolds with rank(L) = 7.

Theorem (M.)

Let \mathcal{M}_{ϕ_3} denote the 10-dimensional moduli space of cubic fourfolds with involution of type ϕ_3 . Then $\mathcal{M}_{\phi} \subset \mathcal{Z}$. In particular, $X \in \mathcal{M}_{\phi_3}$ is rational.

Theorem (M.)

Let \mathcal{M}_{ϕ_3} denote the 10-dimensional moduli space of cubic fourfolds with involution of type ϕ_3 . Then $\mathcal{M}_{\phi} \subset \mathcal{Z}$. In particular, $X \in \mathcal{M}_{\phi_3}$ is rational.

Cubic fourfolds in the intersection $C_8 \cap C_{14}$ have been well studied (Auel, Bolognesi-Russo-Staglianò). Using their work we show:

Corollary (M.)

A cubic fourfold X with involution ϕ_3 is Pfaffian.

Thank you!