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Weil-Petersson Geometry of the
Universal Teichmüller Space

Leon A. Takhtajan and Lee-Peng Teo

1. Introduction

The universal Teichmüller space T (1) is the simplest Teichmüller space that bridges
spaces of univalent functions and general Teichmüller spaces. It was introduced
by Bers [Ber65, Ber72, Ber73] and it is an infinite-dimensional complex Banach
manifold. The universal Teichmüller space T (1) contains Teichmüller spaces of
Riemann surfaces as complex submanifolds.

The universal Teichmüller space T (1) plays an important role in one of the
approaches to non-perturbative bosonic closed string field theory based on Kähler
geometry. Namely, in the “old approach” to string field theory as the Kähler geom-
etry of the loop space [BR87a, BR87b], the loop space L(Rd) is the configuration
space for the closed strings,

L(Rd) = R
d × Ω(Rd).

The space Ω(Rd) of based loops has a natural structure of an infinite-dimensional
Kähler manifold. The space of all complex structures of Ω(Rd) is

M = S1\Diff+(S1).

The space M parameterizes vacuum states for Faddeev-Popov ghosts in the string
field theory. The “flag manifolds” M and

N = Möb(S1)\Diff+(S1)

are infinite-dimensional complex Fréchet manifolds carrying a natural Kähler met-
rics [BR87a, BR87b, Kir87, KY87]. These manifolds also have an interpretation as
coadjoint orbits of the Bott-Virasoro group, and the corresponding Kähler forms
coincide with Kirillov-Kostant symplectic forms [Kir87, KY87]. Ricci tensor for M
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is related to the problem of constructing reparametrization-invariant vacuum for
ghosts.

The natural inclusion N ↪→ T (1) is holomorphic (N is a leaf of a holomorphic
foliation of T (1)), and the Kirillov-Kostant symplectic form at the origin of N is
a pull-back of a certain symplectic form on the subspace of the tangent space to
T (1) at the origin [NV90] (an avatar of the Weil-Petersson structure on T (1)).

2. Basic facts

2.1. Definitions

Let

D = {z ∈ C : |z| < 1},
D

∗ = {z ∈ C : |z| > 1}.

The complex Banach spaces L∞(D∗) and L∞(D) are the spaces of bounded Bel-
trami differentials on D∗ and D respectively. Let L∞(D∗)1 be the unit ball in
L∞(D∗). Two classical models of Bers’ universal Teichmüller space T (1) are the
following.

Model A. Extend every µ ∈ L∞(D∗)1 to D by the reflection

µ(z) = µ

(
1
z̄

)
z2

z̄2
, z ∈ D,

and consider the unique quasiconformal mapping wµ : C → C, which fixes −1,−i
and 1, and satisfies the Beltrami equation

∂wµ

∂z̄
= µ

∂wµ

∂z
.

The mapping wµ satisfies

1
wµ(z)

= wµ

(
1
z̄

)

and fixes the domains D, D
∗, and the unit circle S1. For µ, ν ∈ L∞(D∗)1 set µ ∼ ν if

wµ|S1 = wν |S1 .

The universal Teichmüller space T (1) is defined as the set of equivalence classes
of the mappings wµ,

T (1) = L∞(D∗)1/ ∼ .

Model B. Extend every µ ∈ L∞(D∗)1 to be zero outside D∗ and consider the
unique solution wµ of the Beltrami equation

∂wµ

∂z̄
= µ

∂wµ

∂z
,
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satisfying f(0) = 0, f ′(0) = 1 and f ′′(0) = 0, where f = wµ|D is holomorphic on
D. For µ, ν ∈ L∞(D∗)1 set µ ∼ ν if

wµ|
D

= wν |
D

.

The universal Teichmüller space is defined as the set of equivalence classes of the
mappings wµ,

T (1) = L∞(D∗)1/ ∼ .

Since wµ|S1 = wν |S1 if and only if wµ|D = wν |D, the two definitions of the universal
Teichmüller space are equivalent. The set T (1) is a topological space with the
quotient topology induced from L∞(D∗)1.

2.2. Properties of T (1)
1. The universal Teichmüller space T (1) has a unique structure of a complex

Banach manifold such that the projection map

Φ : L∞(D∗)1 → T (1)

is a holomorphic submersion.
2. The holomorphic tangent space T0T (1) at the origin is identified with the

Banach space Ω−1,1(D∗) of harmonic Beltrami differentials,

Ω−1,1(D∗) = {µ ∈ L∞(D∗) :

µ(z) = (1 − |z|2)2φ(z), φ ∈ A∞(D∗)},

where

A∞(D∗) = {φ holomorphic on D
∗ :

‖φ‖∞ = sup
z∈D∗

∣∣(1 − |z|2)2φ(z)
∣∣ < ∞}.

3. The universal Teichmüller space T (1) is a group (not a topological group!)
under the composition of the quasiconformal mappings. The group law on
L∞(D∗)1

λ = ν ∗ µ−1

is defined through wλ = wν ◦ w−1
µ and projects to T (1). Explicitly,

λ =
(

ν − µ

1 − µ̄ν

(wµ)z

(wµ)z̄

)
◦ w−1

µ .

For every µ ∈ L∞(D∗)1 the right translations

R[µ] : T (1) −→ T (1), [λ] �−→ [λ ∗ µ],

where [λ] = Φ(λ) ∈ T (1), are biholomorphic automorphisms of T (1). The left
translations, in general, are not even continuous mappings.
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4. The group T (1) is isomorphic to the subgroup of the group Homeoqs(S1) of
quasisymmetric homeomorphisms of S1 fixing −1, −i and 1. By definition,
γ ∈ Homeoqs(S1) if it is orientation preserving and satisfies

1
M

≤
∣∣∣∣∣
γ

(
ei(θ+t)

)
− γ

(
eiθ

)
γ (eiθ) − γ

(
ei(θ−t)

)
∣∣∣∣∣ ≤ M

for all θ and all |t| ≤ π/2 with some constant M > 0.

Remark 1. The closure of N in T (1) is the subgroup of symmetric homeomor-
phisms in Möb(S1)\Homeoqs(S1) satisfying the above inequality with M replaced
by 1 + o(t) as t → 0.

2.3. Bers embedding and the complex structure of T (1)

Let A∞(D) =
{

φ holomorphic on D : ‖φ‖∞ = sup
z∈D

∣∣(1 − |z|2)2φ(z)
∣∣ < ∞

}
.

and let S(f) be the Schwarzian derivative,

S(f) =
fzzz

fz
− 3

2

(
fzz

fz

)2

.

For every µ ∈ L∞(D∗)1 the holomorphic function S(wµ)|D ∈ A∞(D) and, by
Kraus-Nehari inequality, lies in the ball of radius 6. The Bers embedding β :
T (1) ↪→ A∞(D) is defined by

β([µ]) = S(wµ|D),

and is a holomorphic map of complex Banach manifolds. Define the mapping
Λ : A∞(D) → Ω−1,1(D∗) by

Λ(φ)(z) = −1
2

(1 − |z|2)2φ
(

1
z̄

)
1
z̄4

.

By Ahlfors-Weill theorem, the mapping Λ is inverse to the Bers embedding β over
the ball of radius 2 in A∞(D).

The complex structure of T (1) is explicitly described as follows. For every
µ ∈ L∞(D∗)1 let Uµ ⊂ T (1) be the image of the ball of radius 2 in A∞(D) under
the map h−1

µ = R−1
[µ] ◦ Λ. The inverse map hµ = β ◦ R[µ] : Uµ → A∞(D) and the

maps hµν = hµ ◦h−1
ν : hµ(Uµ)

⋂
hν(Uν) → hµ(Uµ)

⋂
hν(Uν) are biholomorphic (as

functions in the Banach space A∞(D)). The open covering T (1) =
⋃

µ∈L∞(D∗)1
Uµ

with coordinate maps hµ and transition maps hµν defines a complex-analytic atlas
on T (1) modelled on the Banach space A∞(D).

The canonical projection Φ : L∞(D∗)1 → T (1) is a holomorphic submersion
and the Bers embedding β : T (1) → A∞(D) is a biholomorphic map with respect
to this complex structure. Complex coordinates on T (1) defined by the coordinate
charts (Uµ, hµ) are called Bers coordinates.
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2.4. The universal Teichmüller curve

The universal Teichmüller curve T (1) is a complex fiber space over T (1) with a
holomorphic projection map

π : T (1) → T (1).

The fiber over each point [µ] is the quasi-disk wµ(D∗) ⊂ Ĉ = C ∪ {∞} with the
complex structure induced from Ĉ and

T (1) = {([µ], z) : [µ] ∈ T (1), z ∈ wµ(D∗)} .

The fibration π : T (1) −→ T (1) has a natural holomorphic section given by

T (1) � [µ] �→ ([µ],∞) ∈ T (1)

which defines the embedding T (1) ↪→ T (1). The universal Teichmüller curve is a
complex Banach manifold modelled on A∞(D) ⊕ C.

2.5. Velling-Kirillov metric on T (1)
The Velling-Kirillov metric at the origin of T (1) is defined by

‖ υ ‖2
V K=

∞∑
n=1

n|cn|2, where υ =
∑
n�=0

cneinθ ∂

∂θ
∈ T0S

1\Homeoqs(S1)

– the tangent space at the origin of a real Banach manifold S1\Homeoqs(S1).
(The series in the definition of ‖ υ ‖2

V K is always convergent.) At other points the
Velling-Kirillov metric is defined by the right translations. The Velling-Kirillov
metric on T (1) is Kähler with symplectic form ωV K .

Remark 2. For the space S1\Diff+(S1) this metric was introduced by Kirillov
[Kir87] and has been studied by Kirillov-Yuriev [KY87]. Velling [Vel] introduced
a Hermitian metric for T (1) using geometric theory of functions, and in [Teo02]
the second author extended Kirillov’s metric to T (1) and proved that it coincides
with the metric introduced by Velling. The Velling-Kirillov metric is the unique
Kähler metric on T (1) invariant under the right translations [Kir87, Teo02].

3. Weil-Petersson metric on T (1)

As a Banach manifold, the universal Teichmüller space does not carry a natural
Hermitian metric. However, it is possible (see [TT03] for detailed construction and
proofs) to introduce a new Hilbert manifold structure on T (1) such that it has a
natural Hermitian metric. Namely, define the Hilbert space of harmonic Beltrami
differentials on D∗ by

H−1,1(D∗) =
{

µ = ρ−1φ̄, φ holomorphic on D
∗ :

‖µ‖2
2 =

∫∫
D∗

|µ|2ρ(z)d2z < ∞
}
,
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where

ρ(z) =
4

(1 − |z|2)2
is the density of the hyperbolic metric on D

∗.
The natural inclusion map H−1,1(D∗) ↪→ Ω−1,1(D∗) is bounded, and it can

be shown that the family D, defined by

T (1) � [µ] �→ D0R[µ]

(
H−1,1(D∗)

)
⊂ T[µ]T (1),

is an integrable distribution on T (1). Integral manifolds of the distribution D are
Hilbert manifolds modelled on the Hilbert space H−1,1(D∗). Thus the universal
Teichmüller space T (1) carries a new structure of a Hilbert manifold. Similarly
to the Banach manifold structure, the Hilbert manifold structure can be also de-
scribed by a complex-analytic atlas. Let T0(1) be the component of origin of the
Hilbert manifold T (1), Möb(S1)\Diff+(S1) ⊂ T0(1).

As a Hilbert manifold, the universal Teichmüller space T (1) has a natural
Hermitian metric, defined by the Hilbert space inner product on tangent spaces.
Thus the Weil-Petersson metric is a right-invariant metric on T (1), defined at the
origin of T (1) by

gµν̄ = 〈µ, ν〉 =
∫∫
D∗

µν̄ρ(z)d2z, µ, ν ∈ H−1,1(D∗) = T0T (1).

If

υ =
∑

n�=−1,0,1

cneinθ ∂

∂θ
∈ T0 Möb(S1)\Homeoqs(S1)

– the tangent space to a real Hilbert manifold Möb(S1)\Homeoqs(S1) at the
origin – then

‖ υ ‖2
WP =

∞∑
n=2

(n3 − n)|cn|2,

The Weil-Petersson metric on T (1) is Kähler with symplectic form ωWP .

4. Riemann tensor of the Weil-Petersson metric

Let G = 1
2

(
∆0 + 1

2

)−1 be (the one-half of) the resolvent kernel of the Laplace-
Beltrami operator of the hyperbolic metric on D∗ (acting on functions) at λ = 1

2 .
Explicitly

G(z, w) =
2u + 1

2π
log

u + 1
u

− 1
π

, where u(z, w) =
|z − w|2

(1 − |z|2)(1 − |w|2) .

Set

G(f)(z) =
∫∫
D∗

G(z, w)f(w)ρ(w)d2w.



Weil-Petersson Geometry 225

Theorem A.

(i) The Weil-Petersson metric is a Kähler metric on a Hilbert manifold T (1),
and the Bers coordinates are geodesic coordinates at the origin of T (1).

(ii) Let µα, µβ , µγ , µδ ∈ H−1,1(D∗) � T0T (1) be orthonormal tangent vectors.
Then the Riemann tensor at the origin of T(1) is given by

Rαβ̄γδ̄ = −
∂2gαβ̄

∂tγ∂t̄δ
= −〈G(µαµ̄δ), µβµ̄γ〉 − 〈µαµ̄β , G(µ̄γµδ)〉.

(iii) The Hilbert manifold T0(1) is Kähler-Einstein with the negative definite Ricci
tensor,

RicWP = − 13
12π

ωWP .

5. Characteristic forms of T (1)

Let V = TvT (1) be the vertical tangent bundle of the fibration

π : T (1) → T (1).

The hyperbolic metric on wµ(D∗) defines a Hermitian metric on V , defining the
first Chern form c1(V ) – a (1, 1)-form on T (1).

Mumford-Morita-Miller characteristic forms (“κ-forms”) are (n, n)-forms on
the Hilbert manifold T (1), defined by

κn = (−1)n+1π∗
(
c1(V )n+1

)
,

where π∗ : Ω∗(T (1)) → Ω∗−2(T (1)) is the operation of “integration over the fibers”
of π : T (1) → T (1), considered as a fibration of Hilbert manifolds.

Theorem B.

(i) On T (1), considered as a Banach manifold,

c1(V ) = − 2
π

ωV K .

(ii) On T (1), considered as a Hilbert manifold,

κ1 =
1
π2

ωWP .

(iii) The characteristic forms κn are right-invariant on the Hilbert manifold T (1)
and for µ1, . . . , µn, ν1, . . . , νn ∈ H−1,1(D∗) � T0T (1),

κn(µ1, . . . , µn, ν̄1, . . . , ν̄n)

=
in(n + 1)!
(2π)n+1

∑
σ∈Sn

sgn(σ)
∫∫
D∗

G
(
µ1ν̄σ(1)

)
. . . G

(
µnν̄σ(n)

)
ρ(z)d2z.
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6. Applications

The Weil-Petersson properties of the universal Teichmüller space T (1) are “uni-
versal” in the sense that all curvature properties of finite-dimensional Teichmüller
spaces can be deduced from them. In particular, Wolpert explicit formulas [Wol86]
follow from Theorems A and B by using an “averaging procedure”, based on a uni-
form distribution of lattice points of a cofinite Fuchsian group in the hyperbolic
plane (see [TT03] for details). There are also connections with Hilbert spaces of
univalent functions and other related issues, which will be discussed elsewhere.
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