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REAL PROJECTIVE CONNECTIONS, V. I. SMIRNOV’S APPROACH,

AND BLACK-HOLE-TYPE SOLUTIONS OF THE LIOUVILLE

EQUATION

L. A. Takhtajan∗

We consider real projective connections on Riemann surfaces and their corresponding solutions of the

Liouville equation. We show that these solutions have singularities of a special type (a black-hole type)

on a finite number of simple analytic contours. We analyze the case of the Riemann sphere with four real

punctures, considered in V. I. Smirnov’s thesis (Petrograd, 1918) in detail.
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1. Introduction

One of the central problems of mathematics in the second half of the 19th century and at the beginning
of the 20th century was the problem of uniformization of Riemann surfaces. The classics, Klein [1] and
Poincaré [2], associated it with studying second-order ordinary differential equations with regular singular
points. Poincaré proposed another approach to the uniformization problem [3]. It consists in finding a
complete conformal metric of constant negative curvature, and it reduces to the global solvability of the
Liouville equation, a special nonlinear partial differential equation of elliptic type on a Riemann surface.

Here, we illustrate the relation between these two approaches and describe solutions of the Liouville
equation corresponding to second-order ordinary differential equations with a real monodromy group. In the
modern physics literature on the Liouville equation, it is rather commonly assumed that for the Fuchsian
uniformization of a Riemann surface, it suffices to have a second-order ordinary differential equation with
a real monodromy group. But the classics already knew that this is not the case, and they analyzed
second-order ordinary differential equations with a real monodromy group on genus-0 Riemann surfaces
with punctures in detail. Nonetheless, they did not consider the relation to the Liouville equation, and we
partially fill this gap here.

Namely, in Sec. 2, following the lectures [4], we briefly describe the theory of projective connections
on a Riemann surface—an invariant method for defining a corresponding second-order ordinary differential
equation with regular singular points. Following [5], [6], we review the main results on the Fuchsian uni-
formization, the Liouville equation, and the complex geometry of the moduli space. In Sec. 3, following [7],
we present the modern classification of projective connections with a real monodromy group and review
the results of V. I. Smirnov’s thesis [8] (Petrograd, 1918). This work, published in [9], [10], was the first
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where a complete classification of equations with a real monodromy group was given in the case of four
real punctures. In Sec. 3.2, we give a modern interpretation of Smirnov’s results. Finally, in Sec. 4, we
describe solutions of the Liouville equation with black-hole-type singularities associated with real projective
connections. To the best of our knowledge, these solutions have not been considered previously.

2. Projective connections, uniformization, and the Liouville
equation

2.1. Projective connections. Let X0 be a compact genus-g Riemann surface with marked points
x1, . . . , xn, where 2g + n − 2 > 0, and let {Uα, zα} be a complex-analytic atlas with local coordinates zα

and transition functions zα = gαβ(zβ) on Uα ∩ Uβ. Let X = X0 \ {x1, . . . , xn} denote a corresponding
Riemann surface of type (g, n), a genus-g surface with n punctures. The collection R = {rα}, where rα

are holomorphic functions on Uα ∩ X , is called a (holomorphic) projective connection on X if on every
intersection Uα ∩ Uβ ∩ X ,

rβ = rα ◦ gαβ(g′αβ)2 + S(gαβ),

where S(f) is the Schwarzian derivative of a holomorphic function f ,

S(f) =
f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

.

In addition, we assume that if xi ∈ Uα and zα(xi) = 0, then

rα(zα) =
1

2z2
α

+ O

(
1

|zα|

)
, zα → 0. (1)

Projective connections form an affine space P(X) over the vector space Q(X) of holomorphic quadratic
differentials on X ; elements of Q(X) are collections Q = {qα} with the transformation law

qβ = qα ◦ gαβ(g′αβ)2

and the additional condition that qα(zα) = O(|zα|−1) as zα → 0 if xi ∈ Uα and zα(xi) = 0. The vector
space Q(X) has the complex dimension 3g−3+n (for more details on projective connections and quadratic
differentials, see [4] and the references therein).

A projective connection R naturally determines a second-order linear differential equation on the
Riemann surface X , the Fuchsian differential equation

d2uα

dz2
α

+
1
2
rαuα = 0, (2)

where U = {uα} is understood as a multivalued differential of order −1/2 on X . Equation (2) determines
the monodromy group, a representation of the fundamental group π1(X, x0) of the Riemann surface X with
the marked point x0 in PSL(2, C) = SL(2, C)/{±I}. Condition (1) implies that the standard generators
of π1(X, x0), which correspond to the loops around the punctures xi, are mapped to parabolic elements in
PSL(2, C) under the monodromy representation.

2.2. Uniformization. According to the uniformization theorem

X ∼= Γ \ H, (3)
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where H = {τ ∈ C : Im τ > 0} is the Poincaré model of the Lobachevksy plane and Γ ⊂ PSL(2, R) is a
type-(g, n) Fuchsian group acting on H by fractional linear transformations. In other words, there exists
a complex-analytic covering J : H → X whose automorphism group is Γ. The function inverse to J , a
multivalued analytic function J−1 : X → H, is a locally univalent linear polymorphic function on X (this
means that its branches are connected by fractional linear transformations in Γ). The Schwarzian derivatives
of J−1 with respect to zα are well defined on Uα and determine the Fuchsian projective connection RF =
{Szα(J−1)} on X , and the multivalued functions 1/

√
(J−1)′ and J−1/

√
(J−1)′ satisfy Fuchsian differential

equation (2) with R = RF. The monodromy group of this equation, up to conjugation in PSL(2, R), is the
Fuchsian group Γ.

Klein [1] and Poincaré [2] were solving the problem of uniformizing a Riemann surface X by choosing a
projective connection in Fuchsian equation (2) such that its monodromy group is a Fuchsian group Γ with
the property that (3) holds. But a direct proof of the existence of the Fuchsian projective connection RF on
X turned out to be a very difficult problem, which has not been completely solved to this day (see [11], [12]).
In the case of type-(0, n) Riemann surfaces, to which we further restrict ourself, this problem is formulated
as follows.

Let X0 be the Riemann sphere P1 and X be a genus-0 Riemann surface with n punctures z1, . . . , zn.
Without loss of generality, we can assume that zn−2 = 0, zn−1 = 1, zn = ∞, and X = C\{z1, . . . , zn−3, 0, 1}.
Equation (2) becomes

d2u

dz2
+

1
2

n−1∑
i=1

(
1

2(z − zi)2
+

ci

z − zi

)
u = 0, (4)

where z is a global complex coordinate on X . The complex parameters c1, . . . , cn−1 satisfy the two conditions

n−1∑
i=1

ci = 0,

n−1∑
i=1

zici = 1 − n

2
, (5)

which allow expressing cn−2 and cn−1 explicitly in terms of z1, . . . , zn−3 and the remaining n−3 parameters
c1, . . . , cn−3.

In the classical approach of Klein and Poincaré to the uniformization problem, given the singular
points z1, . . . , zn−3, 0, 1,∞, it was required to choose parameters c1, . . . , cn−3 such that the monodromy
group of Eq. (4) is a Fuchsian group isomorphic to the fundamental group of the Riemann surface X .
The ratio of two linear independent solutions of Eq. (4) up to a fractional linear transformation would
then be the desired multivalued map J−1 : X → H realizing the uniformization of the Riemann surface X .
The corresponding Γ-automorphic function J : H → C is called Klein’s Hauptmodul (Hauptfunktion). The
complex numbers c1, . . . , cn−3, the accessory parameters of the Fuchsian uniformization of the surface X ,
are uniquely determined by the singular points z1, . . . , zn−3. Moreover,

S(J−1)(z) =
n−1∑
i=1

(
1

2(z − zi)2
+

ci

z − zi

)
. (6)

To prove the existence of the accessory parameters, Poincaré proposed the so-called continuity method
in [2]. But a rigorous solution of the uniformization problem could not be obtained using this method, and
being subjected to criticism, the method was soon abandoned. The ultimate solution of the uniformization
problem was obtained by Koebe and Poincaré in 1907 using quite different methods, in particular, using
potential theory (see, e.g., [13] for a modern exposition).
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2.3. The Liouville equation. The projection on X of the Poincaré metric (Im τ)−2 |dτ |2 on H is a
complete conformal metric on X of constant negative curvature −1. It has the form eϕ(z)|dz|2, where

eϕ(z) =
|(J−1)′(z)|2
(Im J−1(z))2

. (7)

The smooth function ϕ on X satisfies the Liouville equation

ϕzz̄ =
1
2
eϕ (8)

and has the asymptotic behavior

ϕ(z) =

⎧⎨
⎩
−2 log |z − zi| − 2 log | log |z − zi|| + o(1), z → zi, i 	= n,

−2 log |z| − 2 log log |z|+ o(1), z → ∞.
(9)

In [3], Poincaré proposed an approach to the uniformization problem based on the Liouville equation.
Namely, he proved that Liouville equation (8) is uniquely solvable in the class of smooth real-valued functions
on X with asymptotic behavior (9). It hence follows that Tϕ = ϕzz −ϕ2

z/2 is a rational function of form (6)
and that the differential equation

d2u

dz2
+

1
2
Tϕu = 0

has a Fuchsian monodromy group that uniformizes the Riemann surface X .
The Liouville equation is the Euler–Lagrange equation for the functional

S(ψ) = lim
ε→0

(∫∫
Xε

(|ψz|2 + eψ) d2z + 2πn log ε + 4π(n − 2) log | log ε|
)

,

where d2z is the Lebesgue measure on C,

Xε = X \
( n−1⋃

i=1

{|z − zi| < ε} ∪
{
|z| >

1
ε

})
,

and ψ belongs to the class of smooth functions X with asymptotic behavior (9). The quantity Tψ =
ψzz − ψ2

z/2 plays the role of the (2, 0)-component of the stress–energy tensor in the classical Liouville
theory, and

Tϕ = S(J−1).

We let
M0,n = {(z1, . . . , zn−3) ∈ C

n−3 : zi 	= zj for i 	= j and zi 	= 0, 1}

denote the moduli space of genus-0 Riemann surfaces with n ordered punctures (rational curves with n

marked points). The critical values of the Liouville action functional S(ψ) (the values on the extremums
ϕ for all surfaces X) determine a smooth function S : M0,n → R, the classical action for the Liouville

equation. As proved in [5], [6], the classical action for the Liouville equation plays a fundamental role in
the complex geometry of the moduli space M0,n. Namely, S is a common antiderivative for the accessory
parameters

ci = − 1
2π

∂S

∂zi
, i = 1, . . . , n − 3,
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and also a Kähler potential for the Weil–Petersson metric on M0,n,

− ∂2S

∂zi∂z̄j
=

〈
∂

∂zi
,

∂

∂zj

〉
WP

, i, j = 1, . . . , n − 3.

The statement that the classical action for the Liouville equation is a common antiderivative for
accessory parameters for genus-0 surfaces was conjectured by Polyakov1 based on the semiclassical analysis
of the conformal Ward identities of the quantum Liouville theory (see [14]).

3. Real projective connections and Smirnov’s thesis

3.1. General case. Let X be a Riemann surface of type (g, n). A projective connection R on X is said
to be real or Fuchsian if its monodromy group up to a conjugation in PSL(2, C) is respectively a subgroup
in PSL(2, R) or a Fuchsian group. By the uniformization theorem, a Fuchsian projective connection RF is
uniquely characterized by the condition that its monodromy group is precisely the Fuchsian group Γ that
uniformizes the Riemann surface X . It is rather natural to ask whether it is possible to characterize a
projective connection RF on X by simpler conditions like being real (see p. 224 in [15]) or Fuchsian. The
answer to the question is negative.

Namely, for a compact genus-g>1 Riemann surface X = Γ \ H, Goldman [7] showed that to ev-
ery integral-measurable Thurston’s lamination μ =

∑
i miγi (disjoint union), where γi are simple closed

geodesics in the hyperbolic metric on X and the mi are nonnegative integers, there corresponds a genus-g
Riemann surface Grμ(X) with a projective connection R(μ) having the monodromy group Γ. Riemann
surfaces Grμ(X) are obtained from X by the so-called grafting procedure that generalizes classic examples
of Maskit–Hejhal and Sullivan–Thurston (see [7]). Moreover, the set of all Fuchsian projective connections
on all genus-g Riemann surfaces is isomorphic to the direct product of the Teichmüller space Tg and the
set of integral-measurable Thurston’s laminations on a genus-g topological surface. It was proved in [16]
that there are infinitely many Fuchsian projective connections on each genus-g>1 Riemann surface X .

Real projective connections on Riemann surfaces of type (g, n) were also studied by Faltings [15]. As
shown for compact Riemann surfaces in [7], to each half-integral-measurable Thurston’s lamination μ, there
corresponds a genus-g Riemann surface Grμ(X) with a real projective connection.

3.2. Surfaces of type (0, 4) and Smirnov’s approach. The classics associated the uniformization
problem of Riemann surfaces with differential equations. As a basic example, they considered the case of
Riemann surfaces of type (0, 4); the corresponding problem was to find an accessory parameter in Eq. (4)
such that its monodromy group was a Fuchsian or Kleinian group (a discrete subgroup of PSL(2, C)).
For the special case of real singular points, Klein [17] proposed an approach that uses Sturm’s oscillation
theorem, and Hilb proved [18] that Eq. (4) has a Fuchsian monodromy group for infinitely many values of
the accessory parameter. Hilbert [19] reduced this problem to the study of a certain integral equation.

The problem of a real monodromy group of Eq. (4) with four real singular points was completely solved
by Smirnov in his thesis [8], published in Petrograd in 1918 (its main content was presented in [9], [10]).
Namely, we consider Eq. (4) with the singular points z1 = 0, z2 = a, z3 = 0, and z4 = ∞, where 0 < a < 1.
Writing the general solution of Eqs. (5) in the form

c1 = 1 +
1 + 2λ

a
, c2 =

1 + 2λ

a(a − 1)
, c3 = −a + 2λ

a − 1
,

where λ is the accessory parameter, and changing the dependent variable y =
√

z(z − a)(z − 1)u, we obtain
the equation

d

dz

(
p(z)

dy

dz

)
+ (z + λ)y = 0, p(z) = z(z − a)(z − 1). (10)

1Lecture at the Leningrad Branch of the Steklov Institute of Mathematics, 1982, unpublished.
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Let (y(1)
i , y

(2)
i ) denote the standard basis in the solution space of (10), which in the neighborhood of a

singular point zi consists of normalized holomorphic solutions

y
(1)
i (z, λ) = 1 +

∞∑
k=1

aik(z − zi)k, i = 1, 2, 3,

y
(1)
4 (z, λ) =

1
z

+
∞∑

k=2

a4k

zk

and

y
(2)
i (z, λ) = y

(1)
i (z, λ) log(z − zi) + ỹi(z, λ), i = 1, 2, 3,

y
(2)
4 (z, λ) = y

(1)
4 (z, λ) log

1
z

+ ỹ4(z, λ),

where ỹi(z, λ) are holomorphic in the neighborhood of zi. For real λ, the power series y
(1,2)
i (z, λ) and

ỹi(z, λ) have real coefficients.
To determine a real λ for which the monodromy group of Eq. (10) is real, the classics used the notion

of a real continuation. Namely (see [8]), if we have

y(z) = c log(a − z) + f(z)

in the neighborhood of a singular point a for real z < a, where log 1 = 0 and the function f(z) is holomorphic
in a neighborhood of a, then the real continuation of y to the domain z > a is defined as

y(z) = c log(z − a) + f(z).

The following statement holds.

Theorem 1 (Klein, Hilbert). Equation (10) has a real monodromy group if λ is real and one of the

following conditions holds:

1. The solution y
(1)
0 (z, λ) is holomorphic in a neighborhood of the singular point z2 = a.

2. The solution y
(1)
2 (z, λ) is holomorphic in a neighborhood of the singular point z3 = 1.

3. Under the real continuation through z = a, the solution y
(1)
0 (z, λ) is holomorphic in a neighborhood

of the singular point z3 = 1.

Moreover, under conditions 1, 2, and 3, the respective ratios η =
√
−1 y

(1)
3 /y

(1)
1 ,η =

√
−1 y

(1)
2 /y

(1)
4 , and

η =
√
−1 y

(1)
1 /y

(1)
2 of linearly independent solutions of Eq. (10) are transformed by real fractional linear

transformations when going around the singular points 0, a, and 1 (see [8] for details).
Conditions 1–3 determine three Sturm–Liouville type spectral problems for Eq. (10). Namely, we must

determine the values of λ such that

1. there is a solution on the interval [0, a] that is regular at 0 and a,

2. there is a solution on the interval [a, 1] that is regular at a and 1, and

3. there is a solution regular at 0 such that it is regular at 1 under the real continuation through a.
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Fig. 1 Fig. 2

Using the classical Sturm method, Smirnov proved the following result [8].

Theorem 2 (Smirnov). Each Sturm–Liouville problem 1–3 has a simple unbounded discrete spectrum.

Namely, the following statements hold:

1. Spectral problem 1 has infinitely many eigenvalues μk, k ∈ N, accumulating at ∞ and satisfying the

inequalities

−a < μ1 < μ2 < . . . .

2. Spectral problem 2 has infinitely many eigenvalues μ−k, k ∈ N, accumulating at −∞ and satisfying

the inequalities

−a > μ−1 > μ−2 > . . . .

3. Spectral problem 3 has infinitely many eigenvalues λk, k ∈ Z, accumulating at ±∞ and satisfying the

inequalities

· · · < μ−2 < λ−1 < μ−1 < λ0 < μ1 < λ1 < μ2 < . . . .

The case λ = λ0 corresponds to the Fuchsian uniformization of the Riemann surface X = C \ {0, a, 1}
and the ratio η =

√
−1 y

(1)
1 /y

(1)
2 bijectively maps the upper half-plane of z to the interior of a circular

rectangle with zero angles and sides orthogonal to R ∪ {∞}. Normalizing η by a real fractional linear
transformation such that the images of all singular points 0, a, 1, and ∞ are finite, we obtain the rectangle
in Fig. 1 (cf. Fig. 9 in [17]). Analytically continuing η(z) to the lower half-plane of z, we obtain a multi-
valued linearly polymorphic function η : X → H with a Fuchsian group Γ such that J = η−1 determines
isomorphism (3).

The corresponding ratio η is also a bijective function on the upper half-plane of z in the cases λ = μ±1.
Hence, if λ = μ1, then we have η(0) = η(a) = ∞ and η(1) = η(∞) = 0. Normalizing η =

√
−1 y

(1)
3 /y

(1)
1

such that the images of the singular points are finite, we obtain a bijective map η of the upper half-plane
of z onto the interior of the degenerate circular rectangle in Fig. 2. The corresponding monodromy groups
are Schottky groups.

For all other values of λk and μk, the corresponding map η is no longer a bijective map on the upper
half-plane of z. Hence, if λ = λ1, then the upper half-plane is mapped onto the interior of the annulus in
Fig. 3 (cf. Fig. 10 in [17]). Here, the function η takes the values twice from the marked darker domain,
which corresponds to the rectangle in Fig. 1. If λ = λk, then this rectangle is wrapped over itself 2|k| times.

Similarly, if λ = μ2, then the upper half-plane of z maps onto the interior of the annulus in Fig. 4. Here,
the function η takes the values twice from the marked darker domain, which corresponds to the degenerate
rectangle in Fig. 2. If λ = μk, then this rectangle is wrapped over itself |k| times.
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Fig. 3 Fig. 4

It is instructive to compare these results of Smirnov with Goldman’s classification of Fuchsian and
real projective connections on Riemann surfaces generalized to surfaces of type (g, n). The Fuchsian series
λ = λk corresponds to integral laminations in [7], while the series λ = μk corresponds to half-integral
laminations.

4. Black-hole-type solutions of the Liouville equation

The Fuchsian uniformization of a Riemann surface X determines a solution of the Liouville equation: a
smooth function ϕ on X satisfying Eq. (8) and having asymptotic behavior (9) (see Sec. 2.3). The function
ϕ is obtained from the ratio J−1 of linearly independent solutions of Eq. (4) by formula (7). This formula
is well defined because of the condition that the monodromy group Γ of Eq. (4) is real; the smoothness of ϕ

is ensured by the condition that Γ uniformizes the Riemann suface X and its image under the multivalued
map J−1 is the upper half-plane H.

Similarly, with each Eq. (4) with a real monodromy group, we associate a solution of the Liouville
equation. We set

eϕ(z) =
|η′(z)|2

(Im η(z))2
, (11)

where η is the ratio of linearly independent solutions of Eq. (4), which transforms by fractional linear
transformations when going around the singular points (η = J−1 in the Fuchsian case). The function ϕ

is well defined because of the realness of the monodromy group and has asymptotic behavior (9). The
latter follows from the theory of Fuchsian equations with equal exponents. But solution (11) is no longer
smooth: the image of X under the multivalued map η has a nontrivial intersection with the real axis, and
the function ϕ is singular on η−1(R).

Namely, it follows from results in [15] (see Sec. 6 there) that the inverse image η−1(R) is a disjoint
union of finitely many simple closed analytic curves on X . Let C be one such curve. There is a branch of
the multivalued function η that maps C bijectively onto the circle, and hence C = {z = η−1(t), t ∈ [α, β]}.
It is convenient to introduce the Schwarz function S of the analytic contour C by the formula

S = η̄−1 ◦ η,

where η̄−1(z) = η−1(z̄). The Schwarz function is defined in some neighborhood of the contour C and
determines it by the equation z̄ = S(z) (see [20]). It is easy to show that in terms of the Schwarz function,
the solution ϕ has the same singularities on C as the function

− 4S′(z)
(z − S(z))2

. (12)
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Namely, as z → z0 ∈ C along any direction not tangent to C,

eϕ(z) = − 4S′(z0)
(z̄ − z̄0 − S′(z0)(z − z0))2

(1 + O(|z − z0|)). (13)

We note that because of the condition S(S(z)) = z, the function in the right-hand side of (13) is real and
positive. The singularities of type (12), (13) on a contour C are similar to the singularity on R of the
Poincaré metric on C \ R, which corresponds to the Schwarz function S(z) = z.

We can therefore state the following problem: on the Riemann surface X = C\{z1, . . . , zn−3, 0, 1}, find
simple analytic contours C1, . . . , Ck and a function ϕ such that on X \

⋃k
j=1 Cj , the function ϕ satisfies Li-

ouville equation (8), has asymptotic behavior (9) at the punctures zi, and has singularities of type (12), (13)
on the contours Cj . On each connected component of X , eϕ(z) |dz|2 determines a complete metric of con-
stant negative curvature −1. The boundary Cj can be interpreted as the horizon of a black hole, and we
therefore call corresponding solutions of the Liouville equation solutions of the black-hole type. It follows
from Goldman’s classification of real projective connections [7] that there exists a family of such solutions
parameterized by the “integral lattice” of integral and measurable Thurston’s laminations, implicitly defined
by the grafting procedure.

From the results in Smirnov’s thesis, we obtain a rather explicit description of black-hole-type solutions
in the case of four real singular points. Namely, we obtain the following result from Theorem 2.

Theorem 3. All black-hole-type solutions of the Liouville equation with four real punctures 0, a, 1,

and ∞ are described as follows:

1. Solutions of the Fuchsian type, which correspond to the values of the accessory parameter λ = λk

with integer k and have 2|k| contours Cj : these contours go over the points 0 and a if k > 0 and over

the points a and 1 if k < 0.

2. Solutions of the Schottky type, which correspond to the values of the accessory parameter λ = μk

with integer k 	= 0 and have 2|k| − 1 contours Cj : these contours go over the points 0 and a if k > 0
and over the points a and 1 if k < 0.

In the general case, it is convenient to substitute χ(z) = e−ϕ(z)/2, which transforms Liouville equa-
tion (8) into

− χ χzz̄ + |χz|2 =
1
4

(14)

and asymptotic behavior (9) into

χ(z) =

⎧⎨
⎩
|z − zi|| log |z − zi||(1 + o(1)), z → zi, i 	= n,

|z| log |z|(1 + o(1)), z → ∞.
(15)

Singularities (12) transform into the vanishing condition on the contour C,

χ(z) ∼ z − S(z)

2
√
−S′(z)

, (16)

and the real-valued function χ(z) hence changes sign under the Schwarz reflection z∗ = S(z) through C.
Elliptic partial differential equation (14) with asymptotic behavior (15) and vanishing conditions (16) on
the contours Cj is a boundary value problem with a free boundary. It would be interesting to use the
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method of continuation with respect to a parameter together with the a priori estimates to solve it, as was
done in [3] for Liouville equation (8) with asymptotic behavior (9).

In conclusion, we note that the function χ plays an important role in the theory of the Liouville
equation. Namely, it is a bilinear form in solutions of Eq. (4) and their complex conjugates and satisfies
Eq. (4)

χzz +
1
2
Tϕχ = 0 (17)

and the complex conjugate equation. In the quantum Liouville theory, the field χ = e−ϕ(z)/2 describes a
vector degenerate at the level 2 in a Verma module for the Virasoro algebra. For black-hole-type solutions,
the function χ still satisfies Eq. (17). It would be interesting to elucidate what role it plays in the quantum
Liouville theory.
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