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HYPERBOLIC 2-SPHERES WITH CONICAL SINGULARITIES,
ACCESSORY PARAMETERS AND KÄHLER METRICS ON M0,n

LEON TAKHTAJAN AND PETER ZOGRAF

Abstract. We show that the real-valued function Sα on the moduli space
M0,n of pointed rational curves, defined as the critical value of the Liouville
action functional on a hyperbolic 2-sphere with n ≥ 3 conical singularities
of arbitrary orders α = {α1, . . . , αn}, generates accessory parameters of the
associated Fuchsian differential equation as their common antiderivative. We
introduce a family of Kähler metrics on M0,n parameterized by the set of
orders α, explicitly relate accessory parameters to these metrics, and prove
that the functions Sα are their Kähler potentials.

1. Introduction

The existence and uniqueness of a hyperbolic metric (a conformal metric of
constant negative curvature −1) with prescribed singularities at a finite number
of points on a Riemann surface is a classical problem that is closely related (and
in special cases is equivalent) to the famous Uniformization Problem of Klein and
Poincaré. Actually, in 1898 Poincaré [11] solved this problem for the simplest case
of parabolic singularities. Below we formulate his result for the particular case of
the standard 2-sphere realized as the Riemann sphere Ĉ = C ∪ {∞}. Consider the
punctured surface X = Ĉ \ {z1, . . . , zn} with n ≥ 3 (by applying an appropriate
Möbius transformation we can always assume that zn−2 = 0, zn−1 = 1, zn = ∞).
Then the Liouville equation

ϕzz̄ = 1
2 e

ϕ

(where subscripts stand for the corresponding partial derivatives) has a unique
(real-valued) solution ϕ on X with the following asymptotics:

ϕ(z) =

{
−2 log |z − zi| − 2 log | log |z − zi||+O(1) as z → zi, i 6= n,

−2 log |z| − 2 log log |z|+O(1) as z →∞

(such a singularity is called parabolic). Geometrically, the Liouville equation means
that the conformal metric ds2 = eϕ|dz|2 on X has constant negative curvature −1
(that is, hyperbolic), and the above asymptotics of ϕ guarantee that ds2 is complete
and the area of X is 2π(n− 2).
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Poincaré used this result to prove the uniformization theorem, i.e., to show that
there exists a complex-analytic covering of the Riemann surface X by the upper
half-plane H = {z ∈ C | Im z > 0}. He introduced the quantity

Tϕ = ϕzz − 1
2 ϕ

2
z

and showed that when ϕ satisfies the Liouville equation with parabolic singularities,
then Tϕ is a meromorphic function on Ĉ of the form

Tϕ(z) =
n−1∑
i=1

(
1

2(z − zi)2
+

ci
z − zi

)
,

with the asymptotics

Tϕ(z) =
1

2z2
+
cn
z3

+O

(
1
z4

)
as z →∞.

The coefficients ci are the famous accessory parameters. They satisfy three obvious
linear relations imposed by the asymptotic behaviour of Tϕ at ∞. The coefficients
c1, . . . , cn are uniquely characterized by the fact that the monodromy group of the
Fuchsian differential equation

d2u

dz2
+

1
2
Tϕ(z)u = 0

is conjugate in PSL(2,C) to the group of deck transformations of a coveringH→ X .
These ideas of Poincaré were in the spotlight once again about 20 years ago

due to Polyakov’s path integral formulation of the bosonic string [12] and the con-
formal field theory of Belavin-Polyakov-Zamolodchikov [2]. Briefly, in the quan-
tum Liouville theory the quantity Tϕ plays the role of the (2, 0)-component of the
stress-energy tensor that satisfies conformal Ward identities reflecting conformal
symmetry of the theory. At the semi-classical level, as it was first observed by
Polyakov, the Ward identity establishes (at the physical level of rigor) a non-trivial
relation between the accessory parameters and the critical value of the Liouville
action functional (see [13] for details).

In our paper [16], we rigorously proved Polyakov’s conjecture using the Ahlfors-
Bers theory of quasiconformal mappings and derived simple explicit formulas con-
necting the Liouville equation with accessory parameters and the Weil-Petersson
metric on Teichmüller space. More specifically, let

Zn =
{

(z1, . . . , zn−3) ∈ Cn−3 | zi 6= 0, 1 and zi 6= zk for i 6= k
}

be the configuration space of singular points (Zn is isomorphic to the moduli space
M0,n of n-pointed rational curves over C). Then there exists a smooth function
S : Zn → R (critical value of the Liouville action functional; cf. Section 3) such
that

(I) ci = − 1
2π

∂S

∂zi
, i = 1, . . . , n− 3,

and

(II)
∂ci
∂z̄k

=
1

2π

〈
∂

∂zi
,
∂

∂zk

〉
WP

, i, k = 1, . . . , n− 3,
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where 〈 , 〉WP denotes the Weil-Petersson metric on Zn ∼=M0,n.1 An immediate
corollary of (I) and (II) is that the critical value S of the Liouville action is a
potential for the Weil-Petersson metric.2

Although our methods generalize verbatim to hyperbolic 2-spheres with elliptic
singularities of finite order (in which case there exists a ramified covering H → Ĉ
branched over singular points z1, . . . , zn), they no longer work for conical singu-
larities of general type (see Section 2 for precise definitions). However, exact
analogs of formulas (I) and (II) hold in this general case as well, provided the
orders {α1, . . . , αn} of singularities z1, . . . , zn satisfy some rather mild natural con-
ditions. Physical consideration based on semi-classical limits of conformal Ward
identities also suggests the validity of these formulas in a general situation.

The objective of this paper is to give straightforward proofs of (I)-(II) in the
case of hyperbolic 2-spheres with conical singularities of general type. Section
2 contains the definitions and background material about the classical Liouville
equation, including detailed asymptotics of its solution. In Section 3 we present
the action functional for the Liouville equation, introduced in [14], and prove an
analogue of formula (I), Theorem 1.3 In Section 4 we prove an analogue of formula
(II) that relates accessory parameters to certain Kähler metrics on the moduli space
M0,n similar to the Weil-Petersson metric — Theorem 2. It is worth noting that
the proofs are considerably simpler than those in [16] and do not use Teichmüller
theory.

2. Background material

Consider the Riemann sphere Ĉ = C ∪ {∞} with n ≥ 3 distinct marked points
z1, . . . , zn. As in the Introduction, we normalize the last three points to be 0, 1 and
∞ respectively; so in the sequel we will always assume that zn−2 = 0, zn−1 = 1, zn =
∞. Let α = {α1, . . . , αn} be a set of real numbers such that αi < 1, i = 1, . . . , n,
and

(1)
n∑
i=1

αi > 2.

According to the classical result of Picard [9], [10] (see also [8] and, for a modern
proof, [15])4 there exists a unique conformal metric of constant curvature −1, or
the hyperbolic metric, on Ĉ with conical singularities of order αi at zi, i = 1, . . . , n.
Precisely, it means that such a metric has the form ds2 = eϕ|dz|2, where ϕ is a
smooth function on X = C \ {z1, . . . , zn−1} satisfying the Liouville equation

(2) ϕzz̄ = 1
2 e

ϕ

and having the following asymptotics near the singular points:

(3) ϕ(z) =

{
−2αi log |z − zi|+O(1) as z → zi, i 6= n,

−2(2− αn) log |z|+O(1) as z →∞.

1In [17] we formulated and proved analogs of (I)-(II) for compact Riemann surfaces of arbitrary
genus.

2These results were used by the second author in the study of the asymptotic behaviour of
accessory parameters for degenerating Riemann surfaces [18].

3A recent physicists’ paper [4] gives a different, computationally more involved proof of Theo-
rem 1.

4It is very instructive to compare the approaches of [9], [10], [8] and [15].
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The point zi is then called a conical singularity of order αi, or of angle θi =
2π(1− αi) (we have θi > 2π when αi < 0).

Remark 1. If αi = 1, then zi is a parabolic point, or cusp (conical singularity of
zero angle), and the asymptotics (3) should be replaced by the one mentioned in
the Introduction.

The configuration space Zn of singular points is an open subset in Cn−3:

Zn =
{

(z1, . . . , zn−3) ∈ Cn−3 | zi 6= 0, 1 and zi 6= zk for i 6= k
}

and is isomorphic to the moduli space M0,n of n-pointed rational curves over C.
For any fixed set of orders α the solution ϕ to the Liouville equation makes sense
as a function of n− 2 complex variables z, z1, . . . , zn−3, defined on the space

Zn+1 =
{

(z, z1, . . . , zn−3) ∈ Cn−2 | z, zi 6= 0, 1; z 6= zi; zi 6= zk for i 6= k
}
.

The space Zn+1 is fibered over Zn by “forgetting” the first coordinate z: the fiber
over a point (z1, . . . , zn−3) ∈ Zn is the surface C \ {z1, . . . , zn−3, 0, 1}. It follows
from the results of [10], [8], [15] that ϕ is a real-analytic function on Zn+1.

The (2, 0)-component of the stress-energy tensor in the Liouville theory is given
by the expression

(4) Tϕ = ϕzz − 1
2 ϕ

2
z .

The following result is classical.

Lemma 1. Let ϕ be the solution to the Liouville equation with conical singularities
(3). Then Tϕ is a meromorphic function on Ĉ with second-order poles at z1, . . . , zn.
Explicitly,

(5) Tϕ(z) =
n−1∑
i=1

(
hi

2(z − zi)2
+

ci
z − zi

)
and

(6) Tϕ(z) =
hn
2z2

+
cn
z3

+O

(
1
z4

)
as z →∞,

where hi = αi(2− αi), i = 1, . . . , n.5

Complex numbers ci are called accessory parameters. They are uniquely deter-
mined by the singular points z1, . . . , zn and the set of orders α. Formula (6) imposes
three linear equations on the parameters c1, . . . , cn:

n−1∑
i=1

ci = 0,
n−1∑
i=1

(hi + 2cizi) = hn,

n−1∑
i=1

(hizi + ciz
2
i ) = cn,

so that cn−2, cn−1 and cn are explicit linear combinations of c1, . . . , cn−3 with co-
efficients depending on zi and αi. Real analyticity of ϕ implies that the accessory
parameters are also real-analytic functions on Zn.

To study the behaviour of ϕ near the singular points more thoroughly, consider
the Fuchsian differential equation

(7)
d2u

dz2
+

1
2
Tϕ(z)u = 0,

5The coefficients hi are conformal weights in quantum Liouville theory [14].



HYPERBOLIC 2-SPHERES, ACCESSORY PARAMETERS, KÄHLER METRICS 1861

with regular singular points at z1, . . . , zn. A classical result (see, e.g. [11]), which
follows from the fact that e−ϕ/2 is a solution to (7), asserts that the monodromy
group Γ of the differential equation (7) is, up to a conjugation in PSL(2,C), a
subgroup of PSL(2,R) (see, e.g., [6], [3], or [7]).6 Such a group Γ is discrete in
PSL(2,R) if and only if αi = 1 − 1/li for all i = 1, . . . , n, where li is a positive
integer or ∞.

In case of general conical singularities the monodromy group Γ is no longer
discrete in PSL(2,R). It is generated by local monodromies around regular singular
points zi, which, in general, are elliptic elements γi of infinite order. If we denote
the fixed points of γi by wi, w̄i, then

γi(z)− wi
γi(z)− w̄i

= λi
z − wi
z − w̄i

, i = 1, . . . , n,

where λi = e2π
√
−1(1−αi) is called the multiplier of γi.

Remark 2. It is an outstanding problem to find a geometric meaning of the mon-
odromy group Γ in the case of general conical singularities, thus providing another
interpretation for the accessory parameters. Perhaps this problem should be con-
sidered in the context of A. Connes’s [5] non-commutative differential geometry,
where such group actions naturally appear.

Let w = u1/u2 be the ratio of two linearly independent solutions u1, u2 of the
differential equation (7). It is a multi-valued meromorphic function on Ĉ with
ramification points z1, . . . , zn, and it is single-valued on the universal cover of X =
Ĉ \ {z1, . . . , zn}. It is a classical result of Schwarz that

(8) Tϕ = S(w)

on X , where S(w) denotes the Schwarzian derivative of w:

S(w) =
w′′′

w′
− 3

2

(
w′′

w′

)2

.

Next, normalize u1, u2 in such a way that the monodromy group Γ of (7) is a
subgroup of PSU(1, 1). The multi-valued function w admits the following expansion
in the neighborhood of each singular point zi:

(9) σi(w(z)) = ζ1−αi
i

∞∑
k=0

a
(k)
i ζki as ζi → 0, i = 1, . . . , n.

Here ζi is a local uniformizer: ζi = z − zi for i = 1, . . . , n− 1, and ζn = 1/z, and
σi ∈ PSU(1, 1) diagonalizes local monodromy γi around zi, i = 1, . . . , n. Moreover,
the coefficients a(k)

i are (locally) real-analytic on Zn, as follows from the analytic
dependence on parameters of solutions to ordinary differential equations.

Lemma 2. The solution ϕ to the Liouville equation (2) with conical singularities
(3) is given by the formula

eϕ =
4|w′|2

(1− |w|2)2
,

where w = u1/u2, and u1, u2 are two linearly independent solutions of the Fuchsian
differential equation (7) with monodromy in PSU(1, 1).

6Among many available references, [6] is classical, [3] gives a detailed exposition of Fuchsian
differential equations, and [7] is a modern introduction to the subject.
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Proof. Since the monodromy is in PSU(1, 1), the function log
(

4|w′|2
(1−|w|2)2

)
is real

and single-valued on X . Moreover, it is easy to check that this function satisfies
the Liouville equation, and by (9) it has the same asymptotics (3) as ϕ. Therefore,
it must be equal to ϕ. �

Remark 3. When αi = 1, i = 1, . . . , n, it is more convenient to normalize solutions
u1, u2 so that Γ ⊂ PSL(2,R) (see [16]).

From the equality (8) and expansions (9) we readily get the following formula
for the accessory parameters (cf. Lemma 1 in [16]).

Lemma 3.

ci =
hi

1− αi
· a

(1)
i

a
(0)
i

, i = 1, . . . , n,

where hi = αi(2− αi).

Finally, we summarize all the necessary facts about the asymptotic behaviour of
ϕ and its derivatives in the next statement (cf. Lemma 2 in [16]).

Lemma 4. The solution ϕ to the Liouville equation (2) with conical singularities
(3) has the following asymptotic expansions near the singular points z = zi, uniform
in a neighborhood of (z1, . . . , zn−3) in Zn:

(i)

ϕz(z) =


− αi
ζi

+
ci
αi

+
fi(|ζi|)
ζi

+ o(1) as z → zi, i 6= n,

−(2− αn)ζn −
cn
αn
· ζ2
n + fn(|ζn|)ζn + o

(
|ζn|2

)
as z →∞,

where ζi = z − zi (i 6= n) and ζn = 1/z are local coordinates near the
singular points, and

fi(t) = O
(
t2(1−αi)

)
as t→ 0, i = 1, . . . , n.

(ii) For i = 1, . . . , n− 3

ϕzz(z) =
αi + g

(0)
i (ζi) + ζig

(1)
i (ζi)

ζ2
i

+O(1),

where

g
(0)
i (t), g(1)

i (t) = O
(
t2(1−αi)

)
as t→ 0.

(iii) For i = 1, . . . , n− 3 and k = 1, . . . , n, there exist constants dik such that

ϕzi(z) =

{
−δikϕz(z) + dik + o(1) as z → zk, k 6= n,

din + o(1) as z →∞.

(iv) If αk > 0 for each k = 1, . . . , n, then for i = 1, . . . , n− 3,

−2e−ϕϕzi z̄ =

{
δik +O

(
|z − zk| min{1, 2αk}

)
as z → zk, k 6= n,

O
(
|z| max{1, 2(1−αn)}) as z →∞.
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Proof. Parts (i)-(iii) follow from (9) and Lemmas 2 and 3; part (iv) follows from
(i), (iii), the Liouville equation (2) and asymptotics (3). Uniform estimates for the
remainder terms follow from the real analyticity of the coefficients a(k)

i as functions
of z1, . . . , zn−3. One can also prove (i)-(iv) directly from the Liouville equation and
asymptotics (3) by observing that the solution ϕ admits the following expansion in
a neighborhood of each zi:

ϕ(z) = −2αi log |z − zi|+ ξ(0)(z) +
∞∑
k=1

|z − zi| 2k(1−αi)ξ(k)(z), i = 1, . . . , n− 1,

and a similar expansion at ∞, where ξ(k)(z) are real-analytic as functions on the
fibered space Zn+1 (real-analytic dependence on z1, . . . , zn−3 follows from the anal-
ysis in [9], [10], [8], [15]). �

3. Liouville action and accessory parameters

For a given set of orders α = {α1, . . . , αn} the action functional for the Liouville
equation (2) is defined in [14] by the formula

(10) Sα[ψ] = lim
ε→0

Sεα[ψ],

where

Sεα[ψ] =
∫∫
Xε

(|ψz |2 + eψ)
∣∣∣∣dz ∧ dz̄2

∣∣∣∣(11)

+
√
−1
2

n−1∑
i=1

αi

∮
Cεi

ψ

(
dz̄

z̄ − z̄i
− dz

z − zi

)

+
√
−1
2

(2− αn)
∮
Cεn

ψ

(
dz̄

z̄
− dz

z

)

− 2π
n−1∑
i=1

α2
i log ε− 2π(2− αn)2 log ε.

Here Xε = C\
(⋃n−1

i=1 {|z − zi| < ε} ∪ {|z| > 1/ε}
)

, and the circles Cεi = {|z−zi| =
ε}, i = 1, . . . , n−1, and Cεn = {|z| = 1/ε} are oriented as the boundary components
of Xε.

The functional Sα is well-defined on the space CMα of all conformal metrics
eψ |dz|2 on Ĉ with conical singularities at z1, . . . , zn of orders α1, . . . , αn, satisfying

(12) ψz(z) =

−
αi

z − zi
(
1 +O

(
|z − zi|min{1, 2(1−αi)}

))
as z → zi, i 6= n,

−(2− αn)
1
z

(
1 +O

(
|z|−min{1, 2(1−αn)})) as z →∞.

Remark 4. The Liouville equation is the Euler-Lagrange equation for the functional
Sα. Indeed, the contour integrals in (11) ensure that for any eψ|dz|2 ∈ CMα and
u ∈ C∞(Ĉ,R),

lim
t→0

S[ψ + tu]− S[ψ]
t

=
∫∫
C

(−2ψzz̄ + eψ)u
|dz ∧ dz̄|

2
,
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where the integral on the right-hand side is convergent. Thus the functional Sα has
a non-degenerate critical point given by the hyperbolic metric.

The Liouville action evaluated on the solution ϕ to the Liouville equation is
a real-valued function Sα[ϕ] = Sα(z1, . . . , zn−3) on the configuration space Zn
depending on α1, . . . , αn as parameters.

Theorem 1. For any fixed set of orders α = {α1, . . . , αn} such that αi < 1 and∑n
i=1 αi > 2, the function Sα : Zn −→ R is differentiable and

(13) ci = − 1
2π

∂Sα
∂zi

, i = 1, . . . , n− 3,

where ci are the accessory parameters defined by (5).

Proof. First we show that

(14) lim
ε→0

∂Sεα
∂zi

= −2πci

pointwise on the configuration space Zn. We have

∂Sεα
∂zi

=
√
−1
2

∫∫
Xε

∂

∂zi
(|ϕz|2 + eϕ) dz ∧ dz̄ +

∮
Cεi

(|ϕz |2 + eϕ) dz̄

(15)

+
√
−1
2

n−1∑
k=1

αk

∮
Cεk

(ϕzi + δikϕz)
(

dz̄

z̄ − z̄k
− dz

z − zk

)

+
√
−1
2

(2− αn)
∮
Cεn

ϕzi

(
dz̄

z̄
− dz

z

)
.

Using part (i) of Lemma 4, we see that
√
−1
2

∮
Cεi

|ϕz|2 dz̄ −→ πci as ε→ 0.

From the Liouville equation we get∮
Cεi

eϕdz̄ = −1
2

∮
Cεi

ϕzzdz,

which tends to 0 as ε→ 0 because of part (ii) of Lemma 4. It follows from part (iii)
of Lemma 4 that the contour integrals in the second and third lines of (15) tend to

−2πci − 2π
n−1∑
k=1

αkdik − 2π(αn − 2)din

as ε→ 0. An obvious identity,
∂

∂zi
|ϕz|2dz ∧ dz̄ = d (ϕziϕz̄ dz̄ − ϕziϕz dz)− 2ϕziϕzz̄ dz ∧ dz̄,

combined with the Liouville equation yields the following simple formula:

(16)
∂

∂zi
(|ϕz |2 + eϕ) dz ∧ dz̄ = d (ϕziϕz̄ dz̄ − ϕziϕz dz).
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This reduces the area integral in (15) to a sum of contour integrals. These contour
integrals are again easy to evaluate using parts (i) and (iii) of Lemma 4, and all
together they tend to

−πci + 2π
n−1∑
k=1

αkdik + 2π(αn − 2)din

as ε → 0. Adding all the terms on the right-hand side of (15), we get −2πci in
the limit as ε→ 0. Finally, we observe that the convergence of (14) is uniform on
compact subsets of Zn because so are the estimates in Lemma 4. �
Remark 5. The same method works for αi = 1, i = 1, . . . , n. In this case, for-
mula (11) for the functional Sε[ϕ] contains an additional regularizing term
4π(n − 2) log | log ε|. By part 2) of Lemma 2 in [16], no contour integrals con-
tribute to the classical action S[ϕ]. This gives a much simpler proof of Theorem 1
in [16] along the lines of this paper without using either the uniformization theorem
or the quasiconformal mappings.

4. Accessory parameters and Kähler metrics on M0,n

Throughout this section we assume, in addition, that the orders α1, . . . , αn are
all positive,7 i.e., αi ∈ (0, 1) for each i = 1, . . . , n, and

∑n
i=1 αi > 2. To every such

set of orders α = {α1, . . . , αn} we associate a Hermitian metric on the configuration
space Zn ∼=M0,n as follows.

Consider the kernel

(17) R(ζ, z) = − 1
π

(
1

ζ − z +
z − 1
ζ
− z

ζ − 1

)
, (ζ, z) ∈ C× C,

and put

(18) Qi(z) = R(z, zi), i = 1, . . . , n− 3.

Clearly, the functions Qi are linearly independent. It follows from the positivity of
orders αi and (3) that the functions Qi are square-integrable on Ĉ with respect to
the measure e−ϕ |dz∧dz̄|2 . We define the scalar products of the basis of 1-forms on
Zn over the point (z1, . . . , zn−3) ∈ Zn by the formula

(19) (dzi, dzk)α =
∫∫
C

QiQke
−ϕ |dz ∧ dz̄|

2
, i, k = 1, . . . , n− 3.

The scalar products 〈 ∂∂zi ,
∂
∂zk
〉α are given by the elements of the inverse matrix

to {(dzi, dzk)α}n−3
i, k=1. Since the matrix {〈 ∂∂zi ,

∂
∂zk
〉α}n−3

i, k=1 is non-degenerate and
depends real analytically on zi, it gives rise to a Hermitian metric on Zn which we
denote by 〈 · , ·〉α. This metric is analogous to the celebrated Weil-Petersson metric
on the moduli space M0,n.8

Remark 6. In Teichmüller theory, when all αi = 1, the holomorphic cotangent
space to Zn at the point (z1, . . . , zn−3) is identified by means of quasiconformal
mappings with the space of rational functions on Ĉ with only simple poles at
z1, . . . , zn−3, 0, 1,∞, and dzi then corresponds to Qi (see, e.g., [16] and references
therein). Here we use the same identification directly.

7This is equivalent to the condition that all conformal weights hi are positive.
8We get the Weil-Petersson metric if all the orders αi are equal to 1.
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The kernel R, roughly speaking, inverts the operator ∂/∂z̄ on C. The precise
statement (see, e.g., [1] for details) is essentially a version of the Pompeiu formula.

Lemma 5. Let g be a locally integrable function on C such that g(z) = o(|z|) as
z →∞. Then the equation

fz̄ = g

has a unique solution on C satisfying f(0) = f(1) = 0 and f(z) = o(|z|2) as z →∞.
This solution is explicitly given by the formula

(20) f(z) =
∫∫
C

g(ζ)R(ζ, z)
|dζ ∧ dζ̄|

2
.

Let us formulate the main result of this section.

Theorem 2. For any set of orders α = {α1, . . . , αn} such that αi ∈ (0, 1) for each
i = 1, . . . , n and

∑n
i=1 αi > 2, we have

(21)
∂ci
∂z̄k

=
1

2π

〈
∂

∂zi
,
∂

∂zk

〉
α

, i, k = 1, . . . , n− 3.

Proof. As we mentioned in Section 2, the accessory parameters c1, . . . , cn−3 are
real-analytic functions on Zn. Now consider the functions

F i = −2e−ϕϕzi z̄, i = 1, . . . , n− 3.

According to part (iv) of Lemma 4 we have

F i(zk) = δik, k = 1, . . . , n− 1,(22)

F i(z) = O(|z|max{1, 2(1−αn)}), z →∞.
Moreover, as follows from (4) and (5),

F iz̄ = 2e−ϕϕz̄ ϕziz̄ − 2e−ϕϕziz̄z̄ = −2e−ϕ
∂

∂zi

(
ϕz̄z̄ −

1
2
ϕ2
z̄

)
= −2e−ϕ

n−1∑
k=1

1
z̄ − z̄k

· ∂c̄k
∂zi

= 2πe−ϕ
n−3∑
k=1

∂c̄k
∂zi

Qk.

Lemma 5 applied to g = F iz̄ yields

F i(z) =
∫∫
C
F iζ̄ (ζ)R (ζ, z)

|dζ ∧ dζ̄|
2

, i = 1, . . . , n− 3.

Putting z = zj and using (22) we get that

δij = 2π
n−3∑
k=1

∂c̄k
∂zi

(dzj , dzk)α, i, j = 1, . . . , n− 3,

which proves the theorem. �
Remark 7. The same arguments prove Theorem 2 in [16], making the uniformization
theorem and quasiconformal mappings redundant also in the case when all αi = 1.

Corollary 1. For any set α as in Theorem 2,〈
∂

∂zi
,
∂

∂zk

〉
α

= − ∂2Sα
∂zi ∂z̄k

, i, k = 1, . . . , n− 3.

That is, the metric 〈 · , ·〉α is Kähler and the function −Sα is its real-analytic Kähler
potential on Zn.
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Proof. Immediately follows from Theorems 1 and 2. �
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