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1. Introduction

1.1. OVERVIEW

Recent development in mathematical physics is characterized by applications of
Quantum Field Theory (QFT) to various areas of mathematics. They include
the following:*

(1) Application of Topological QFT to Geometry and Topology: d � 3
Jones^Witten theory [1], d � 4 Donaldson and Seiberg^Witten theories [2, 3].

(2) Application of CFT and vertex operator algebras to the `monstrous
moonshine' [4].

(3) Application of CFT to Complex and Algebraic Geometry: d � 2 quantum grav-
ity and intersection theory on moduli spaces of stable curves [5^7], and
Weil^Petersson geometry [8, 9].

In this talk**, we are interested in applying QFT to Arithmetics, i.e., in developing
QFT methods for algebraic number ¢elds and ¢elds of algebraic functions. On sev-
eral occasions, I discussed these topics with Moshë Flato, who had deep thoughts
about possible relations between QFT and arithmetic. Thus, Moshë came up with

*This is not a complete list, of course; it rather reflects author's interests in topics somewhat
related to the subject of the paper.
**The Letter is an expanded version of the talk, given at the ConfeÂ rence MosheÂ Flato,
September 5±8 1999, Dijon, France. A detailed presentation will be published elsewhere.
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a beautiful idea to use factoring of polynomials in several variables for the special
quantization of the Nambu bracket (called Zariski quantization), developed in
our paper [10].

1.2. HISTORIC BACKGROUND

In the 1920s, E. Artin and H. Hasse introduced `Calculus' to arithmetic, and in
1930^1940s, C. Chevalley and A. Weil introduced in¢nite-dimensional methods.
Recent development can be succinctly described as follows.

. In 1968, J. Tate [11] de¢ned residues of differentials on algebraic curves in terms
of the traces of certain linear operators on in¢nite-dimensional spaces of ade© les,
and gave a new proof of the residue theorem.

. In 1987, E. Arbarello, C. de Concini and V. Kac [12] interpreted Tate's
approach in terms of central extensions of in¢nite-dimensional Lie algebras
and proved A. Weil reciprocity law using the in¢nite-wedge representation.

. In 1987^1988, D. Kazhdan [13] and E. Witten [14, 15] proposed an ade© lic for-
mulation of free fermions on an algebraic curve.

. In 1990, H. Garland and G. Zuckerman [16], constructed local Fock spaces for
multiplicative bosons on a Riemann surface.

. In 1988^1991, A. Beilinson, B. Feigin, and B. Mazur [17] developed a represen-
tation theory approach for CFT on algebraic curves.

. In 1989^1991, A. Raina [18, 19], developed an algebro-geometric approach for
free fermions on Riemann surfaces and gave a new proof of Fay's trisecant
identity.

. In 1994, A. Beilinson and V. Drinfeld, in the course of their work on geometric
Langlands correspondence, introduced `chiral algebras' [20, 21] on algebraic
curves as mathematical objects that imitate operator product expansions of
quantum ¢elds.

Results of papers [17, 20, 21] have been recently summarized by D. Gaitsgory [22].
Primarily based on [13^15], we interpret this development as emergence of a `new

paradigm', that introduces reciprocity laws and Class Field Theory for algebraic
function ¢elds in one variable (see [23] for a review) as Ward Identities ^ quantum
Noether conservation laws in Conformal Field Theory (see [14, 24] for a review).

Conservation laws in physics include Noether symmetries, gauge symmetries, and
discrete symmetries. Here are the simplest examples of conservation laws in
arithmetic.

(a) Artin^Whaples product formulaY
p2S
jrjp � 1; r 2 Q;
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where S is the set of all places on Q, consisting of all primes p � 2; 3; 5; . . ., and
an `in¢nite prime' p � 1, and j jp is the p-adic absolute value (it is the usual
absolute value on R for p � 1).

(b) Gauss quadratic reciprocity law

p
q

� �
q
p

� �
� �ÿ1�pÿ12 qÿ1

2 ;

where p, q are distinct odd primes, and �p=q� is the Legendre symbol: �p=q� � 1 or
�p=q� � ÿ1 depending on whether p is quadratic residue or nonresidue modulo p.

(c) Cauchy residue theoremX
P2X

ResPf dg � 0;

where X is compact Riemann surface, and f ; g 2 C�X � are meromorphic
functions on X.

(d) A.Weil reciprocity lawY
Q2�g�

f �Q�nQ �
Y
P2�f �

g�P�nP ; f ; g 2 C�X �;

where

�f � �
X
P2X

nP � P; �g� �
X
Q2X

nQ �Q

are divisors of meromorphic functions f and g with the property �f � \ �g� � ;.

2. Mathematical Set-up

2.1. DEFINITIONS

Let X be a complete, irreducible, nonsingular, algebraic curve of genus g over an
algebraically closed ¢eld k of characteristic zero, and let K � k�X � be the ¢eld
of rational functions on X ^ a ¢nitely-generated algebraic extension of k of trans-
cendence degree 1 (see, e.g., [25, 26]). When k � C ^ the ¢eld of complex numbers,
X is a compact Riemann surface, and K � C�X � is the ¢eld of meromorphic
functions on X . Points P 2 X correspond to regular discrete valuations vP of K over
k, i.e., surjective homomorphisms v : K� ! Z of the multiplicative group of the ¢eld
K into the additive group of rational integersZ, that are trivial on the subgroup k� in
K�, and satisfy the property

v�x� y�X minfv�x�; v�y�g; for all x; y 2 K�:

Let K be the canonical line bundle (invertible sheaf) over X , and let L be a spin
structure for X ^ a line bundle of degree gÿ 1 over X , such that L2 � K. For
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any line bundle D of degree 0 over X set L� � L 
 D�1. Denote by KX , LX , and L�X
the corresponding in¢nite-dimensional k-vector spaces of rational sections over
X of the line bundles K, L, and L�. These are the spaces of rational differentials
on X , rational 1

2 differentials on X and rational `chiral' 1
2 differentials on X ,

correspondingly. Set L�D�X � L�X � LÿX .

2.2. LOCAL DATA

The following local objects at every P 2 X are canonically associated with the trivial
line bundle OX over X , line bundle L and with the rank 2 vector bundle
L�D� � L� � Lÿ.

(i) Local ¢eld at P 2 X ^ a completion KP of the ¢eldK with respect to the valuation
vP.

(ii) Local ring OP � fu 2 KPjvP�u�X 0g.
(iii) Unique maximal ideal p � fu 2 OPjvP�u� > 0g in OP.
(iv) Residue ¢eld k � OP=p.
(v) Group of units UP � fu 2 KPjvP�u� � 0g in OP;P 2 X , with the property

UP ' k� �U1
P, where U1

P � 1� p.
(vi) k-vector spaces LP and L�D�P ^ completions at P 2 X of LX and L�D�X ,

correspondingly, with respect to the valuation vP.
(vii) Subspaces O�L�P and O�L�D��P of regular elements in LP and L�D�P,

correspondingly.

k-vector spaces KP, LP, and L�D�P are complete in the p-adic topology, the residue
¢eld k is discrete in the quotient topology in KP;P 2 X , and these vector spaces are
Tate vector spaces ^ topological vector spaces with a base of neighborhoods of zero
given by mutually commensurable subspaces.

k-vector spaces LP;KP and L�D�P and the group K�P come equipped with the
following canonical structures.

. LP has nondegenerate, continuous, symmetric, k-bilinear form
� ; �P : LP 
 LP ! k,

�f1;f2�P � ResP�f1 f2�:
The pair LP; � ; �P de¢nes a Clifford algebra CliffP.

. L�D�P has nondegenerate, continuous, symmetric, k-bilinear form
� ; �P : L�D�P 
 L�D�P ! k,

�c1 � �c1;c2 � �c2�P � ResP�c1
�c2 � �c1c2�;

where c 2 L�P ; �c 2 LÿP . The pair L�D�P; � ; �P de¢nes a Clifford algebra
Cliff�D�P.
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. KP, as Abelian Lie algebra gP � gl1�KP� ^ `geometric current algebra', has con-
tinuous, skew-symmetric, k-bilinear form ^ canonical Lie algebra two-cocycle
given by the residue symbol,

cP�u; v� � ÿResP�u dv�:
The pair gP; cP de¢nes a central extension ĝP ^ `geometric af¢ne algebra'.

. K�P as Abelian Lie group GP � GL1�KP� ^ `geometric loop group', has con-
tinuous, skew-symmetric, k-bilinear form ^ canonical group two-cocycle, given
by Tate's tame symbol,

�f ; g�P � �ÿ1�vP�f �vP�g�
f vP�g�

gvP�f �
mod p 2 k�:

The pair GP; � ; �P de¢nes a central extension ĜP ^ `geometric af¢ne group'.

2.3. GLOBAL DATA

Global versions of the local objects introduced in the previous section are the
following.

. The ring of ade© les for K , AX �
`

P2X KP ^ restricted Cartesian product of
spaces KP over P 2 X with respect to subspaces OP. An element
a � faPgP2X 2 AX , if aP 2 OP for all except ¢nitely many P 2 X .

. Diagonal embedding K 3 f 7! ff jPgP2X 2 AX of the global ¢eld K into the ring
of ade© les AX .

. The group of ide© les for K ^ the group of units in the ring of ade© les AX ,
JX �

`
P2X K�P ^ restricted Cartesian product of multiplicative groups K�P with

respect to subgroups UP.
. Diagonal embedding K� ,!JX of the multiplicative group of the global ¢eld

into the group of ide© les JX .
. Restricted Cartesian product of spaces LP,LX �

`
P2X LP;with respect to sub-

spaces O�L�P.
. Diagonal embedding LX ,!LX of the space of rational sections of L over X

into the space of ade© les LX .
. Restricted Cartesian product of the spaces L�D�P, L�D�X �

`
P2X L�D�P; with

respect to subspaces O�L�D��P.
. Diagonal embedding L�D�X ,!L�D�X of the space of rational sections of L�D�

over X into the space of ade© les L�D�X .

2.4. ARTIN^WHAPLES AND WEIL EXAMPLES

(1) For x � fxPgP2X 2 JX de¢ne jjxjj �QP2X jxPjP; where jxPjP � cvP�xP� for some
¢xed 0 < c < 1 is the p-adic metric for the valuation vP. The Artin^Whaples
product formula [28] jj fxjj � jjxjj; where x 2 JX and f 2 K� ,!JX , is an

QUANTUM FIELD THEORIES ON AN ALGEBRAIC CURVE 83



example of c̀onservation law' stating that `the sum over X of residues of the
meromorphic di¡erential df =f is zero'.

(2) For a � faPgP2X ; b � fbPgP2X 2 JX de¢ne the global symbol �a; b�X �Q
P2X �aP; bP�P 2 k�: The A. Weil reciprocity law (see, e.g., [26]) �f ; g�X � 1;

for all f ; g 2 K�, is an example of c̀onservation law'

�fa; gb�X
�f ; b�X �a; g�X

� �a; b�X ;

for all a; b 2 AX .

3. QFT Set-up

3.1. DEFINITIONS

In correspondence with different vector spaces of global rational sections LX ,L�D�X ,
K � k�X �, and with the group K�, we consider the following quantum ¢eld theories
on algebraic curve X .

(a) Majorana^Weyl (one-component) free fermions  !LX.
(b) Charged (two-component) free fermions  !L�D�X.
(c) Additive gl1-bosons  !K.
(d) Multiplicative GL1-bosons  !K�.

Speci¢cally, for every P 2 X , let GP be either the Clifford algebra CliffP or
Cliff�D�P, or the Lie algebra ĝP, or the Lie group ĜP. Also, let G�P be,
correspondingly, either the Clifford subalgebra L�O�L�P or L�O�L�D��P, or the
Lie subalgebra OP � f0g, or the Lie subgroup U1

P � f1g.
By a QFT with symmetry algebra or group G on an algebraic curve X , we under-

stand the following local and global data.

3.2. LOCAL QFT

It consists of an irreducible highest weight GP-module FP for P 2 X ^ fermionic or
bosonic Fock space containing distinguished vector 1P, which is either annihilated
or is invariant with respect to the action of the corresponding algebra or group G�P .

The correspondence between quantum observables and states in CFT asserts that
FP is the space of quantum observables at P 2 X .

3.2.1. For Majorana^Weyl fermions, set

FP � L�LÿP ' CliffP=CliffP � O�L�P;

with the left action of CliffP, where LP � O�L�P � LÿP ; is a decomposition of LP into
maximal isotropic subspaces with respect to the symmetric bilinear form � ; �P,
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introduced in Section 2.1. Though subspace LÿP ^ the complement of O�L�P in LP,
depends on the choice of a uniformizer at P, the corresponding CliffP-module
FP is de¢ned canonically.

In the case when the spin structure L has no regular global sections, i.e.,
h0�X ;L� � 0, the subspace LÿP can be canonically de¢ned as follows. By the
Riemann^Roch theorem, h0�X ;L�nP�� � n for all n 2N, so that there exist global
rational sections s�n�P of L with the only pole at P 2 X of order n. The subspace
LÿP is the localization of the subspace H0�X ;L��P�� at P and has basis
fv�n�P � s�n�P jPgn2N. The pairing � ; �P : O�L�P 
 LÿP ! k is nondegenerate and continu-
ous with respect to the p-adic topology on LP and discrete topology on k, so that the
k-vector space O�L�P is dual to LÿP : O�L�P � �LÿP �_. The k-vector space
F_P � L�O�L�P is a dual CliffP-module to the Fock module FP.

3.2.2. For additive gl1-bosons, set

FP � Sym�KÿP 'WP=WP � OP;

with the left action of ĝP, where KP � OP � KÿP ; is a decomposition of KP into
isotropic subspaces with respect to the skew-symmetric bilinear form cP, introduced
in Section 2.1. Here WP is the Weyl algebra ^ a quotient of U�ĝP� by the ideal gen-
erated by the element �0; 1� ÿ 1. Though the subspace KÿP ^ the complement of
OP in KP, depends on the choice of a uniformizer at P, the corresponding gl1-module
FP is de¢ned canonically.

The subspace KÿP can be de¢ned as follows. By the Riemann^Roch theorem,
H0�X ;K�nP�� � g� nÿ 1, so that there exist differentials of second kind y�n�P , with
the only pole at P of order nX 2. Since ResPy

�n�
P � 0, there exist v�n�P 2 KP such that

dv�n�P � y�n�P jP, and we de¢ne KÿP as a k-vector space with basis fv�n�P gn2N. The pairing
cP : p
 KÿP ! k is nondegenerate (note that k is the kernel of the bilinear form
cP), and continuous with respect to the p-adic topology on LP and discrete topology
on k, so that the k-vector space p is dual to KÿP : p � �KÿP �_. The k-vector space
F_P � Sym�p is a dual ĝP-module to the Fock module FP.

Local Fock spaces for charged fermions and GL1-bosons are constructed in a
similar way, the bosonic Fock space construction being equivalent to the Heisenberg
system representation of Garland^Zuckerman [16]. There is also an algebraic
version of Fermi^Bose correspondence between Fock spaces for charged fermions
and for gl1-bosons (the latter should be extended to include `zero modes').

3.2.3. Applications
Here we indicate applications of local QFT of gl1-bosons to local CFT (Class Field
Theory). We consider only the case when chark � 0. Then one has the following
(see, e.g., [27]).
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(i) For every P 2 X, KP ' k��t��; formal Laurent series in t, the uniformizer at
P 2 X .

(ii) All ¢nite algebraic extensions of k��t�� are Abelian with cyclic Galois group.
(iii) The algebraic closure Kalg

P of KP is isomorphic to the union of the ¢elds
K �n�P � k��t1=n��, Kalg

P �
S

n2N K �n�P :

(iv) The completionKP of the ¢eld Kalg
P with respect to the valuation vP extending the

valuation vP of K (the valuation vP takes values in Q�) is isomorphic to the ¢eld
k��t1=1��, consisting of formal power series

f �
X
rn2Q

cntrn ; where c1 6� 0 and rn % �1 as n!1;

so that vP� f � � r1.
(v) The Galois group of the extension Kalg

P =KP ^ the absolute Galois group G, is
isomorphic to Ẑ ^ a completion of the Abelian group Zwith respect to the Krull
topology. The Galois group G has generator F ^ a geometric Frobenius element,
de¢ned by F � ��

tn
p � � on

��
tn
p

, where on 2 k are nth roots of unity in k, satisfying
the property on � om

mn for all m; n 2N (see [27]). The correspondence
Ẑ 3 n 7!F n 2 G establishes an isomorphism Ẑ ' G.

Let GP be the `absolute' af¢ne Lie algebra ^ a central extension of the Abelian Lie
algebraKP with respect to the two-cocycle cP. It can be described (depending on the
choice of the uniformizer) as the `absolute' Heisenberg algebra with generators
fargr2Q and C, and relations

�ar; as� � rdr;ÿsC; �ar;C� � 0;

for all r; s 2 Q. The corresponding irreducible GP-module is the `absolute' bosonic
Fock space FP � k�xr�r2Q;r>0 of polynomials in in¢nitely many variables
parameterized by a positive r 2 Q. The absolute Galois group G acts on the Lie
algebra GP and on the Fock space FP, and direct sums of its invariant subspaces
determine the Fock spaces F�n�P of additive gl1-bosons for K �n�P .

This simple observation establishes a connection between local QFT and local
CFT for the ¢eld KP � k��t�� when char k � 0. Of course, local CFT for this case
is rather trivial. Similar relations exist for a really interesting case when
char k � p, i.e., k � Fp ^ an algebraic closure of the ¢nite ¢eld Fp of p elements.

3.3. GLOBAL QFT

Global QFT on algebraic curve X consists of the following data.

I Local QFT ^ a pair of algebra (group) GP and local Fock space FP with dis-
tinguished vector 1P for every P 2 X.

II Global algebra (group) GX ^ a restricted direct sum (direct product or graded
tensor product) of local Lie algebras GP (Lie groups or Cli¡ord algebras) over
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all P 2 X , with the diagonal embedding of the subalgebra (subgroup) GX, gen-
erated by rational sections over X.

III Irreducible highest weight GX-module ^ global Fock space FX of quantum
observables with distinguished vector 1X ^ a restricted graded-symmetric tensor
product of local Fock spaces FP over all P 2 X such that 1X � 
P2X1P.

IV The k-linear functional h i : FX ! k ^ the expectation value of quantum
observables, that satis¢es the following properties.

IV-1 h1X i � 1
IV-2 h f̂ � vi � 0 ^ for additive QFT,

h f̂ � vi � hvi ^ for multiplicative QFT,
for all f 2 GX and v 2 FX , where f̂ 2 EndkFX.

These are Ward identities, that express quantum symmetries of the theory.

3.3.1. Applications
The additive Ward identity for the Lie algebra case:

0 � hd� f; g� � vi � cX � f ; g�hvi � h� f̂ ; ĝ� � vi;

for all f ; g 2 GX and v 2 FX , implies that

cX � f ; g� �
X
P2X

cP� f ; g� � 0

^ an additive `reciprocity law'. The additive Ward identity for the Clifford algebra
case:

0 � h dfg� gf � vi � � f ; g�X hvi � h� f̂ ĝ� ĝf̂ � � vi;

implies the additive conservation law

� f ; g�X �
X
P2X
� f ; g�P � 0;

for all f ; g 2 GX .
Similarly, the multiplicative Ward identity:

hvi � h f̂g � vi � c� f ; g�X h f̂ �ĝ � v�i;
for all f ; g 2 GX and v 2 FX , implies that

� f ; g�X �
Y
P2X
� f ; g�P � 1

^ a multiplicative `reciprocity law'.
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3.4. EXAMPLES

If the spin structure L for the algebraic curve X has no global regular sections, i.e.,
h0�X ;L� � 0, or the degree 0 line bundle D over X is such that
h0�X ;L 
D� � 0, then one can canonically construct a QFT of Majorana^Weyl
and charged fermions on X .

Start with the case of Majorana^Weyl fermions and consider, for every P 2 X , the
k-vector spaces LÿP and their dual spaces �LÿP �_, introduced in Section 3.2. For every
P 2 X denote by fu�n�P gn2N the basis in OP � �LÿP �_, dual to the basis fv�n�P gn2N in
LÿP with respect to pairing � ; �P. Let F_X �

N
P2X F_P be the dual space to the global

Fock space FX (here 
 is a Z=2Z-graded symmetric tensor product, which is unre-
stricted over X ), and consider a vector O 2 F_X in the following form of the `¢lled
Dirac sea':

O � 1_X �
X1
n�1

X
P12X
� � �

X
Pn2X

X1
i1�1
� � �
X1
in�1

ci1���inP1���Pn
u�i1�P1

 � � � 
 u�in�Pn

:

Consider the linear functional on FX , associated with O 2 F_X ,

hvi � �O; v�; v 2 FX :

Denoting by f̂ _ the dual Cliff-action, we see that the Ward identity IV-2 for h i is
equivalent to the following condition

f̂ _O � 0 for all f 2 LX :
By Riemann^Roch theorem, it follows from h0�X ;L� � 0, that every f 2 LX admits
a `simple fraction decomposition', i.e., it is a linear combination of sections s�n�P with
P 2 �f �1 ^ the polar divisor of f . Therefore, it is suf¢cient to verify IV-2 only
for sections s�n�P , and simple `calculus of residues' gives the following result.

THEOREM 1. Let a spin structure L for an algebraic curve X be such that
h0�X ;L� � 0. Then there exists a unique expectation value functional
h i : FX ! k satisfying the additive Ward identities, and it has the form
hvi � �O; v�, v 2 FX , where

O � exp
X1
m;n�1

X
P;Q2X

cmn
PQu

�m�
P 
 u�n�Q

( )
2 F_X ;

and

cmn
PQ � ResP�v�m�P v�n�Q �:

The ¢rst statement of the theorem was established in [14]. The second statement
gives the generating function for `free fermion correlation functions' (cf. [18, 19])
in a closed form. In particular, setting vP � v�1�P ;P 2 X , we get the following
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expression

hf�P1� � � �f�Pn�ii � �O; vP1 
 � � � 
 vPn �

� 0 n is odd;
Pf�hf�Pi�f�Pj�i� n is even,

�
for the n-point correlation function of fermion ¢eld operators fi � f�Pi� on X .

An analogous construction works for the case of charged fermions, when
h0�X ;L 
D� � 0.

For additive gl1-bosons, the expectation value functional is not unique and
depends on the choice of differentials of the second kind on X . Still, similar
arguments work for this case. Namely, for every P 2 X choose the basis
fu�n�P gn2N in p, dual to the basis fv�n�P gn2N in KÿP , and de¢ne the dual Fock space
F_X as (unrestricted) symmetric tensor product of the dual Fock spaces F_P over
all P 2 X . Consider a vector O 2 F_X in the form of the ``¢lled Dirac sea'. Contrary
to the previous case, the simple fraction expansion is no longer valid for rational
functions on X . However, one can consider a stronger condition than IV-2, by
requiring the same equation to be valid for `multi-valued' rational functions on
X (cf. [29]). By de¢nition, ffPgP2X 2 AX is a multi-valued rational function on
X , if there exists a rational differential y on X (which is necessarily of the second
kind) such that dfP � yjP for all P 2 X . The multi-valued functions ^ `Abelian
integrals', act on the dual Fock space F_X and admit simple fraction expansion,
so that we can use the previous arguments and determine a vector O. Thus, denoting
by J the free boson ¢eld (current) on X , we get

hJ�P�J�Q�i � ResP�yP dÿ1yQ�:

Another way to construct additive gl1-bosons is to apply the bosonization pro-
cedure to charged free fermions with h0�X ;L 
 D� � 0. Thus the obtained QFT's
are parameterized by Picgÿ1�X � ÿY, where Y is the canonical theta-divisor
(symmetric with respect to the involution D 7!K
Dÿ1).

The `exponentiated' version of these constructions allows to de¢ne a QFT of
multiplicative bosons and to prove A. Weil reciprocity law.

3.5. FURTHER DEVELOPMENT

Local QFT's discussed here can be also de¢ned when char k � p > 0. Thus, additive
gl1-bosons correspond to the Artin^Schreier extensions, whereas multiplicative
GL1-bosons correspond to the Kummer extensions of local ¢elds, with global QFT's
incorporating Artin reciprocity law for the norm residue symbol.

There is some evidence that these methods may also work for number ¢elds, pro-
viding a QFT foundation for the Gauss quadratic reciprocity law and its
generalizations. We plan to return to these issues elsewhere.
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