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Abstract. We study families of quantum field theories of free bosons on a compact Riemann
surface of genus g. For the case g > 0, these theories are parameterized by holomorphic line
bundles of degree g — 1, and for the case g = 0— by smooth closed Jordan curves on the complex
plane. In both cases we define a notion of t-function as a partition function of the theory and
evaluate it explicitly. For the case g > 0 the t-function is an analytic torsion, and for the case
g = 0, the regularized energy of a certain natural pseudo-measure on the interior domain of
a closed curve. For these cases we rigorously prove the Ward identities for the current correlation
functions and determine them explicitly. For the case g > 0, these functions coincide with those
obtained by using bosonization. For the case g = 0, the 7-function we have defined coincides
with the t-function introduced as a dispersionless limit of the Sato’s t-function for the
two-dimensional Toda hierarchy. As a corollary of the Ward identities, we note some recent results
on relations between conformal maps of exterior domains and z-functions. For this case, we also
define a Hermitian metric on the space of all contours of given area. As another corollary of
the Ward identities, we prove that the introduced metric is Kéhler and the logarithm of the
t-function is its Kéhler potential.
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Introduction

The general notion of a Riemann surface was defined by Riemann. He proved that, in
modern terminology, every compact Riemann surface is a Riemann surface of an
algebraic function f(x, y) = 0. Continuing the work of Abel and Jacobi, Riemann
also introduced the notion of a general theta-function and solved the Jacobi
inversion problem. After Riemann’s death, his approach was repeatedly criticized
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by Weierstrass for the lack of rigor: in the proof of Dirichlet principle Riemann
assumed that Dirichlet functional has a minimum. Later, Riemann’s main results
were proved by Schwarz and C. Neumann without using this assumption and in
1901 Hilbert finally proved the Dirichlet principle itself. At the same time
Weierstrass criticism stimulated the development of the algebraic theory of algebraic
functions, i.e. a theory that does not use complex-analytic methods. This theory was
formulated by Brill, M. Noether, Dedekind and H. Weber, quite in parallel with the
theory of algebraic numbers. In 1924, Artin was the first to consider algebraic
functions over fields different from the field C of complex numbers. Artin’s results
were generalized by F. K. Schmidt who, in particular, developed the theory of
algebraic functions over a finite field. This development finally led A. Weil, among
other things, to the general formulation of the algebraic geometry over an arbitrary
field (see [20] for an exposition and references).

This old story nowadays is again in the spotlight due to the advent of the string
theory. It is amazing that dramatic applications of quantum fields and strings to
various mathematical areas are quite similar in spirit to Riemann’s original work.
Thus in his proof of the existence of a harmonic function with prescribed singularities
at given points, Riemann used the analogy with electrostatic theory, assuming as
obvious that for any charge distribution there exists an electrostatic potential, or
equivalently, there exists a flow of the ideal fluid with prescribed sources and sinks
(see, e.g., [19]). Using modern terminology, Riemann was exploiting methods of
classical field theory for mathematical purposes, ‘probing’ mathematical objects
with physical theories and translating the physical ‘output’ back into the mathemat-
ical statements. The same exact idea is in the heart of today’s applications, with the
‘only’ difference that classical fields are being replaced by quantum fields and strings.
Succinctly, this idea can be described as follows. In classical field theory one studies
critical points of action functionals (like Dirichlet functional) which satisfy partial
differential equations. In quantum field theory one studies partition and correlation
functions of quantum fields defined by Feynman path integrals. In this formalism
the critical values of the action functional as well as ‘higher invariants’ — so-called
quantum corrections, naturally appear in the perturbative expansion (see [15] for
exposition aimed at mathematicians). When probing mathematical objects
(e.g. topological, smooth or complex-analytic manifolds) by quantum field theories,
the mathematical output is encoded in partition and correlation functions that
are expanded in terms of the critical values and quantum corrections.

Symmetries of physical theories play a fundamental role. Continuous symmetries
in classical field theories correspond to conservation laws, and in quantum field
theories they correspond to the so-called Ward identities expressing correlation
functions through the partition function. The exploitation of symmetry is a powerful
tool for studying conformal field theories in two dimensions, as discovered by A.
B. Belavin, A. M. Polyakov and A. B. Zamolodchikov [4]. In addition to important
physical applications to the critical phenomena in statistical mechanics, conformal
field theories have a rich mathematical structure with applications to representation
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theory, complex analysis, uniformization of Riemann surfaces and complex
algebraic geometry of moduli spaces.

Quantum field theories of free fermions and free bosons on compact Riemann
surfaces are basic examples of conformal field theories. It was proved by
L. Alvarez-Gaumé¢, J.-B. Bost, G. Moore, P. Nelson, and C. Vafa and by
E. Verlinde and H. Verlinde (see [1, 3, 6, 44] and references therein) that these
theories are equivalent. Namely, there exists a remarkable correspondence between
bosons and fermions, called bosonization, that expresses partition and correlation
functions for one theory in terms of the other theory. Since for both theories these
functions can be written down explicitly in terms of theta-functions and related
algebro-geometric objects, bosonization yields non-trivial identities between them.
In particular, it gives another proof of the celebrated Fay’s trisecant identity for
theta-functions [12], which play a fundamental role in the KP hierarchy (see,
e.g., [28]). Approach in [3, 44] was based on path integrals with mathematical proofs
using analytic torsion and Quillen’s type isometries of determinant line bundles for
d-operators. Another approach to bosonization based on Sato’s infinite Grass-
mannian manifold was developed by L. Alvarez-Gaumé, C. Gomez and C. Reina
[2], C. Vafa [43] and by N. Kawamoto, Y. Namikawa, A. Tsuchiya and
Y. Yamada [21]. Purely algebro-geometric approach was given by A. Raina [35,
36, 37]. In addition to the proof of Fay’s trisecant identity, in papers [21, 36,
37] bosonization was also used to compute explicitly bosonic current correlation
functions from correlation functions for fermion operators.

This story brings us to Part 1 of the paper, where we derive bosonic current cor-
relation functions directly from the basic U(1)-symmetry of the theory. We define
z-function as a partition function and, following [3], show that it is essentially
an absolute value of Sato’s 7-function computed in [21]. Using explicit description
of the complex structure of the Jacobian variety of a compact Riemann surface
and basic properties of the Abel-Jacobi map we prove U(1)-gauge symmetry Ward
identities. As the result, we completely determine all reduced normalized multi-point
current correlation functions in terms of partial derivatives of logt with respect to
the complex coordinates on the Jacobian. Obtained formulas are in perfect agree-
ment with results in [21, 36, 37]. Though our exposition is based on path integrals,
all integrals that actually appear are Gaussian and have pure mathematical
definition. Therefore our approach is completely rigorous.

It is well-known that Ward identities for other quantum field theories also encode
important mathematical information. An interesting example is given by the quan-
tum Liouville theory — the theory that arises as a conformal anomaly in Polyakov’s
approach to the string theory [32]. It was conjectured by Polyakov [33] that the
semi-classical limit of conformal Ward identities for the Liouville theory yields
an expression for the Poincaré’s accessory parameters in terms of the critical value
of Liouville action functional. Together with P. G. Zograf we have proved this
and other results on the relation between accessory parameters and the Weil-
Petersson geometry of the Teichmiuller space [48-50]. In [41] we summarized the
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geometric approach to two-dimensional quantum gravity and interpreted results
in [48-50] as conformal Ward identities for multi-point correlation functions of
stress-energy tensor components.

From this perspective, Part 1 of this paper is just another application of the same
idea. The only difference is that instead of the quantum Liouville theory we consider
simpler quantum theory of free bosons on a Riemann surface and instead of cor-
relation functions with stress-energy tensor components we consider current corre-
lation functions, which are also much simpler. Also, instead of the ‘nonlinear’
Teichmiiller theory — the deformation theory of complex structures on a given
compact Riemann surface used in [48-50], we are using a ‘linear theory’ of the
Jacobian variety — the deformation theory of degree zero holomorphic line bundles
over the Riemann surface.

In Part 2, we exploit the same simple idea for the case of free bosons on bounded
simply-connected domains in the complex plane C. Using results of Part 1 as a
motivation, for every smooth closed Jordan curve C in C we formulate a quantum
field theory on the Riemann sphere P' that depends on the interior domain Q
of a contour C. We define the t-function of a contour C as a normalized partition
function of the theory and compute it explicitly. It turns out to be the exponential
of the regularized energy of a certain pseudo-measure on the domain Q and, quite
remarkably, coincides with the Mineev-Weistein—-Wiegmann—Zabrodin t-function
[24, 29, 45], defined as a dispersionless limit of the Sato’s t-function for the
two-dimensional Toda hierarchy. We prove the Ward identities which express
through logt the difference between current correlation functions of free bosons
parameterized by C and current correlation functions of free bosons on the exterior
domain P!\ Q satisfying the Dirichlet boundary condition. Correlation functions
for free bosons on P'\ Q with the Dirichlet boundary condition can be written
explicitly in terms of the conformal map G of the domain P!\ Q onto the exterior
of the unit disk. Thus the Ward identities give another proof of remarkable relations
between the conformal map G and the t-function, discovered by M. Mineev-
Weistein, P. B. Wiegmann and A. Zabrodin [29] in the content of the physical prob-
lem of 2D interface dynamics and studied extensively in [24, 45]. We also introduce
a Hermitian metric H on the space of all contours of given area and prove as a
corollary of the Ward identities that this metric is Kédhler and the logarithm of
the t-function is a Kéhler potential of the metric H.

The existence of the conformal map G is a consequence of the Riemann mapping
theorem that every simply-connected domain in the complex plane C whose bound-
ary consists of more then two points can be conformally mapped onto the unit disk.
There is a Riemann’s proof of this theorem which is based on the classical field theory
and defines the conformal mapping through the complex potential of a certain
charge distribution/fluid flow in the domain [19]. Corresponding quantum field
theory naturally introduces the t-function of contour C. Just as conformal Ward
identities for the quantum Liouville theory imply that the critical value of the
Liouville action is a generating function for the accessory parameters [48-50], cur-
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rent Ward identities for the theory of free bosons on P! imply that the -function of
smooth bounded contours is a generating function for the conformal maps. The
role of Teichmiiller theory in this case is played by the deformation theory of con-
tours as it has been stated by I. M. Krichever [26].

Thus, both parts of the paper are related not just by exploiting the same idea of Ward
identities for current correlation functions, but also by using Riemann’s two major
achievements in complex analysis as a framework for quantum field theories.

The above examples illustrate the importance of probing one-dimensional
complex manifolds: compact Riemann surfaces and simply-connected domains in
the complex plane, by quantum field theories. This idea can be pushed further
by considering adelic formulation of quantum field theories on algebraic curves over
an arbitrary field of constants [42, 46, 47] where Ward identities result in reciprocity
laws. There is also a possibility of defining quantum field theories on the fields of
algebraic numbers and it seems that the proper setting should be ‘quantum field
theories on regular one-dimensional schemes’.

In this paper we are systematically using physical terminology. This is done for the
only purpose: to show the true origin of the ideas and methods, and not for the
purpose of proofs. Mathematically oriented reader can completely ignore these
terms, which are emphasized in the main text on their first appearance, and consider
them simply as words.* All results in the paper are rigorously proved (with usual
space limitations) and no knowledge of quantum physics is required for what
follows.

Here is a more detailed description of the content of the paper. Section 1 of Part 1
reviews some necessary mathematical facts: Jacobians, properties of the Abel-
Jacobi map and theta-functionsin 1.1, Green’s functions 1.2. In addition to standard
definition and properties of the Green’s function of a Laplace operator on an
compact Riemann surface X of genus g, in Lemma 1.1 we included a proof of
the Fay’s formula relating two classical kernels on X. In Section 2 we define the
theory of free U(1)-bosons on X with classical fields** g € C*°(X, U(1)) and field
currents J: = g~ 'dg/2n+/—1, parameterized by the holomorphic line bundle L over
X of degree g — 1 with A°(L) = 0. We introduce the action functional S(J) of the
theory as a sum of the action functional for the standard free bosons on X and
the topological term depending on L. We follow [3] with minor technical improve-
ment in the invariant definition of the topological term. We define z-function —
the partition function as

T=(1):= / [DJ] e~ 5D
C(x, u)/u

and in Proposition 2.3 evaluate it explicitly in terms of the Riemann theta-function.
The computation is a slight simplification of the original proof [3]. Namely, we apply

**Guaranteed to raise a smile’ from physicists.
**It should be always clear from the content whether g is a genus, U(1)-valued bosonic field, or
an inverse to a conformal map G as in Part 2.
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the Poisson summation formula for the lattice Z instead of the lattice Z¢ as in [3]
and use the transformation formula for the Riemann theta-function. In Section
3 we prove U(1)-gauged symmetry Ward identities for normalized reduced current
correlation functions. Specifically, we introduce holomorphic and anti—-holomorphic
components of the bosonic field current as J = —g~'9g and J = —g~'dg, and define
multi-point current correlation functions as

TPy T(P)T(Q)). .. T(Q)
[DIVJ(P))...J(Pu)T(Q)...T(Qp)e 7St

/C‘”(X,U(l))/U(l)

The U(1)-gauged Ward identities for normalized 1-point correlation function have
the form

3l
%:/((J(P))), i=1,....g
Zi a;i

where z; are complex coordinates of the point Z on the Jacobian J(X) corresponding
to the line bundle L, and directly follow from Riemann bilinear relations.

The Fay’s formula is relevant for the computation of the reduced normalized
2-point correlation function. General expression for the multi-point correlation
functions is given in Theorem 3.3 and is in perfect agreement with [21, 36, 37].

Basically, Part 1 serves as a motivation for Part 2. In Section 1 of Part 2 we recall
necessary mathematical facts. In Section 1.1, following A. A. Kirillov [22], we review
the infinite-dimensional space C of all smooth closed Jordan curves on C encircling
the origin 0, and other spaces related to it. We also introduce a double P} of
the exterior domain P!\ Q of the contour C. In Section 1.2 we recall basic facts
about classical Green’s functions on P! and on P!\ Q, including Schiffer kernel
and Bergman’s reproducing kernel. Section 1.3 is devoted to detailed exposition
of Krichever’s deformation theory, outlined in [26]. We introduce the analogs of
Faber polynomials for the conformal map G and define the harmonic moments
of interior ¢y, t, of the contour C and harmonic moments of exterior vy, v, of C,
n € N. We formulate and prove Theorem 1.5 which contains explicit description
of holomorphic tangent and cotangent spaces to the infinite-dimensional complex
manifold C, of contours of fixed area > 0. The main ingredient is the so-called
Krichever’s lemma [26] that expresses vector fields 9/dt, 8/0t,, 9/dt, on C as
meromorphic (1, 0)-forms on Plc. In addition to [26], we introduce natural Hermitian
metric H on the spaces Ca using the Bergmann reproducing kernel. The metric H
turns out to be Kihler (see Section 3 and description below).

In Section 2 we define theories of free bosons on P! parameterized by smooth
Jordan contours C € C. The action functional S¢(¢) of the theory is defined as a
sum of the action functional for the standard free bosons on P! and of the analog
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of the topological term depending on C. The partition function is defined as

(I)ei= / [Dp]e =5,
Co (P! R)/R

and the t-function of the contour C is given by

(1)c

==

Ly’

where ¢ is the empty set that formally corresponds to the case when no contour is
present. In Proposition 2.1, we compute the 7-function explicitly. It turns out to
be the exponential of a regularized energy of the pseudo-measure given by the dif-
ference between the Lebesgue measure on the domain Q and the delta-measure
at 0 times the Euclidean area of Q and coincides with the Wiegmann—Zabrodin
t-function [24, 45]. In Section 3 we introduce holomorphic and anti-holomorphic
components j = d¢, ] = d¢ of the field current do and define multi-point current
correlation functions

01 - - GEm)iw1) - .. J(Wa))

= / [Dplj(21) . . ) Em)i 1) . . . J(w)e 5@
c=(PL,R)/R

for free bosons on P! parameterized by C € C. In a similar fashion we introduce
current correlation functions for free bosons on P! \ Q with the Dirichlet boundary
condition, denoted by ( )ppc. In Theorem 3.1, we prove the Ward identity for
the 1-point normalized correlation function

dlogt 1
at,  2mi

/((](Z)))Z"dz, ne N.
C

As a corollary we immediately get that the t-function is a generating function for the
harmonic moments of interior, as first proved in [24, 26, 45],

_ dlogt _ dlogr

, e N.
At K o,

Vo

In Corollary 3.7 we derive another Wiegmann—Zabrodin result [45] — an ‘explicit
formula’ for the conformal map G

1#logt &
logG(z):logz—E 8[3 -

z "9 logt
n otyot,

n=1

In Theorem 3.9, we prove the following Ward identities for normalized reduced
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2-point correlation functions

8210gr G/(Z)G/(W) 1 o
Ot it (2m>2f f ((G(z)—G(w))z_(Z—w)z)Z idedw

B (27Ti)2 /c /c "W ({2 (w))) — (G (W) pBC)

and

#logt G(Z)G (w) M d=di
almafn B (27‘[!) /;Lr /C+ (1 G(Z)G(W)) wdzdy

- (Zni)z/c /C 2" (W) = (W) pBC)s

where C. is an arbitrary contour around 0 containing the contour C inside.

The latter formula shows that the natural Hermitian metric A on infinite-
dimensional complex manifolds C, is Kihler and logx is its Kéhler potential. This
is a new result.

In numerous remarks throughout the paper we point out to interesting con-
nections with other fields, classical complex analysis and theory of the univalent
functions in particular. We plan to return to these questions, as well as to the dis-
cussion of the bosonization, in a separate paper.

PART 1. FREE BOSONS AND TAU-FUNCTIONS FOR COMPACT
RIEMANN SURFACES

1. Mathematical Set-up

Here we recall, in a succinct form, necessary facts from complex (algebraic)
geometry of compact Riemann surfaces (algebraic curves). The standard reference
is [17]; see also [11, 30] as well as [3] for a ‘crash course’ for physicists.

Let X be a compact Riemann surface of genus g, which is always assumed to be
connected and without the boundary. Denote by K = Ky the canonical line bundle
on X — holomorphic cotangent bundle of X, by Div(X) — the group of divisors
on X, and by Pic(X) — the Picard group of isomorphism classes of holomorphic
line bundles over X. The correspondence between line bundles and divisors provides
canonical isomorphism Pic(X) >~ Div(X)/PDiv(X) — the group of divisors on X
modulo the subgroup PDiv(X) of principal divisors. Let fli(X , F) be the Cech
cohomology groups with coefficients in a sheaf F on X and set hi(F)=
dimg fli(X, F),i=0,1. As usual, we denote by L a holomorphic line bundle over
X as well as the sheaf of germs of holomorphic sections of L. The Riemann—Roch
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formula is
L) —(KQL)Y=degL+1—g,

where deg L is a degree of the line bundle L.

1.1. JACOBIANS AND THETA-FUNCTIONS

The period map
H'(X,K)> w— /we C,
c

for all homology classes [c] € H (X, Z) of 1-cycles ¢ on X, defines canonical inclusion
of Hi(X,7Z) into fIO(X , K)” — the dual vector space to HO(X , K). The additive
subgroup H(X, Z) of ﬁIO(X ,K)" is a discrete subgroup of maximal rank 2g over
R. The Albanese variety Alb(X) of a compact Riemann surface X is canonically
defined as the following g-dimensional complex torus

Alb(X): = H(X, K)" /H\(X, 7).

The Albanese variety Alb(X) is a complex projective manifold. It carries translation-
invariant Kéhler metric, defined by the following Hermitian inner product at
H'(X,K) = T;Alb(X) — the holomorphic cotangent vector space to Alb(X) at 0,

/1 _ .
<(1)1,(A)2)I:T w) N\ w3y, Q)],Q)QGHO(X,K).
X

Let Pic’(X) be the group of degree 0 line bundles over X — the identity component
of the Picard group Pic(X). It follows from the standard exponential exact sequence
and from the Dolbeault isomorphism

Pic’(X) = H'(X, 0O)/H"(X. 2) = H)''(X)/H"(X. Z),

where O is the structure sheaf on X and H'(X, 7): = Hom(H (X, 7), 7) is a lattice in
the de Rham cohomology group H'(X, R) of cohomology classes of 1-forms with
integral periods. By the Hodge theorem, H'(X, Z) ~ H!(X, 7Z) — the space of har-
monic 1-forms on X with integral periods, and the mapping

H' (X.Z) 5 0 =00+ 0" > o' e HY'(X)

gives canonical embedding H'(X, Z) < Hg‘l(X ). The following canonical isomorph-
isms

Div’(X)/PDiv(X) ~ Pic’(X) ~ Alb(X)

follow from the Serre and Poincaré dualities.
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A Riemann surface X is called Torelli marked if it is equipped with a symplectic
basis {a;, b[}‘;?’:l for H{(X,7Z). For a Torelli marked Riemann surface X, let
{w;}%_, be the basis for H (X, K) of abelian differentials with normalized a-periods:
[, @ = 95, and let Q = (Q;)f,_, be the matrix of b-periods Q;: = [, ;. By Riemann
bilinear relations, the matrix Q is symmetric with positive definite imaginary part
Im Q: = (Q — Q)/(2v/—1). Denote by A = 78 @& Q7# the period lattice of a Torelli
marked Riemann surface X. It is a discrete subgroup of rank 2g in C?. The Jacobian
variety of X is defined as the following g-dimensional complex torus J(X): = Cf/A.
There is a complex-analytic isomorphism J(X) >~ Alb(X) which is obtained by
choosing the basis {, }{_, for HO(X, K)" of the a-periods. The complex coordinates
Z ="(z1,...,z,) on Alb(X) for this basis are the standard complex coordinates
on Cf and H,(X, Z) ~ A. The invariant Kéhler metric on J(X) in these coordinates
has the form:

g
dS2 = Z Yidei [ déj,
ij=1

ij=1 —

where (Y¥)¢._ =Y :@')_1, so that the corresponding Hermitian inner product on
C# = ToJ(X) is given by

g
(U, V) = Z Yiju,-ij,

ij=1

where U ="(u1, ..., up), V="(v1,..., V).
The Abel-Jacobi map u: Div’(X) — J(X) for a Torelli marked Riemann surface X
is defined by

t n P; n P;
wD) = (;fg wlgfg cog) e J(X),

where D=Y" (P;i— Q)€ Div’(X). By Abel’s theorem, the Abel-Jacobi map
establishes a complex-analytic isomorphism Div’(X)/PDiv(X) ~ J(X).
Two other maps, the holonomy map

hol: Div’(X) — Hom(x(X), U(1)) = Hom(H,(X, Z), U(1)),
and the inclusion map
rH' (X, R)/H'\(X,Z) - J(X),

are defined as follows. For D = Zﬁ:l niP; € DivV’(X) let wp be the unique
meromorphic differential on X with only simple poles at P; with residues n; and
with pure imaginary periods:

/coD e v—1R forall [c] € H|(X, Z).

C
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The differential of the third kind wp can be also interpreted in terms of the
holomorphic line bundle L = [D] associated with the divisor D as a unique con-
nection-current wp with the property that its curvature-current (v—1/2n)dwp is
Poincaré dual to the 0-cycle D. Set

t t
Haz (/wD,...,/wD>, H[,Z (/wD,...,/wD>eRg,
a dg bl b

8

and define the holonomy map hol(D) = p € Hom(x;(X), U(1)) by

p(ai) — e2m/jl'lm', p(bi) — e27l«/:Tnhi’ i= 1’ 8.

To define the inclusion map : consider the isomorphism
H'(X, R)/H'(X, Z) ~ Hom(m (X), U(1)).

given by the exponential of the period map

H\(X, R)/H'(X, Z) 3 [o] 1> 0
= &I € Hom(m (X), U(D).
and set
([w]) = —QI1, + IT, mod A.

The reciprocity law between differentials of the first and third kinds (see, e.g., [25])
gives

u(D) = y(hol(D)).

These relations between the Abel-Jacobi map, the holonomy map and the inclusion
map can be summarized in the following commutative diagram

Pic’(X) — Alb(X) — Div’(X)/PDiv(X)
J'hol lv lu
Hom(m;(X), U(1)) — H'(X,R)/H\(X,7) ——> J(X)

where the isomorphism v is defined by the commutativity of the diagram.
Let 0(Z | Q) be the Riemann theta-function of a Torelli marked Riemann surface
X, defined by the following absolutely convergent series,

H(Z | Q): — Z eﬂ«/:T((9”7’1)-"-2(”,2))7 7Zc Cg,

neZ?

where (4, B) = 'AB for A, B € C?, and denote by 0[¢](Z | Q) the theta-function with
characteristics & = (&,, &) € R*

0[E(Z | Q): = en«/f_l((Qiméa)H(éa,Z+€“h))0(z 108, + & | Q).
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The Riemann theta-function satisfies the modular transformation formula

-1 -1y _ Q 2 w—1(Q'Z,2)

0(—QZ| —Q )_<det<ﬁ)> e 0(Z Q).
Let ® C J(X) be theta-divisor — the zero locus of Riemann theta-function on J(X).
It can be defined geometrically as a divisor of the unique (up to a translation)
holomorphic line bundle over J(X) whose first Chern class is given by the
intersection form in H(J(X),Z)=A ~ H|(X,Z). The theta-divisor is even,
® = —0, and depends on the marking. Denote by £ = {L € Pic* " '(X) | i°(L) > 0}
the so-called canonical theta-divisor. It follows from the Riemann—Roch formula
that L € £ if and only if K ® L' € £. Next, choose a base point Py € X and denote
by ug_I:Divg’l(X ) — J(X) the corresponding Abel map: u, (D)= w(D—
(g — 1)Py) for D € Div¥ ' (X). Let Wy_y = pt,_1(€) = o (X¢™D) C Pic*~'(X), where
X@D is g — 1-fold symmetric product of X and we have used the isomorphism
Pic*"1(X) = Div¥~!(X)/PDiv(X). According to the Riemann theorem, there exists
K € J(X) such that ® = W,_; + k. A vector of Riemann constants x depends on
a Torelli marking of the Riemann surface X and on the choice of a base-point,
and has the property that there exists K € Pic®~!(X) satisfying K ® K = K such that
K = —,_1(K). Using the spin structure K we identify Pict 1 (X) ~ Pic’(X) by
L— LK™

1.2. GREEN’S FUNCTIONS

For any Hermitian (i.e. conformal) metric ds*> on a Riemann surface X let
2A¢ = — % 9%  be the d-Laplacian acting on functions on X. Here = is the Hodge
star-operator for the metric ds?, and 9 is the (0, 1)-component of the de Rham
differential d on X, d =94 d. In local coordinates ds* = p(z)|dz|*> and A, =
—p(2)"'8?/9z0z. The Green’s function G of the Laplacian Ay is canonically defined
by the following properties (see, e.g., [27]).

Gl. G e C®(X x X\ A, R), where A is the diagonal in X x X.
G2. For every P € X there exists a neighborhood U > P such that the function

G(P. 0= G(P, Q) + _log|=(P) ~ Q)

is smooth in U x U, where z is a local coordinate at U.
G3. For every Q € X the function Go(P):= G(P, Q) on X \ {Q} satisfies

AoGQ = —lArea(X),

where Area(X) = | y *1 is the area of X.
G4. [, %Go =0 for every Q € X.
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In distributional sense, conditions G1-G3 can be summarized in the following single
equation

1

AyG(P, Q)Z(S(P_Q)_W(X)’

where Laplacian Ay acts on the first argument of G.
It follows from G1-G4 that the Green’s function is symmetric: G(P, Q) = G(Q, P).
Next, consider the following tensor on X x X

2

G
S:=-—nddG=—
i 7Tazaw

dz ® dw,

where d and 9 act on the first and second arguments of G correspondingly. It follows
from G1-G3 that S is a symmetric bidifferential of the second kind on X x X with
biresidue 1. Specifically, S is a symmetric section of the line bundle Ky XKy over
X x X, holomorphic on X x X \ A and having a pole of order 2 at A with residue 1:

dz(P) ® dz(Q)
(z(P) — 2(Q))*
Succinctly, S € fIO(X x X, Ky Kx(2A))%* and Bires |,S = 1. As it follows from
G1-G3 and the Stokes theorem, bidifferential S has the property

S(P, Q) = +0(1)as P— Q.

V.p./SQ@:0 forall Qe X and weﬁO(X,K).
X

Here Sp =1)S € H'(X,K(2Q)) is a pull-back of S by the map 19: X < X x X
defined by i1p(P) = (P, ), and the integral is understood in the principal value sense.
This property uniquely characterizes S as a classical Schiffer kernel. The Schiffer
kernel is defined canonically and does not depend on the choice of a conformal metric
ds? on X.

Another symmetric bidifferential B of the second kind with biresidue 1 is
canonically associated with a Torelli marked Riemann surface X and is uniquely
characterized by the property that for all Q € X the differential of the second kind
Bg = 1B on X has zero a-periods. Remaining b-periods of B satisfy the relations

/BQ:ZTCV-ICO,‘(Q), izl,...,g,
b;
which follow from the reciprocity law between differentials of the first and second
kinds (see, e.g., [17, 25]).
The Schiffer kernel and the B-kernel are related as follows [13].

LEMMA 1.1 (The Fay’s formula).

g
B(P.Q)=S(P.Q)+7 Y Yw(P)wy(Q).

ij=1
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Proof. Tt is sufficent to verify that the right-hand side of the Fay’s formula has zero
a-periods. Writing S = d'(—ndG) + S, where S: = 709G is a regular bidifferential on
X x X holomorphic with respect to P and anti-holomorphic with respect to Q, we get
by Stokes theorem that the periods of S with respect to the variable Q are the same as
periods of S. Next, it follows from properties G1-G3 and the Stokes theorem that

/ Spw = —nw(P) forall P e X and w € H(X, K),
X
/ Spof =0 forall Pe X and f € C(X).

X

Here Sp = ]}“,S’ € H'(X,K) is a pull-back of the bidifferential S by the map
Jp: X — X x X, defined by jp(Q) = (P, Q). These properties uniquely characterize
K:= —:S'/n as a kernel of the Hodge projection operator P: L;’O(X) — Hg’O(X) onto
the subspace of harmonic (1, 0)-forms on X, so that

g
K(P, Q)= Yu(P)iy(Q).
ij=1
Therefore
~ g Iy
/ Sp=—ndYio(P), j=1.....g
a; i=1

and the a-periods of the right-hand side of the Fay’s formula are indeed O. O

Remark 1.2. Using classical terminology (see, e.g., [25]), the kernel K is the
Bergman reproducing kernel for the space of (1, 0)-forms on the Riemann surface
X.

2. Bosonic Action Functional and Partition Function

For a classical U(1)-valued bosonic field g € C*°(X, U(1)) define corresponding field
current as the following 1-form on X

J:= ~ldg.
27u/—1g &

The 1-form J is closed, real-valued, and has integral periods: [J] € H'(X, 7).
Denoting by [J(X) the set of all 1-forms on X with these properties, we have canoni-
cal isomorphism

C*X, u)/u) = J(X),

ZHJTlf;J

where the inverse map is given by the integration: g(P) = ¢ . Consider the
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following functional on the space of field currents 7(X)
1
S(J);:—/ JAxJ,
4Jx

where * is the Hodge star-operator (which for 1-forms on X does not depend on the
choice of a conformal metric on X). According to the Hodge decomposition, every
J € J(X) can be uniquely written as J =d¢,+h, where ¢, € C*(X,R) and
h € H'(X, Z) is harmonic 1-form, dh = d * h = 0, with integral periods. Therefore

JX) = C®X,R)/R x H\(X, Z),

so that
1 1
S =5 [ dou nxdoy g [ k= i) + Sl
1), 1),

Here the term S is interpreted as an action functional of the standard theory of free
bosons on X, and the term Sj,s; — as a contribution from instantons.

Remark 2.1. The field current J can be also written as J = d¢, where ¢ is an addi-
tive multi-valued real function on X with integral periods, i.e. ¢ is a single-valued
function on the universal cover X of X satisfying @poy—¢@ e Z for all
y € m1(X), where 7 (X) acts on X by deck transformations. The classical field ¢ with
these properties is the simplest example of an instanton configuration with the
instanton numbers given by the periods of the 1-form J = do.

According to the bosonization procedure [3, 21], quantum theories of free bosons
on X are parameterized by the set Pic®"!(X)\ £ of generalized spin structures
without zero modes. For every L € Pics 1(X)\ &, following [3], define the topological

term of the bosonic action functional by

Smp(J):z\/——I/XJ/\0L+\/2:Te(h):\/——I/Xh/\HL+\/2:‘le(h).

Here (see Section 2.1)
[0.]: = hol(Ly) € H'(X, R)/H" (X, Z) ~ Hom(m (X), U(1)),

where Ly = L ® K~!, and ¢(h) is a parity of the spin structure associated with 1(4)/2:
e(h):=(,m)mod2 where (h)=—-Ql+meA, [,melZ5.

Since h € H'(X, 7), the exponential exp{27Siop(J)} does not depend on the choice of
representative 0.

The total action functional of the theory of free bosons on X with a topological
term parameterized by L € Pics™!(X)\ € is given by

SL(J): = S(J) + Stop(']) = SO((PO) + Sinst(h) + Stop(h),
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and is, in general, complex-valued. The partition function of the theory is defined by
the following functional integral

()= / [DJ]e 251D,
JX)

Mathematically rigorous definition is the following. Using the Hodge decomp-
osition, set

<1)L: = ZLoZiyg.

Here

Zo: = f [Dq,o]efhsa((ﬂo)
C>(X,R)/R

is a fluctuation part of (1); — the partition function of the quantum field theory of
free bosons on X given by the standard Gaussian integral, and

Ling: = Z e*%th/\*h*ZTI\/flth/\GLfn«/fle(h)

heH (X,Z)

is an instanton part of (1); with topological term. The instanton part Zis is
well-defined: it is given by the absolutely convergent series over the lattice
H'(X, Z) of rank 2g in R*. In order to define the Gaussian integral for Z, choose
a conformal metric ds’> on X so that the functional Sy becomes a quadratic form
of the Laplacian Ag. According to [34], metric ds? defines a ‘Riemannian metric’
on the infinite-dimensional Frechét manifold C*°(X, R)

IIVllth/ VP, v € T, C¥(X, R),
X

and the integration measure [Dg,] on C*°(X, R) is defined as the volume form of this
metric. Mathematically, this is equivalent (see, e.g., [39]) to a definition

_ . Area(X)\
7y :/ [Degle 2 [ dopuron, (Trea( )>
C®(X,R)/R ety Ao

Here det; Ay is a functional determinant of the Laplacian A of the metric ds? defined
through the zeta-function of Aj. The area term — contribution from zero modes —
reflects the integration over the coset C*°(X, R)/R. This completes the rigorous
definition of the partition function (1);.

Remark 2.2. Though the functional Sy does not depend on the choice of the con-
formal metric ds?, this metric is required for defining the integration measure
[Dg,], and the determinant det; Ay depends on ds?. This is Polyakov’s conformal
anomaly [32], which is due to the fact that any ‘regularization procedure’ defining
det Ay breaks conformal invariance.
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It is remarkable that the instanton part Z;,s can be computed explicitly in terms of
the Riemann theta-function with characteristics ¢ = /(—I1,, I1,) € R%¢, where

2™ a: — hol(Lo)a), ™= hol(Lo)(by), i=1,...,g.

Namely, the following statement holds [3].

PROPOSITION 2.3.

Zing = 2L 022207 | Q) = — 2 100 | Q)P
"= Jde Y = Jaey ’

where Z: = 1(0;) = Q&, + &, = —QIl, + 1T, € C.
Proof. 1t is a straightforward application (cf. [3]) of the Poisson summation for-
mula

Y fm="Y" fo.

neZ* nez*

where f € S(R*) is a function of the Schwartz class and

For= [ e Ten s

is its Fourier transform, where (, ) is the standard Euclidean inner product in R*.
Let {o;, f;}3_, be the basis for the lattice HY(X,7Z) dual to a symplectic basis
{a;, bi}5_, in Hi(X,7), so that for h € H'(X, Z)

g g
h=" (o +mB;) and 0 =Y (&0t + EpiBy).
i=1 i=1
Using ¢(h) = (I, m) mod 2 and the formulas

/h/\*h:(ﬂv,/l), 2«/——1/}!/\0L:(Z,)L)—(/"L,Z),
X X

where 1: = —Q/ + m € A, the instanton part Z;,y can be represented as the following
theta-series

ZLiys = Z e 2Qnm)—n(d.n)

72,
neZ*

Here n :(ni)e 7%, Q is the following 2g x 2g matrix

_(QYQ -QY _(QYz-Qyz 2
Q_(—YQ y ) and A_< Y(Z - 7) )GC .

We apply the Poisson summation formula to the function

f(X) — 67%( Qx,x)—n(A4,x) )
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The inverse matrix Q! is readily computed

N1t g
o =" (% 4)

(this is the place where the extra term ¢(/) in the topological action is crucial, cf. [3]),
so that

det Q = 28 det Y det(—v —1Q)).

The Gaussian integral for f is computed explicitly

~ 28 1/2
Sx)= (—) e%(Q’lA»A)—h(Q*‘(x+«/—_1A),x)’
det(—v/~1YQ)

so that

7 28 2 M(Z~Z,2-Z)-2=1(Q7'Z,Z2))
> Sy = <—det(—F1 YQ)) e? x

x 0(ZIQ0(—Q 'z — Q7).

neZ’g

Using the modular transformation formula for the Riemann theta-function com-
pletes the proof. [

Remark 2.4. Note that though the action functional Sy (J) is not real-valued, Prop-
osition 2.3 shows that the partition function (1), is real and positive. Since under the
involution Li— K ® L™!, or equivalently, Z+— — Z, S;(J)— S;(J) — the complex
conjugate, the partition function (1); has a Z,-symmetry Zi— — Z, in accordance
with 0(Z | Q) = 0(—Z | Q).

Remark 2.5. As it follows from the Proposition 2.3 and [3,14], the partition func-
tion (1); coincides with the analytic torsion 7T(L) for the unitary line bundle
Ly = L ® K~' — the zeta-function determinant of the 3-Laplacian acting on sections
of the line bundle L. This is the essence of the spin-1/2 bosonization formula [1, 6].

Let ©(t, U), t = (7, t2,...), be Sato’s t-function on the universal Grassmannian
manifold, defined as a solution of Hirota’s bilinear equations (see, e.g., [21]). It
is well known [2, 21, 43] that if a point U in the universal Grassmannian manifold
is the image of a Torelli marked Riemann surface X with the line bundle
L € Pic* !(X) \ € under the Krichever map, then

(t, U)le=o: = 1(£) = 0[E](0] ),

Z = Qéa + éh-
We define the t-function 7(Z) of a Torelli marked Riemann surface X with the
line bundle L € Pic® '(X)\ & as the partition function (1);. According to the
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Proposition 2.3,

g/2

JdetY

1(Z):= (1), = l«(Z)I%.

3. U(1)-gauge Symmetry Ward Identities

Introduce holomorphic and anti-holomorphic components of the bosonic field cur-
rent J through the decomposition

/1 -
J=—J+J),
2n
sothatJ = —g~'9g and J = —g_‘lég. By definition, multi-point correlation functions
of current components J and J are given by the following functional integral

(J(P)...J(P)T(Q1)...T(On))
= f [DIVI(Py). .. J(Pu)T(Q1)... T(Qn)e ™D
J(X)

We start with the computation of the normalized 1-point correlation function of
the holomorphic component J, defined by

(J(P))
(1)

First observe that for the standard quantum field theory of free bosons on X with the
action functional Sy(¢,) all multi-point current correlation functions with odd
number of components d¢, and ¢, vanish. This is a standard fact from the theory
of Gaussian integration (for mathematical treatment see, e.g., [16]). In particular,
(3p(P)) = 0 and from the Hodge decomposition J = —2nv/—1(dg, + 4'°) it follows
that

((J(P):=

({J(P) = =21/ —T((hO(P))).

Second, consider the partial derivative dz/dz; of the t-function. In this case differ-
entiation under the functional integral sign is legitimate since the instanton part
Zi,s« — the only part that actually depends on Z — is given by the absolutely con-
vergent series. Using the explicit form of the topological term Si,,(J) and the
equation

B(Z, )\.) g 7— 1.0
— l_}y_ — s
= ,2:1 Y, =—2v 1/a[h :
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we obtain

ol
a"g’=/<<J(P)>>, i=1,....8
Zi a;

This is a U(1)-gauge symmetry Ward identity for the 1-point correlation function
((J(P))). Using the formula

dlogr £ i _ dlog0(Z|Q) alogO[LJ(U | Q)
82,' - ]:ZITEY (Z] h Z]) + 82,< o 81/[,‘ U:07
where U ="'(uj,...,u,), and taking into account that ((J(P))) is an abelian
differential on X, we finally obtain
£ 9log O[E](U | Q
ey =y TOEREUID ) p)
i=1 Ui U=0

This expression is in perfect agreement with spin-1/2 bosonization formulas in [21,
36, 37].

Remark 3.1. In this derivation it was assumed that 1-point correlation function
((J(P))) is holomorphic on X. It is one of the basic principles of conformal field
theory that multi-point correlation functions of holomorphic and anti-holomorphic
current components are multi-differentials on X, holomorphic and anti-
holomorphic with respect to the corresponding variables. In our case the action func-
tional S(J) is quadratic and the statement immediately follows from the represen-
tation for (h"'°(P)), since / is harmonic.

Similarly,

and we obtain

ol -
;g’=/<<J(P)>>, i—1,....g
Zi aj

— a U(l)-gauge symmetry Ward identity for the 1-point correlation function
((J(P))). As before,

& 0logIETTY
ey =y NI

i=1

@;(P).
U=0
Remark 3.2. There is no contradiction between the equations J(P) = —J(P) and

((J(P))) = ({(J(P))) because the action functional S;(J) is not real-valued. Indeed,
introducing explicit Z-dependence into the action functional and correlation
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functions, we get
PNz = [ Daie)e s
JX)
— _/ [DJ]me—ZnS(J;—Z)
JX)

= —((J(P))—z = ((J(P)) 2,
since dlog0(Z|Q)/0z; is odd.

Now consider the normalized reduced 2-point correlation function

(PO = % — (PN

First observe that

(J(P)J(Q))) = =41 ({(o(P)3po(Q))) + ((h"*(PYR- ().

Next, use another standard fact from the theory of Gaussian integration [16]:

1 1
({999 (P)3po(Q))) = Eaa’G(P, Q) =—;750P.0),

and consider the second partial derivative & log 7/0z;0z;. Arguing as before, we
obtain

#logt

ot = [ [auenon - se.on. =g

Z;0Z; 4 Ja;

This is a U(1)-gauge symmetry Ward identity for the 2-point correlation function
((J(P)J(Q))). Tt follows from the derivation and discussion in Section 2.2 that
the integrand is a holomorphic symmetric bidifferential on X x X. Therefore
((J(P)J(Q))) is a symmetric bidifferential of the second kind on X x X with biresidue
1 on the diagonal. Using the equation

2 2 2
d°logrt - +8 log0(Z Q) _ nY’7+8 log 0[EI(U | Q)

32,’32}' 8Z,'aZj Bu,-auj

U=0

and the Fay’s formula, we finally obtain

g 92
(J(P)(Q)) = BP. Q)+ Y # log OIEIU Q)
ij=1

(P)wi(0).
|, PO
Again, this expression is in perfect agreement with formulas in [21, 36, 37].
Next, consider 2-point correlation function ((J(P)J(Q))) with holomorphic and

anti-holomorphic components. Arguing as before we obtain

¥ logt
82,~82,

_ / [ i - ke o,
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where

1

_ 1 -
({00 (P)3py(Q))) = Eaa/G(P, 0) = @K(P’ 0),

and the Bergman reproducing kernel K was introduced in Section 2.2. Using explicit
representation for K and the formula

9% 1 y
0gT _ Y

821' 821
we get
((J(P)J(Q))) = 0.

To summarize, introduce multi-point reduced normalized correlation functions,
defined inductively as follows (see, e.g., [41])

(J(P1) ... J(P)I(Q1) .. (D))
_ P TP)T(Q1) - Q)

(g
m+n
= DL (WA ).
=2 1=, U,“UI,
Here I = {Py,, Py; O1, ..., O,} and summation goes over all partitions of the set
into the non-empty subsets I,...,I; for every subset [ ={P;,..., P,»Mk;
Qjis oo Oy} of I

(TN = ((J(Py) ... T (P, )(Qy) ... J(Q), ).
We have the following result (cf. [21, 37]):
THEOREM 3.3.
((J(P1)... J(P)T(Q) ... J(Q))
_ i Xg: Xg: Xg: 3" log |0(UIQ)? y
o =l o il ji=1 . -j,,=1 8u,~l e 814,'”1817{}'] . aljlj” U=0

X (i),'1 (Pl) e wim(Pm)(bjl(Ql) e CZ)]'”(Qn)—f-
+ 01,200,0B(P1, P2) + 3,00,,2B(01, 02).

Proof. Directly follows from the definition of normalized reduced correlations
functions and the arguments used above. Note that when mn > 0 all reduced cor-
relation functions vanish. O
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PART 2. FREE BOSONS AND TAU-FUNCTIONS FOR CLOSED SMOOTH
JORDAN CURVES

1. Mathematical Set-up

Let C be a smooth closed Jordan curve in the complex plane C encircling the origin 0.
Denote by Q the interior of a contour C — a simply connected domain in C con-
taining 0 and bounded by C, and denote by C the set of all such contours C.

1.1. RIEMANN MAPPING THEOREM

Let D={we C ||w| < 1} be the unit disk in the complex plane C. By Riemann
mapping theorem, there exists a conformal isomorphism F:Q — D, uniquely
characterized by the conditions F(0) = 0 and F’(0) > 0. By Carathéodory’s corre-
spondence of the boundaries principle F extends to the regular map between the
closure Q of the domain Q and the closed unit disk D, and F| is a C* - isomorphism
between the contour C =3Q and the unit circle S'=3D. The inverse map
f = F~': D — Qis a univalent function on D, smooth up to the boundary. The value
r = F'(0) = f'(0) is called the conformal radius of C with respect to 0.

Denote by C; the set of all contours of conformal radius 1 and by F| — the set of
all univalent functions on D which are smooth up to the boundary and normalized
by the conditions f(0) =0 and f'(0)=1. Let A; be the affine space of all
holomorphic functions on D which are smooth up to the boundary and have the
same normalization at 0 as functions in F;. The space A; has a structure of an
infinite-dimensional complex manifold with Frechét topology given by the uniform
convergence with all derivatives in the closed unit disk D. Taylor coefficients of
the power series expansion at z =0 are natural global coordinates on .4;. The
set F is open in A; and, therefore, is an infinite-dimensional complex manifold.
By Riemann mapping theorem there is a bijection C; ~ F, which turns C; into
an infinite-dimensional complex manifold as well.

Let Diff . (S') be a group of all orientation preserving diffeomorphisms of the unit
circle S', with S' interpreted as a rotation subgroup of Diff (S). It was observed by
A.A. Kirillov [22] that there is a remarkable bijection between C; and the
infinite-dimensional homogeneous manifold Diff(S')/S'. It turns Diff,(S")/S!
into an infinite-dimensional complex manifold and gives rise to canonical
isomorphisms C; ~ F ~ Diff(S")/S".

In addition to the conformal map F, Kirillov’s construction of the correspondence
Ci— y uses a conformal map G of the exterior domain C \ Q of the contour C onto
the exterior domain C\ D of the unit circle S!, normalized by the conditions
G(00) = 0o and G'(c0) > 0.* Namely, if g = G~ is the inverse map to G, then
y:= F o g € Diff .(S"). To prove that Ci— 7y is onto and to construct the inverse
map, A. A. Kirillov [22] used the Riemann theorem that all complex structures

*The value d = 1/G’'(00) is called the transfinite diameter of C.
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on the two-dimensional sphere S? are isomorphic to the standard complex structure
of the Riemann sphere P'.

The manifold Diff  (S')/S! admits an interpretation as a set of all complex struc-
tures on the space Q RY of based loops in R and as such plays a fundamental role
in the string theory [7, 8].

Remark 1.1. Similarly [23, 31] it can be shown that another homogeneous space
Diff  (S')/Mob(S') is also an infinite-dimensional complex manifold and
Diff, (S')/ S! is a holomorphic disk fiber space over Diff (S')/Mob(S?).

There is a natural inclusion

Diff | (S')/Mob(S!) — T(1),
where 7'(1) is a classical Bers universal Teichmiiller space
T(1): = Homeo(S")/Mab(S")

(see [5] for definitions and details). The space T(1) has a natural structure of an
infinite-dimensional complex manifold and it was shown by S. Nag and A. Verjovsky
[31] that the inclusion map is holomorphic (moreover, Diff . (S')/Mob(S") is one leaf
of a holomorphic foliation on 7°(1)). It was also shown in [31] that the pull-back by
the inclusion map of the canonical Weil-Petersson metric on 7(1) to Diff,(S")/
Mob(S!) coincides with the Kihler metric introduced by A. A. Kirillov and
D. V. Yuriev [22,23] via the orbit method.

Let PIC be the double of the open Riemann surface P!\ Q, defined by gluing
together P!\ Q and its copy P' \ Q with the opposite complex structure along their
common boundary C. As a smooth manifold P{ is diffeomorphic to the
two-dimensional sphere S2. The complex structure on PIC is defined by the structure
sheaf O = {Oy} — the sheaf of germs of holomorphic functions on ]P’IC. Namely,
for any connected open set U C ]P)IC define the complex vector space Oy as follows.

(a IfUC P! \ Qthen Oy is a complex vector space of all holomorphic functions on
U with respect to the standard complex structure on P!

(b) If Uc P'\Q then Oy is a complex vector space of all anti-holomorphic
functions on U with respect to the standard complex structure on P'.

(© If UNC # @ then, setting Uy = UN (P'\Q), U_ = UN(P'\ Q), define

Ov ={(f+./2) /= € Ov, and f(z) = f_(2) for ze UN C}.

Finally, for any open set U C Pé define Oy as a direct sum of the corresponding
complex vector spaces for the connected components of U. Clearly, complex vector
spaces {Oy} form a sheaf O which canonically defines the complex structure on
PIC. By the Riemann theorem PIC is complex-isomorphic to the Riemann sphere
P!, ie. there exists a global meromorphic coordinate { on P{ such that
{(00) = 00, {(30) = 0. In terms of the conformal mapping G this coordinate is given
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explicitly by

G(z) ifzeP'\Q
1/G(z) if ze P'\ Q.

{(2) =

1.2. GREEN’S FUNCTIONS

Let G be the Green’s function* of the d-Laplacian A of the conformal metric ds® on
P! acting on functions on P!, and let S and B be corresponding bidifferentials (see
Section 1.2 in Part 1). Since P! has genus 0, the Fay’s formula reads S = B and
we have explicitly

3G(z, w) dz®dw

dz@dw=—"—,z,we C.

S(z,w):=—-=n 320 C—w)

Similarly, since the subspace of harmonic (1, 0)-forms on P! is {0}, the Bergman
reproduction kernel K for P! vanishes
PGz, _
K(z,w): = —ﬂdz ®dw =0.
dzow
Let Gpgc be the Green’s function for the Laplacian Ay on the exterior domain P! \ Q
with the Dirichlet boundary condition ¢|- = 0. One has

2
Gprc(z, w) = - Ge(z, w),

where G is the classical Green’s function for the domain P! \ Q, uniquely charac-
terized by the following properties (see, e.g., [18]).

CG1. For every we C\Q function Gg(z,w)+log|z—w| is harmonic in
(C\Q\ {w}.

CG2. Gy(z,w)=0 forall we P'\Qand z € C.

CG3. Gg(oo,w) =log|w|+ V + O(1/w)as w — oo, where V is the so-called Robin’s
constant of the domain Q.

The classical Green’s function for the domain P!\ Q can be written explicitly as a
pull-back by the conformal map G of the classical Green’s function for the domain
P\ D,

1 — G(2)G(w)

G.(z,w) =log GO — G |

According to Section 1.2 in Part 1, the Schiffer kernel for P!\ Q is defined as a

*It should be always clear from the content whether G is a conformal map — a function of one
variable, or the Green’s function — a function of two variables.
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symmetric bidifferential S of the second kind on (P'\ Q) x (P'\ Q) with the prop-
erty

V.p./ Sz, w)yAu(w)y=0 forall ze P'\ Qand u e H'(P'\ Q),
PhQ

where H""*(P' \ Q) is the complex vector space of holomorphic (1, 0)-forms on the
domain P'\ Q. It terms of the Green’s function the Schiffer kernel is given by

#Gppc(z, w)

Sz, w) = —
(zw) n 0zow

dz ® dw,

and in terms of the conformal map G it has the form

S(z,w) = %(W)Zdz ® dw.
(G(2) — G(w)
Correspondingly, the Bergman reproducing kernel K for the domain P'\ Q is

defined as a regular bidifferential on (P'\ Q) x (P'\ Q), holomorphic with respect

to the first variable and anti-holomorphic with respect to the second variable,
satisfying the property*
1

5 K(z, W) Au(w) = u(z) forall ze P'\Qand u e H'(P'\ Q).
PhQ

The Bergman reproducing kernel K can be also characterized as a kernel of the
projection operator from L;O(]P1 \ Q) onto the subspace H'O(P'\ Q), where the
Hilbert space L;’O(P1 \ Q) is the space of (1,0)-forms on P!\ Q with the L,-norm

1 i _
||u||2::—/ u/\*u:—/ uAU.
2 Jpha 2 Jpha

In terms of the orthonormal basis {u,},.n for the subspace H'(P'\ Q), the
Bergman reproducing kernel can be written as

K(Z’ I’_V) = 3 un(z) ® W,

n=1

and does not depend on the choice of the basis. In terms of the Green’s function the
Bergman kernel is given by

B #Gppc(z, w)

Kz, w) = azow

dz @ dw,

*In this part we revert to the standard complex analyst’s notation i = ,/=1.
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and in terms of the conformal map G it has the form

G ()G (w)

HED i ey

dz@div =Y u(z) ® un(w).
n=1
where

uy(z) = \/gG_”_l(z)G’(z)dz, neN.

1.3. DEFORMATION THEORY

Let G be the conformal map G: C\ Q — C\ D, normalized as in the previous
section. Following [10] (see also [9]), we define the analog of Faber polynomials
associated with G by the following Laurent expansion at z = oo in the region
1G(2)] > |wl

2G'(2) O T
G —w= ;Fn(w)z ,

obtained by substituting Laurent series for G(z)
by
G(z) =b_1z+ by +?+...

into the geometric series for (G(z) — w)~!. We call the degree n polynomials F,, Faber
polynomials of the conformal map G. In terms of the inverse map g = G~', the Faber
polynomials can be written explicitly F,(w) = [g"(w)],., where [g"], is a polynomial
part of the Laurent series for g”. Faber polynomials are uniquely characterized
by the property

Fu(G@)=2"+0(z"") asz— oo.
All these facts can be obtained from the representation

Fn(w)zg”<w>+%/ &G 4. weC\ D,

sLzZ—Ww

which follows from the Cauchy integral formula.

Remark 1.2. In complex analysis Faber polynomials P, are usually introduced for
the inverse map g = G~': C\ D — C\ Q through the expansion [9, 10]

22(2) .

where |g(2)| > |w].
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Following [26, 45] (see also references therein) introduce the harmonic moments of
exterior and interior of the contour C by the following formulas

1 1 1
th ==—— [ z7"zdz,n e N, ly=5— [ zdz =—-A(Q),
2nin J ¢ 2ni J o T
and
1

2
v == [ Z'zdz,n € N, Vo = —/ log |z|zd?z.
2ni Jo 7 Jo

Here A(Q) is the area of the interior domain Q with respect to the standard Lebesgue
measure d’z = |[dz A dz|/2 on C. According to [26, 45] and references therein, par-
ameters {fo, &, Iy}, are local coordinates for the space C in some neighborhood
of the contour C. Consequently, there is a foliation of C with the leaves @a of contours
of fixed area a > 0. The leaves C, can be considered (at least locally) as infinite-
dimensional complex manifolds with complex coordinates {z,},cn-

Remark 1.3. There is also a foliation of C with the leaves C, of contours of con-
formal radius r > 0. For fixed r the coordinate #y can be expressed in terms of
t,, 1, provided that 0r/0ty # 0 so that the leaves C, can be considered (at least locally)
as infinite-dimensional complex manifolds. Similarly, there is a foliation of C with the
leaves C? of contours of transfinite diameter > 0. In this paper we do not address a
very interesting problem of global description of complex manifolds C, and C“.

The goal of the deformation theory is to describe the tangent vector space 7¢C to
the manifold C at a contour C in terms of the data associated with C. By definition,
a deformation of the contour C is a smooth family of contours {C;} ¢, such that
Cy = C. The smoothness property is a condition that there exists a parameterization
of contours C, which depends smoothly on #: C; = {z(g, 1), 0 € R/21Z} for every
lt] <&, where z(g, 1) € C*°(R/2n7 x (—¢, ¢)). Corresponding infinitesimal deform-
ation is defined as the vector field v = z(¢)d/de along C, where dot stands for
d/dtl—o,

_0z(0, 1)
I P

z(o):

By definition, a deformation C; is called trivial if it consists of reparameterizations
of the contour C, so that the vector field v is tangential to C. The deformation C; is
called infinitesimally trivial if the corresponding vector field v is tangential to C.
The tangent vector space 7¢C can be canonically identified with the quotient space
of the real vector space of all vector fields along C by the subspace of vector fields
tangential to C. Equivalently, T¢C is a real vector space of normal vector fields
to C.
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With every deformation C; one can associate the following 1-form on C

. 0z
oci=—
=

0.
dz—Z| gz
=0 at

t=0

The 1-form @¢ is a restriction to the contour C of a d~! of the Lie derivative of the
standard 2-form dz A dz on Q. It satisfies the following ‘calculus formula’

d

dt

f(z,2, 0dz = /C (fdz + g—émc)

=0 JC;

for any smooth function /" in the domain (¢, Cr) x (—¢, ).

Remark 1.4. Classically, as it goes back to Volterra and Hadamard, deformations
of a contour C are described by

z(o, t) = z(6) + ton(o)n(o), o € R/2n7Z,

where z(o) defines the contour C, én(o) € C*°(R/2nZ, R), and n(o) is the outer nor-
mal to C. For ¢ sufficiently small this equation defines smooth closed Jordan curve
C,. The relation between two approaches is given by the elementary calculus

1
onds = —wc,
nds = - ¢
where ds: = |Z/(0)|do is a 1-form on C.
The basic facts of the deformation theory of contours are summarized in the
following theorem. Parts (i) and (i) were proved in [26, 45] and we refer to them
as ‘Krichever’s lemma’.

THEOREM 1.5. (i) Any deformation C; of the contour C which does not change
harmonic moments of exterior {ty, t,, 1,} is infinitesimally trivial. The parameters
{to — 10(O), t, — t,(C), 1, — 1,(C)} are local coordinates on C in some neighborhood
of C.
(i1) The following 1-forms on C
). 0Z 9z

o=, dz, ne {0JUN,

tn=tz(C)

b=ta(C) Oln

extends to meromorphic (1, 0)-forms on the double Plc of the exterior domain P' \ Q
with a single pole at 0o of order n+ 1 if n € IN and simple poles at oo and 3 with
residues 1 and —1 if n = 0. Explicitly,

o =d(F0G), o =dlogG
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in the domain P'\ Q and
o =d(F,01/G), & =dlogl/G

in the domain P'\ Q, where F, is the nth Faber polynomial of G, n € N.
(iii) The 1-forms a)(”) satisfy the property

i / m = Omn>

and can be identified with the vector fields 9/dt,. For every a > 0 the holomorphic
tangent vector space T, C,toCyat Cis canonically zdentlﬁed with the complex vector
space M" O(P ) of meromorphic (1, 0)-forms on P with a single pole at oo of order
=2

(iv) The holomorphic cotangent vector space T’*é t0Cyat Cis naturally identified
with the complex vector space H"Y(P'\ Q) of all holomorphic (1,0) -forms _on
P! \Q which are smooth up to the boundary, with the pairing (,)c:T¢ C,®
TCC — C given by

1 -1
(w,u)c._%/;d uw.
Differentials dt, correspond to (1, 0)-forms
dty(z):=d(z"/n) = —z""dz.

Proof. As in [26, 45], we start with the following Riemann—Hilbert problem. Find
functions S, and S_ that are holomorphic in the domains Q and C \ Q respectfully,
are smooth in the corresponding closed domains and on their common boundary
C satisfy S, (z) — S_(z) =z for all z € C. With the normalization S_(oc0) = 0 this
problem has a unique solution given by the Cauchy integral

1 wdw
Si()_Z_nszW—z’

where z € Q for the + sign and z € G\ Q for the — sign.
Now let C, be a deformation of C satisfying conditions in part (i). By the calculus
formula,

wdw — wdw
Si()_anf w—z

so that on C w¢ = S+dz — S_dz. Since in some neighborhood of 0 S,(z) =
> nt,z""!, we see that if dz,,/dt|,_ = O for alln € N then S, = 0in Q. This implies
thaton C, ¢ = —S,dzlc, and w¢ admits holomorphic continuation as a (1, 0)-form
on C\ Q. Since d¢y/dt|,_o = 0 and

S (z) = —%0+ O(z7?) as z — oo,
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we get S_(z) = O(z2), so that ac is also regular at co. Since, by definition, the
1-form @w¢ is pure imaginary on C, by Riemann-Schwarz reflection principle it
can be analytically continued to a holomorphic (1, 0)-form on ]P’IC. Since ]P’IC has
genus 0 we conclude that we = 0. In particular, w¢c = 0 on C, which by Remark
1.4 is equivalent to the condition that vector field v corresponding to the deformation
C; is tangential to C. This proves part (i).

For the proof of part (ii), set = Re(z, — 1,(C)). We have for n € N
S+ = nZn_l,

so that the 1-form w¢ — dz" admits holomorphic continuation to the domain C \ Q
and is regular at oco. Similarly, for n = 0 the 1-form @¢ is holomorphic on C\ Q
with a simple pole at co with residue 1. As before, we conclude that 1-form @ ¢ admits
a meromorphic continuation to PIC with only poles at co and 50. For n = 0 they are
simple poles with residues 1 and —1, so that using the global coordinate { on
Pt we get

) d¢
©)
Wy =—.
€t
In particular,
- (0) _ 1 - (0) _ Ie 1
oy =dlogG onP'\Q and o/ =dlogl/G on P \Q.
For n e IN we get
we=d("+0(:"") asz— oo and wc=-dEZ"+0") asz— .
Similarly, setting ¢ = Im(¢,, — #,(C)) we get for n € N
wc=1d(z"+0@E ") asz— o0 and @c =idZ"+0(") asz— .

From here we conclude that for n € N the 1-forms @
the only pole at co and

(C") are meromorphic on PIC with
o =d("+0E"") asz— oo
Similarly, the 1-forms

oz

R

0,
dz——z

(b(ﬁ). _ -
=0 aln

dz
=0

are meromorphic on ]P’IC with the only pole at 50 and
o = —d@" +0E") asz— .
Using characteristic property of the Faber polynomials F, we get that on P!\ Q

o =d(F,0G) and &% = —d(F,01/G),
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and on P!\ Q
o =d(F,01/G) and o = —d(F, o G).

The proof of parts (iii)—(iv) is now straightforward. By definition of the harmonic
moments #,, the calculus formula and the Cauchy theorem we get
a, 1

=—— [ 77! =6,
ot, 2min Jc ¢ e

so that 1-forms c'u(é”) correspond to the vector fields 3/9¢,, on C. In particular, the same
formula shows that corresponding differentials dt, — (1, 0)-forms on C, are given by
the 1-forms d(z7"/n) on C and satisfy

d
— . dt, ) = -
<8lm & )C =

Remark 1.6. Let d = d' + d” be the decomposition of the de Rham differential on
C, into (1,0) and (0, 1) components with respect to the complex structure defined
by the harmonic moments #,. According to part (iv) of the theorem, for any smooth
function F on C, the (1, 0)-form

d’F::Z—dtn

at C € C, can be identified with the holomorphic (1, 0)-form on P! \ Q defined by the
following Laurent expansion at z = oo

o0

F
-y 2y
p oty

The convergence of this series and holomorphy of the corresponding (1, 0)-form on
P!\ Q follow from the smoothness of the function F — the existence of dF. An
example of smooth function F is given by

F :L/ h(z)zdz,
27i J o

where / is holomorphic on P'\ Q and is smooth up the boundary. In this case,
d'F = //(z)dz. Though we do not address here the question of defining various func-
tional classes on @a, all said above holds for the class of real-analytic functions.
Here we introduce a natural Hermitian metric on complex manifolds C,, which
turns out to be Kéhler, as we shall prove in Section 3. Namely, for every C € C,
consider the following inner product in the holomorphic tangent vector space 7| /Céa

a9 . 1
H(,) thn:z —72/ f Zmﬁ)nK(Zi 1/_1})’
ot,, ot, Qi) Je, Je,

where C, is an arbitrary contour containing C inside (not that K is singular as
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z=w € C). From the representation of the Bergman kernel in terms of the ortho-
normal system in Section 1.2 it easily follows that this inner product is positive-
definite. Using this orthonormal system it is not difficult to show that components
W™ are smooth on éu and thus define the Hermitian metric H. In terms of this metric
we get the following Laurent expansion at z = w = oo for the Bergman reproducing
kernel K,

K(z,w) = i W dt(2) @ dity(w).

m,n=1

Remark 1.7. It is instructive to compare the complex structure on C; introduced by
A. A. Kirillov [22] with the complex structure on C, defined (at least locally) by the
harmonic moments of exterior. According to [31] (see Remark 1.1) the former is
a pull-back by the inclusion map of the Ahlfors-Bers complex structure on 7(1)
and is defined using quadratic (or, equivalently, Beltrami) differentials, whereas
the latter is defined using (1, 0)-forms — the ordinary differentials. Correspondingly,
the Hermitian metric on Diff (S')/Mob(S!) is given by the Petersson inner product
of holomorphic quadratic (equivalently, Beltrami) differentials [5, 31], whereas
the Hermitian metric on C; is defined via the canonical inner product of holomorphic
(1, 0)-forms on P!\ Q.

2. Bosonic Action Functional and Partition Function

For a classical field ¢ € C*(P', R) consider the following action functional
1 i =
So(<P)¢:—/ dqo/\*dqoz—/ dp A O,
8 Pl 4 Pl

which describes the standard theory of free bosons on the Riemann sphere P'. Cor-
responding partition function is defined by the functional integral

(1o = / [Dple =5,
(P!, R)/R

where integration goes over the coset C®°(P', R)/R and reflects the symmetry
@1— @ + c. As in Part 1, mathematically rigorous definition requires a choice of
a conformal metric ds? on P! and leads to the result

12
_1 [ Ajos Area(Pl)

= | [Dgle % o doree _ (A7)
07 Jemgpt ry/R det; Ag

Here the area term is a contribution from zero modes — the one-dimensional kernel
of the d-Laplacian A, of the metric ds® acting on functions on P'.
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For every C e C introduce the following analog of the topological term (cf. with
the discussion in Section 2 of Part 1):

S0 = [ (A0~ 1o’z = 4@10(0) ~ [ o,

Here y, is a characteristic function of the domain Q, and Jy is a Dirac delta-function
at 0 with respect to the Lebesgue measure d*z. The functional Stop has the property
Stop(@ + ¢) = Stop().

The total bosonic action Sc(¢): = So(¢) + Siop(¢) defines the theory of free bosons
on P! in the presence of a contour C and we consider a family of such field theories
parameterized by C.

For every C € C define the partition function of the corresponding quantum field
theory by the following functional integral

W= [ gl
c=(P' R)/R

Mathematically rigorous definition is the following. Approximate, in the dis-

tributional sense, characteristic function yo and Dirac delta-function dy by smooth

functions XS) and 588) with compact supports satisfying

fc (AQ)0Y — 1 hd*z =0

and define

2
(I)C::lime><p{1‘1 (?)'/(j'/clog |z — wlég)(z)ég)(w)dzzdzw}

e—0 T

/ [Dyle 5@,
(P!, R)/R

where
S0r= 501+ [ (A3~ Ao

We introduce the t-function 7 = 7(C) of the smooth Jordan contour C as the
normalized expectation value of C, defined as follows

(e
= {C))i=——.
T = {{C)) g
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PROPOSITION 2.1. The t-function of the contour C is well-defined and is given
explicitly by the following expression

logt = —%/ / log|z — wldzzdzw+%A(Q)/ log|z|d?z
= JaJa T Q

:—%//log|l—l|dzzd2w.
T JoJo V4 w

Proof. It is another standard computation. Consider the Gaussian integral

<n?*=/1 [Dyle #5@).
c>(P',R)/R

and make the change of variables ¢ = ®® + @, where ®® is uniquely determined by

the condition that Sg)(d)(e) + @) does not contain linear terms in @ and by the
normalization ®®(c0) = 0. Using the Stokes theorem we get

PO .

B _(z) —)9(2),

020z

where ©: = ;{g) — A(Q)(sg). The function A®) is smooth, has compact support and
I JD(2)d*z = 0, so that

(I)(S)(Z) — _%/ log |z — WM(L‘)(W)dZW-
C
Since
3 1 3
Sg)(q)(s) + @) = So(() +§/ (I)(S)(Z)l(a)(z)dzz
C

we finally obtain

02 = Wexpl =5 [ [ toglz = w9900 dzdw).
¢ n JoJc

Multiplying by the regularization factor and passing to the limit ¢ — 0 we see that
logtc is well-defined and is given by the formula above. O

COROLLARY 2.2. The t-function is —1/n* times regularized energy of the pseudo-
measure du = d*z — A(Q)dy on the domain Q, where d°z is the Lebesgue measure
and 6y — the delta-measure at 0.

Proof. Indeed, the energy I(v) of a Borel measure dv on Q is defined by (see,

e.g., [38)

I(v)::/g/g;log |z — widv(z)dv(w).

In our case, due to the presence of a delta-measure, we formally have I(x) = —o0.

However, with the above regularization () = —n’t. O
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Remark 2.3. Tt follows from the Proposition 2.1 that the z-function 7¢ coincides
with Wiegmann—Zabrodin t-function 7y, for the analytic closed Jordan curve
C, introduced in [45] and computed in [24]! It is interesting to compare these
two approaches. Specifically, in [24, 45] the t-function 1Ty, appears as a dis-
persionless limit of the Hirota’s t-function for the integrable two-dimensional Toda
hierarchy and also as a large N limit of a partition function of a certain ensemble
of random N x N matrices. In our approach the t-function 7¢ is just a partition
function of a quantum field theory of free bosons on P! parameterized by a smooth
contour C € C. This is quite analogous to the definition of the z-function in Part 1
as a partition function of a quantum field theory of free bosons on X parameterized
by a holomorphic line bundle L € Pic® (X)) \ &.

We also consider the quantum theory of free bosons in the exterior domain P! \ Q,
defined by the following functional

1 i _
Sext(@): = g/P]\Q dop A xdp = Z/pl\g dep A 99,

where ¢ € CI%"BC(P1 \ Q) is smooth (including oo) and satisfies the Dirichlet bound-
ary condition ¢|- = 0. The corresponding partition function is defined by the func-
tional integral

(Dppc:= f [Dele 75ex(®)
CBacPQ.R)

and is given explicitly as
| 1/2
1) _ [Area(P"\ Q)
DBC = detg Ao ’

where A, is a d-Laplacian of the metric ds? acting on functions on P! \ Q satisfying
the Dirichlet boundary condition.

3. Current Ward Identities

Introduce holomorphic and anti-holomorphic components of the bosonic field cur-
rent do as do =+, where j = d¢ and j = dp. By definition, multi-point corre-
lation functions of current components are given by the following functional integral

01 - gGEm)iw1) - .. J(Wa))

= f [DOLI(1) . JEm)O01) . O0) €5,
(P! R)/R

Correlation functions for the standard theory of free bosons on P! with action
functional Sy (which formally corresponds to C = @ — the empty set) and for the
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theory on P! \ Q with action functional S and Dirichlet boundary condition are
defined similarly. We denoted them by (...), and {(...)ppc respectfully.

We start with the computation of the normalized 1-point correlation function of
the holomorphic component j, defined by

(J(Z)

Me
Repeating the proof of the Proposition 2.1, which is based on the change of variables
@ =®% + &, and using the standard fact that (j(z)), =0, where j(z) = dp(z)
(cf. Section 4 in Part 1) we get

(G

(¢)
nSU)((P) _ (&) 0P (Z)
/cw(P‘,R)/R[Dw]](Z)e - <1)C a

0z
Passing to the limit ¢ — 0 we obtain

wem =294

where ®: = lim,_,o ®® and is given explicitly by
D(z) = ZA(Q)l oglz| — %/ log |z — w|d?w.

The function ®(z) can be characterized as a continuous solution of the equation

_PO(E) [ ra(z) — AQ)d0(2) if z € Q,
9zoz ~ | O if ze C\Q,

normalized by the condition ®(oc0) = 0, and is a logarithmic potential of the pseudo-
measure du = d’z — A(Q)dy on Q. It also follows from the integral representation
that holomorphic on P!\ Q function d®/dz coincides with the function S_(z)+
to/z (see Section 1.3), and has the following Laurent expansion at z = oo

B(I)(z) Zvn —_—

On the other hand, consider the partial derivative

dlogt 1 o(1)¢

= , N.
o, (e o, " ©

We can evaluate it by differentiating under the functional integral sign, which can be
easily justified using the rigorous definition of the partition function (1).. Since only
topological term in the action functional depends on the domain Q, the computation
is based on another calculus formula

9 1
v d2 - - (n)
o, Jo PC° 21'/ POC -
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Arguing as in the proof of Proposition 2.1 we get

S D™
o, 2ni</ c)/{he=551 ®oc

Using Krichever’s lemma and integration by parts, we obtain

dlogz _ 1 | vdF, 0 6) = ——/F oG 8¢)dz+8q)d
oty T 2mi

where 0®/9z and 9d/dz are boundary values on C of holomorphic and anti-
holomorphic functions on the exterior domain P' \ Q. The latter can be easily jus-
tified by considering smooth functions ®® first and then passing to the limit
& — 0. Using the characteristic property of Faber polynomials and Cauchy theorem,
we have

D
[(FnoG) = 27u gz dz =v,.

We claim that the second integral in the formula for dlogzt/dt, is 0. Using that
|G| =1 on C, we have

o® - od
/(Fn 0 G)—dz = /(Fn 0 1/G)—dz,
C 0z C 0z
where F,(z): = F,(Z). Since d®/dz = O(z~2) as z — oo, the integral indeed vanishes.
Thus, we proved the Ward identity for the 1-point correlation function

dlogr 1
a,  2mi

(), neN.

The case n =0 can be considered similarly with the only difference that since
A(Q) = nty one needs to differentiate the regularization factor as well. We have
the following computation

adlogt . 1 dGg
0@ _ [ 0@ (260 (2)d>
ato lﬂ%(znz/ ¢ Jo (@07 ()d 2+
L 24@
( ) / / log |z — w[o (2)0 (w)d*zd*w )

BE 24(Q .
= (Dg + lim / (#log lz| — (D(”)(z)>5g‘)(z)dzz
C

= lim (wlog |z| — (D(z)>
z—0 T

with an easy justification of all steps. Here we have also used the equation
Jc ®(dG/G) = 0, which can be easily proved as follows. Let ¥ be a holomorphic
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function on P!\ Q such that

od(2)
0z

¥(z) = and W¥(oco) =0.
Such function exists since a®(z)/dz = O(z2) as z — oco. We have ® =¥ + ¥ on
P'\ Q and by Cauchy theorem fc Y(dG/G) = 0. Using the same argument as
for the case n > 0 above shows that the integral with ¥ also vanishes.

We summarize these results as the following statement (cf. [24]).

THEOREM 3.1. The normalized 1-point current correlation functions of free bosons
on P! parameterized by C € C, for every a > 0 satisfy the Ward identities, given
by the following Laurent expansions at z = 00

>\, 0logt ,
(@M =—Zz 1ngz=d logr,
n=1 n
and
_ -, dlogTt _
((JG) = —ZZ sz:d log.
n=1 n

Remark 3.2. Since (j(z))ppc = (j(2))ppc = 0 the theorem can be also trivially
interpreted as computing in terms of the t-function the difference between 1-point
correlation functions of free bosons on P' parameterized by C and of free bosons
on P!\ Q with the Dirichlet boundary condition. This will be relevant for the 2-point
correlation functions.

COROLLARY 3.3 ([24, 26, 45]). The functionlogt € C*(C, R) is a generating func-
tion for the harmonic moments of interior:

_ dlogr

dlogrt
0= I

ot

and v, = ,ne N.

Remark 3.4. It is instructive to compare this corollary with our results with
P. Zograf [48, 49] on the solution of the Poincaré problem of accessory parameters

(see also [40] for an overview). Namely, let X:= P!\ {zy, ..., z,} be an n-punctured
Riemann sphere, n > 3, normalized by z, , =0,z, 1 =1 and z, = 0o, and let
J:H — X be the uniformization map — a complex-analytic covering of X by

the upper half-plane H. The Schwarzian derivative S(J~!) of the inverse map
J~!is the following rational function on P!

n-3 1/2 C: 2—n
—1 _ !
SUHE =) ((Z_Zi)ﬁz_z,.) M EE

i=1
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The coefficients ¢;, i = 1, ..., n — 3, are smooth functions on the space of punctures

Zyp={(1,. . 243) € O |z; £z for i #j and z; # 0, 1)

and are called accessory parameters of the Fuchsian uniformization of the n-
punctured Riemann sphere. We proved in [48, 49] that, in accordance with a con-
jecture of A. Polyakov [33], there exists a real-valued smooth function S on Z, such
that
c,-:—%g—i, i=1,...,n—3.

The function S is the critical value of the action functional for the Liouville theory —
the two-dimensional quantum gravity, and the formulas for accessory parameters
follow from the semi-classical Ward identity for the 1-point correlation function with
holomorphic component of the stress-energy tensor (see [41] for the details).

This comparison shows similarity between quantum theory of free bosons on P! in
the presence of the contour C and quantum Liouville theory. Namely, 1-point Ward
identities for both theories imply that the logarithm of the t-function and the critical
value of the Liouville action (the logarithm of the semi-classical approximation to
the partition function) are generating functions for the harmonic moments of
interior and accessory parameters correspondingly.

Remark 3.5. In the case when the punctures zy, ..., z, 3 are real, the Riemann
surface X from the previous remark possesses an anti-holomorphic involution
z1— Z. It is a classical result (see, e.g., [19]) that for this case the map J~! is given
by the conformal mapping of the upper half-plane H (or the unit disk D) onto
a circular n-sided polygon with zero angles, inscribed into S'. Under this map
the marked points zy, ..., z,-3,0, 1,00 on the boundary R U {oo} of H (or corre-
sponding n marked points on S') are mapped onto the vertices of the polygon
and this map is unique if the last three vertices are normalized as —1, —i, 1. The
harmonic moments of the boundary of the polygon depend on n — 3 real parameters
Z1, ..., zy—3. It would be instructive to express accessory parameters through har-
monic moments and compare results [48, 49] with the Corollary 3.3 directly. In order
to get the analog of the Corollary 3.3 for this case, one needs a generalization to the
case of piece-wise smooth contours like boundaries of circular polygons. We do
not address this interesting question here.

Remark 3.6. As it was pointed out in the Remark 1.1 there is an inclusion of
Diff (S')/Mob(S?) into the Bers universal Teichmiiller space 7'(1), which contains
all Teichmiiller spaces 7,, of Riemann surfaces of type (g,n) as complex sub-
manifolds. Similar to the smooth case, there is a correspondence yi— C, where y
is a quasi-conformal homeomorphism of S! and C is a quasi-circle — an image
of S' under quasi-conformal homeomorphism of the complex plane C which is con-
formal outside S'. Extension of the above formulation from smooth contours to
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quasi-circles would naturally allow to consider Riemann surfaces of type (g, n) by the
same method. We do not address this important question here.

For completeness, let us show how to determine conformal map G ‘explicitly’ [24,
45] from the Ward identity proved above. As it follows from the proof of the
Krichever’s lemma and equation

DGz 1
9z z’

S_(z) =

G'(z) 35S (z) Pd(z) 1
G(z) oty  digoz |z

Therefore

G(z) 1 iz_,,_l #logt

G(z) =z 31901,

n=1
and integrating

00

log G(z) = logh_; +logz — Z
n=1

"9 logt
n 0tyot,

It is also possible [45] to express the Robin’s constant logh_; = V' (see Section 1.2)
through logt. Namely, consider

& logt _ 8
g  ony

Using the definition of vy and the calculus formula, we get

BVO_ 1

dG
——— 1 2 — 2logh_y,
o, 2 ). 081G 0801

as can be readily shown by integration by parts. Therefore, one gets the result in [24,
45].

COROLLARY 3.7. The conformal map G is given by the ‘explicit formula’

1#logt Xz "d*logt
n otyot,

n=1

Remark 3.8. In complex analysis there is the following relation between moments
M,, of the equilibrium distribution for the domain Q and the conformal mapping
G of the exterior domain P!\ Q (see, e.g., [18])

G(2) Ny ont
GO ;an .
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As it follows for the above formula for G'(z)/G(z),

9’1
= OgT, n
dt,, 0t

e N,

so that function vy = dlogt/dty on C is a generating function for the moments M,,.
Next, consider the normalized reduced 2-point current correlation function

z)j(w
(e =T~ em o,
Using the same arguments as in the proof of Proposition 2.1: the change of variables
@ =®% + % and passage to the limit ¢ — 0, as well as the standard fact that

(7(z))o = 0 we obtain, as in Section 4.1 of Part 1,

D(z) 0D
0EYO) = G0N, + (e 2P0 g2 g du,
Z ow
As the result
Gz,
WM = (G =70 s @ dw
Zow
_ dz®dw
(z—w)*’

where we used a simple expression for the Schiffer kernel S on P! from Section 1.3.

Our goal is to compare this correlation function with the corresponding reduced
normalized 2-point correlation function for free bosons on P! \ Q with the Dirichlet
boundary condition. Since (j(z))pgc = 0 we have

(Y ppe: = LV iose

(I)ppc

Arguing as in the Section 4.1 of Part 1 and using results of Section 1.3, we get

2 / /
9°Gpgc(z, w) dz @ dw — G'(2)G'(w)

= TG - Gop O

(G@E@yW))pc =7
On the other hand, consider 8> log t/dt,,0t,, m, n > 0. Using the Ward identity for the
1-point correlation function, holomorphy of d®/3z on P'\ Q and the calculus
formula, we get

Flogt 1 9 [0od(2) 1 [ Pd(2)

S (L P 2dz.
Mdty  2midty )e 9z - 2mi)anmez C

Using 0®(z)/0z = S_(z) + tp/z and the formula

. (m aS_
CO(C) = dZm —?dz, PSS Pl \Q
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(see the proof of part (i) of the Krichever’s lemma), we have

Flogr 1
A, dt,  2mi

1
/ WO — dw") = — / W'd(Fp o G — w™),
C 27'Cl C

where in the last equation we have used Krichever’s lemma again. Next, it follows
from the definition of Faber polynomials (see Section 1.3) that

G/(Z)G,(W) _ = dFm(G(W)) —m—1
CERCTTP S e

m=0
where |G(z)| > |G(w)|. From here we get
dE,(Gw) _ 1 / OGO .
¢, (G(2) — G(w))’

dw © 2mi
where contour C,, is such that its image under the map G contains the circle of radius
|G(w)| inside. Similarly, from the expansion

1
pp— = mem_lz_’”_l,
z—w

m=0

)

where |z| > |w|, we get

mw" ! = 1 !
27 Jiei=r (z — W)’

Z"dz,

where |R| > |w|. Thus we obtain

OOt = L[ (Z000 LYo
dw 21 Jo \ (G(z2) — GW))*  (z—w)* ’

where we moved the contour of integration from the neighborhood of oo to C
because the integrand is regular for all z, w € C\ Q. Thus, we finally get

82 log T 1 G/(Z)G,(W) _ 1 m, n
Mmdty  (2mi)? fc/c ((G(z) —Gw)*  (z—w) )Z iz

1
ot /C /C IWGEN)) — (UEYD)bse)

— the Ward identity for the difference between normalized reduced 2-point corre-
lation functions of holomorphic current components for free bosons on P!
parameterized by C and free bosons on P!\ Q with the Dirichlet boundary con-
dition.
Next, consider normalized reduced 2-point correlation function of holomorphic
and anti-holomorphic current components
_ U@)w)

(G@)w)): = — (@M (Gw))).
(L)
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As before, we get

FG(z, w)

{G@7wN) = (2 (W) = n——=—= =0,

since the Bergman reproducing kernel on P! is 0 (see Section 1.2). Similarly, arguing
as in Section 4.1 of Part 1 and using results in Section 1.2 on the Bergman kernel on
P'\ Q, we get

2 ' AG (W)
9°Gppc(z, w) d- @ div — — G ()G (w) -

T pse = 720 (1= GGy

Computation of 8*logt/dt,,0t,, m,n > 0 is also similar to the one done before.
Namely, since the vector field 9/0t, corresponds to the meromorphic (1, 0)-form
c'u(g) on Plc which coincides with d(F, o 1/G) on the domain P'\ Q (see the proof
of Krichever’s lemma in Section 1.3), we get

?*logt 19 mE)(I)(z)d B _L _m aS_ (z)

Idly | 2midl, oo 0z - 2mi o,
1 . 1 _
= | o™ — — | q(F, 01/G
2nifcz @c Zni,/cz (Fao1/6).

Using the representation

GG W =\ dF,(1/G()) (1/ G(Z))
(1 = G(=)Gw))* HZ;

which follows from the definition of Faber polynomials, we get by the Cauchy
integral formula

dF,(1/G@) _ 1 / GEGM) i
dz " 2miJe, (1 - G()Gw))

where C, is an arbitrary contour around 0 that contains the contour C inside. As a
result we finally obtain

Plogt G (2)G (w) o di
M ot, (2m) /Q /; (1 - G(z)G(w))? widadi

Z‘(zTif fC /C ZGETW) — (T bEC)

— the Ward identity for the 2-point correlation function with holomorphic and
anti-holomorphic current components that computes the difference between corre-
lation functions of free bosons on P! parameterized by C and of free bosons on
P!\ Q with the Dirichlet boundary condition. We summarize these results as the
following statement (cf. [24]).
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THEOREM 3.9. Normalized reduced 2-point current correlation functions for free
bosons on P! parameterized by C € C, for every a > 0 satisfy the Ward identities,
given by the following Laurent series expansions at z = w = 00

(Eym)) = (G (W) pBC
_ ( G@Gw 1
(G(2) = G (z—w)’

91
= Z =ty ﬂdz ® dw
ot,,,0t,

)dz®dw

m,n=1
and

(G — (W) pBC
G ()G (w) }
= —_2dZ
(1= G(2)Gw))

o 91
= Z -l &_sz ® dw
el ot,,0t,
=dd"logr.

All higher reduced multi-point current correlation functions vanish.

COROLLARY 3.10. For every a > 0 he Hermitian metric H on C, is Kiihler with the
Kdhler potential log .
Proof. Immediately follows from the definition of the metric H in Section 1.3.[]

Remark 3.11. This corollary should be compared with the result [48-50] that the
critical value S of the Liouville action functional is a potential for the Weil-Petersson
Kaéhler metric on the space of punctures Z, (and, therefore, on the Teichmiiller space

TO,n)

= ?S
Y= —— i,j=1,...,n—3.
gWP 821'82]" LJj ) n

As was noted in the Remark 1.7, the metric H on éa is a simplified analog of the
Weil-Petersson metric on Teichmiiller spaces 7, ,. Theorem 3.9 expresses it in terms
of the 2-point current correlation function with holomorphic and anti-holomorphic
components. Similarly, the Weil-Petersson metric on 7,, can be characterized
as a semi-classical limit of a 2-point correlation function with holomorphic and
anti-holomorphic components of the stress-energy tensor [41].

As before, it is possible to integrate explicitly the formulas in the Theorem 3.9,
using the formula for logh;. We obtain the following result [24, 45].
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COROLLARY 3.12.

g G = GO _

19 logt i " P log T
z—w

2 a2 mn  Oty,dt,

LEON A. TAKHTAJAN

m,n=1
and
o ( G(z)G(w) >_ X, 27" 3 log T
G()Gw)—1/) 4=, mn  Bt,dl,
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