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HOLOMORPHIC FACTORIZATION OF
DETERMINANTS OF LAPLACIANS
ON RIEMANN SURFACES AND
A HIGHER GENUS GENERALIZATION
OF KRONECKER’S FIRST LIMIT FORMULA

A. McCINTYRE AND L.A. TAKHTAJAN

Abstract. For a family of compact Riemann surfaces X; of genus g > 1,
parameterized by the Schottky space &,, we define a natural basis of
H°(X;,w%,) which varies holomorphically with ¢ and generalizes the basis
of normalized abelian differentials of the first kind for n = 1. We intro-
duce a holomorphic function F(n) on &, which generalizes the classical
product [[°_ (1 —¢™)? for n =1 and g = 1. We prove the holomorphic
factorization formula

det’'A,, { 6n% —6n+1
=cgnexpy ——————8

= En F(n)?
det N 127 } @

where det'A,, is the zeta-function regularized determinant of the Laplace
operator A, in the hyperbolic metric acting on n-differentials, NV, is the
Gram matrix of the natural basis with respect to the inner product given by
the hyperbolic metric, S is the classical Liouville action — a K&hler potential
of the Weil-Petersson metric on &, —and ¢4 5, is a constant depending only
on g and n. The factorization formula reduces to Kronecker’s first limit
formula when n = 1 and g = 1, and to Zograf’s factorization formula for
n=1and g > 1.

1 Introduction

Let s and 7 be complex numbers with Res > 1, Im7 > 0, and define
I S
B = Y Lm0
(mimyez? |m + nT]
(m’n)#(oao)
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This series was introduced by Kronecker in 1863; see [W]. It admits mero-
morphic continuation to the entire s-plane with a single simple pole at
s = 1, and satisfies the functional equation

7T (s)E(r,s) = *7'T(1 — s)E(7,1 — ), (1.1)

where I'(s) is Euler’s gamma-function. Kronecker’s first limit formula as-
serts that

4
B(r, 5) :S_Ll—mog{%}+0(s—1) (1.2)

as s — 1, where n(7) is the Dedekind eta-function,
R .
77(7—) =q24 H (1 _ qm)’ qg= e2miT
m=1

See [W] and [L] for the proof, and for applications to number theory. Equa-
tion (1.2) admits an interpretation in terms of the spectral geometry of the
elliptic curve E; ~ L\C, L = Z + Z7, which goes back to [RaS2]. Namely,
assign to E; the flat metric - |dz|?, in which the area of E; is 1. Let

82
020%
be the Laplace operator in this metric on E;, acting on functions. Its
eigenvalues are

Ao(r) = —Im7T

n? |¢]®
Im7
Its determinant is defined by zeta function regularization: the function
C(1,8) = 22,207 s defined initially for Res > 1, admits meromorphic
continuation to the entire s-plane, and one defines

det’Ay(7) = exp { —% ‘5:0 ¢(r, s)} ,
where the prime indicates omission of zero eigenvalues. Since ((1,s) =
725 E(1, s), it follows from (1.1) and (1.2) that

det'Ag(7) = 4Im 7 |n(7)|*. (1.3)

This formula has been used in string theory for the one-loop computation in
the perturbative approach of Polyakov (see, e.g. [D] and references therein).

We restate (1.3) in a form convenient for generalization to higher genus.
Consider the Schottky uniformization of the elliptic curve: E; ~ I'\C*,
where I' is the cyclic group generated by the dilation w — qw, with
fundamental region D = {w € C* : |q| < |w| < 1}. The push-forward of
the Euclidean metric (Im7)~!|dz|? by the map w = €?™* takes the form

Ao = , LeL.
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p(w)|dw|?, where p(w) = (472 Im 7|w|?)~!. Setting

1 dlogp|? o
S(T)—2// T ‘ dw Adw =47“Im T,
D
we can rewrite (1.3) as
detlAO(T) . 1 2
D) —sexp {350 b PP, (1.4
where .
F(g)= [[ (1 —¢™> (1.5)
m=1

Note that det’Ag(7) depends only on the isomorphism class of E,, which
in turn depends only on ¢, and that Im 7 also depends only on q. Hence
(1.4) is an equality of functions on {g € C: 0 < |q| < 1}.

In this paper we extend (1.4) and (1.5) from elliptic curves to compact
Riemann surfaces of genus g > 1, and from functions to n-differentials (sec-
tions of the n-th power of the canonical bundle). To formulate the main
result, which may be interpreted as a higher genus generalization of Kro-
necker’s first limit formula, we first recall some basic facts about uniformiza-
tion of Riemann surfaces and about Teichmiiller and Schottky spaces (see
section 2 for more detail). Each compact Riemann surface X of genus g > 1
carries a unique hyperbolic metric (a Hermitian metric of constant negative
curvature —1), with respect to which one can define the Laplace operator
Ayp(X) acting on functions on X, its zeta function (analogous to ((,s)
defined above), and its regularized determinant det’Ag(X). The Riemann
moduli space is the set 9, of isomorphism classes of compact Riemann sur-
faces of genus g > 1; it carries a natural structure of a complex orbifold of
dimension 3¢g — 3. This generalizes the space PSL(2,Z)\ {r € C: Im7 > 0}
of isomorphism classes of elliptic curves. The determinant det’A is a real-
analytic function on 90,.

Now suppose that the Riemann surface X is marked, i.e. has a distin-
guished canonical system of generators ai,...,aq,B1,..., B4 of the funda-
mental group 71 (X,zg), zg € X. With respect to this marking we may
define a normalized basis ¢1,..., ¢, of the space of holomorphic 1-forms
— abelian differentials of the first kind — by the requirement fak 0; = Ojk;
then the period matrix 7 is defined by 7, = fﬂk @;. It satisfies Im 1, =

(pj i) =% [ x ©j APy, by the Riemann bilinear relations. The Teichmiiller
space T, is the set of isomorphism classes of marked Riemann surfaces of
genus g; it is the universal cover of 9y, and it carries a natural structure of
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a complex manifold of dimension 3¢ — 3 with respect to which the entries
of T are holomorphic functions. For g > 1, the Teichmuller space gener-
alizes the upper half-plane {7 € C : Im7 > 0}, and det Im 7 will play the
role of the factor Im 7 appearing in (1.4).

In fact, detIm 7 is a well-defined function on the Schottky space &g,
which is an intermediate cover of M, (T, — &4 — M) defined as fol-
lows. A marked Schottky group is a discrete subgroup I" of the group of
linear fractional transformations PSL(2,C), with distinguished free gener-
ators Li,..., L, satisfying the following condition: there exist 2g smooth
Jordan curves C,, r = *1,...,+g, which form the oriented boundary of
a domain D ¢ C = CU {o0}, such that L,C, = -C_,, r =1,...,9. If
) is the union of images of D under I', then I'\Q is a compact Riemann
surface of genus g. According to the classical retrosection theorem, every
compact Riemann surface may be realized in this manner; if it is marked,
the condition Cy homotopic to oy for each k& > 0 fixes the marked group up
to overall conjugation in PSL(2,C). The overall conjugation may be fixed
by a normalization condition — see section 2.1. The Schottky space &, is
the space of marked normalized Schottky groups with g generators. It is
a complex manifold of dimension 3g — 3, covering M, and with universal
cover T4, and detIm 7 is a well-defined function on it [Z1]. The Schottky
space G, generalizes the space {g € C:0 < |g| < 1} discussed above.

Like the Teichmiiller space €4, the Schottky space &, carries a natural
Kahler metric, the Weil-Petersson metric. Its global Kahler potential can
be explicitly constructed as follows. Let p(z)|dz|? be the hyperbolic metric
on © — the pull-back of the hyperbolic metric on X ~ I'\Q). Following
[ZT2], set

7 alogp2
525//(‘ 5% ‘ -I-p)dz/\dz
D

] " T

7 1 2 L Ly
+—§ log p — = log | L} )(—kdz—_—kdz>

2k22f0k< & = g los | L L

k

g9
+41 Y log|e(Ly)[*, (1.6)
k=2

where for v = (2%) € I, we denote ¢(y) = ¢. The function S : &, & R
is called the classical Liouville action (see [ZT2] and [TT] for details and
motivation). According to [ZT2], the function —S is a Kéahler potential of
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the Weil-Petersson metric on G, i.e.
008 = 2iwyp, (1.7)

where 0 and O are, respectively, the (1,0) and (0,1) components of the
deRham differential d on &4, and wy, p is the symplectic form of the Weil-
Petersson metric. For g > 1, the function S on &, will play the role of the
function S(7) = —2wlog|q| on {g € C:0 < |¢| < 1} appearing in (1.4).

Now we can formulate the following remarkable generalization of (1.4)
and (1.5) to higher genus Riemann surfaces.

Theorem 1 (P. Zograf). Let g > 1, and let det'Ay, Im7 and S be the
functions on the Schottky space &, defined above. Then there exists a
holomorphic function F : 6, — C such that
'A

7(1(1?11[1(; =cgexp{—%5} |F?, (1.8)
where cy is a constant depending only on g. For points in &, corresponding
to Schottky groups T' with exponent of convergence § < 1, the function F
is given by the following absolutely convergent product:

F=]]]] @-4t), (1.9)
{r} m=0

where g, is the multiplier of v € I', and {y} runs over all distinct primitive
conjugacy classes in I', excluding the identity.

See section 2.1 for the definition of §, ¢,, and primitive 7. The fac-
torization formula (1.8) was proved in [Z1], and the representation (1.9)
was discovered later [Z2]. We will refer to (1.8) together with (1.9) as the
Zograf factorization formula, or simply Zograf’s formula. Note that when
g = 1, the theorem still holds provided that Ay and S are defined as in the
discussion of elliptic curves above. In this case, (1.8) becomes (1.4), and
the function F' reduces to the classical product (1.5).

Associated to the Riemann surface X is the Selberg zeta function

o0
z(s)=1]II @ -a¢™™), (1.10)
{r} m=0
where {7} runs over all distinct nontrivial primitive conjugacy classes in
a Fuchsian group uniformizing X. Defined initially for Res > 1, the Sel-
berg zeta function admits analytic continuation to the entire s-plane, and,
according to [DP] and [S],

det’'Ag = e©(972) 7/(1)
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for some constant ¢y. Hence Zograf’s formula gives a factorization of Z'(1),
considered as a function on &,.

To motivate the extension from functions to n-differentials on X, we
first describe a geometric interpretation of Zograf’s formula, in the context
of the Quillen metric and the local index theorem for families. We write
wx for the holomorphic cotangent bundle of X, and call a smooth section
of w% an n-differential. Let .#Z, = 9, 1 be the universal curve — the moduli
space of compact Riemann surfaces of genus g > 1 with one marked point
—and let p : A#; — M, be the corresponding forgetful map. Denote by
Ty .4, the vertical holomorphic tangent bundle of the fibration p, and for
each positive integer n, denote by A, the direct image bundle p.(Ty .4, ")
over M,. Then the fibre of A, over a point ¢t € 9, is isomorphic to the
vector space H%(Xy,w? ) of holomorphic n-differentials on the Riemann
surface Xy = p 1(¢). Let A, = detA,, be the corresponding determinant
line bundle over 9M,. The hyperbolic metric on the fibres of p defines a
natural Hermitian metric on A, and on hence on \,. The Quillen metric
[Q] on )\, is defined by

@n T det’Ap,  det’Ay’
where || -||,, is the Hermitian metric mentioned above, ¢ = p1 A+ A ¢q,

is a local holomorphic section of A\, at ¢t € My, [Np|jx = (pj, k) is the
Gram matrix of the basis @1, ..., @4, of HO(Xy, w',), and A, is the Laplace
operator in the hyperbolic metric on X; acting on n-differentials. The
Quillen metric has the remarkable property that the Chern form of the
Hermitian line bundle (A, ||-|lg,) over My is proportional to the Weil-
Petersson symplectic form wy, p:
~ det N, 6n%2—6n+1
00log 3R, = Bmi e

This is the local index theorem for families (see [BK], [BoJ], [ZT1]).

Theorem 1 together with (1.7) constitute a refinement of (1.11) in the
case n = 1. Let ¢ = @1 A--- A @, be the local holomorphic section of A
determined by the normalized basis 1, ..., ¢4 of abelian differentials of the
first kind on X;. Then Theorem 1 provides (by means of the function F') an
isometry between the line bundle A; with the Quillen metric, and the line
bundle over 9, canonically determined by carrying the Hermitian metric
exp{13-S} (see Section 3 in [Z1] for details). (We have used the fact
that det’A,, = det'A;_,, see e.g. [ZT1].) Expressed differently, Zograf’s
factorization formula is a “00 antiderivative” of (1.11).

(1.11)
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Based on (1.11), it is natural to expect an analogue of Theorem 1 to
hold for all positive integer n. However, there are two principal differences
between the cases n =1 and n > 1.

First, for n = 1 there is a canonical choice of a lattice of maximal rank
in H°(X,wy) provided by the dual to H;(X,Z), which gives rise to the
classical normalized basis of abelian differentials described above. Topology
does not fix such a lattice in H°(X,w?%) when n > 1. Nevertheless, using
Schottky uniformization and corresponding Eichler cohomology groups, we
construct a natural basis of H%(Xy,w% ) which is canonical up to a choice
of basis in a space of polynomials, varies holomorphically with ¢ € &4, and
reduces to the classical normalized basis of abelian differentials of the first
kind when n = 1.

Second, for n = 1 the holomorphic quadratic differential on X = X,
which corresponds to the (1,0) form dlogdet'Ay at ¢ € &, is given by a
local expression in terms of the Green’s function of 0;. However, for n > 1
the corresponding local expression is not holomorphic, and a holomorphic
projection must be applied to obtain Jlogdet’'A,,, which makes the entire
expression non-local. Still, we prove that up to a known “holomorphic
anomaly”, (which gives rise to the factor involving the classical Liouville
action S), dlogdet’'A,, is given by applying the projection operator to

To(2) = lim (ni2 — (1 =) %) (Ka(z2) - 111, zeQ,

=1
2'—z

where K, is the Green’s function for the 0,-operator. The advantage of
this representation is that, although 7, fails to be holomorphic, 97, /9Z can
be characterized explicitly, and the projection can be avoided by means
of a contour integration. In this we make rigorous the heuristic outline
given in [M], where T), arises as the “stress-energy tensor of Faddeev—Popov
ghosts” (or “b and c fields of spins n and 1 —n”) on the Riemann surface
X ~T\Q.
Thus we arrive at the main result of the paper.

Theorem 2. Let g and n be integers, g > 1, n > 1, and let det’A,, and S
be the functions on Schottky space &, defined above. Let p : .3 — &, be
the universal Schottky curve, let Ty .#; be the vertical tangent bundle, and
let @1,...,pa, be the family of global holomorphic sections of p,(Tyv ;")
(the“natural basis” for n-differentials) defined in section 4 below, forming
a basis for each fibre. For t € G, let [Ny,);x(t) = (p;(t), vx(t)), where
the inner product is induced from the hyperbolic metric on the compact
Riemann surface X; ~ T';}\Q;. Then there exists a holomorphic function
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F(n): 64 — C such that
det’A,, 6n2 —6n + 1 9
Qo N, — Con exp {—TS} |F(n)|”, (1.12)

where ¢y, is a constant depending only on g and n. The function F(n) is
given by the following absolutely convergent product

Fin)=Q1—qz,)*...(1—q}7")’ A —q}; HH @y, (1.13)
{r} m=0

where ¢, is the multiplier of v € T'y, {7} runs over all distinct primitive

conjugacy classes in the marked normalized Schottky group 'y, excluding

the identity, and L1, ..., L, are the free generators fixing the marking of I';.

See section 2.1 for the definitions of ¢, and primitive v, and for the
normalization of the marked Schottky group. For n > 1 and g > 1, we have
det' A, = Cy,Z(n), where Z(s) is the Selberg zeta function (1.10) and C, ,,
is a constant depending only on g and n [DP], [S], so that Theorem 2 gives
a factorization of Z(n) for integers n > 1, considered as functions on &,.
As in the case of Zograf’s formula, the function F(n) defines an isometry
between the line bundle A, over M, equipped with the Quillen metric, and
the holomorphic line bundle over M, determined by the Hermitian metric
exp{%%k? }. Theorem 2, together with (1.7), immediately implies the
local families index theorem (1.11), of which it may be considered the “00
antiderivative”.

Heuristically, the function F'(n) on &4 can be interpreted as a holo-
morphic determinant det’d,(t) of the family of d,-operators on Riemann
surfaces Xy, t € &, in accordance with arguments in [K]. We note in pass-
ing that the functions F'(1) and F(2) enter the “Polyakov measure for the
D = 26 theory of closed bosonic strings” [BK], [K], [D].

The content of the paper is the following. In section 2 we collect the
facts we will need on Kleinian groups, Green’s functions, Teichmiiller and
Schottky spaces, and the classical Liouville action. In section 3 we express
the Green’s function of 0, in terms of Poincaré series, thus completing the
outline given in [M]. Section 4 describes our choice of a natural, holo-
morphically varying basis of H O(Xt,w}](t). Finally in section 5 we prove
Theorem 2. For n = 1, our proof is essentially the argument of [Z2], which
establishes Theorem 1 for those Schottky groups with exponent of con-
vergence 0 < 1. (For the first part of Theorem 1 when § > 1, we refer
to [Z1].)

The results of this paper may be extended to the case where the n-
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differentials on X are twisted by a character of the Schottky group, or
equivalently, a unitary character of 71 (X), generalizing Kronecker’s second
limit formula. In this case, comparison with known bosonization results
yields a product formula for theta functions in genus g > 1, generalizing
the Jacobi triple product formula when g = 1. We intend to return to this
in a sequel to this paper.

Acknowledgments. We are grateful to Peter Zograf for sharing his in-
sights with us. We are also thankful to Lee-Peng Teo for useful discussions
at the early stages of this work. A.M. would like to thank the organizers of
the Simons Workshop in Mathematics and Physics in Stony Brook during
Summers 2003 and 2004, when this work was completed, for support. The
work of L.T. was partially supported by the NSF grant DMS-0204628.

2 Necessary Basic Facts

Here we fix notation, and recall the basic definitions and known results we
will need.

2.1 Kleinian groups [Be4]. By definition, a Kleinian group is a dis-
crete subgroup I' of the group of Mébius transformations PSL(2, C) which
acts properly discontinuously on some non-empty open subset of the Rie-
mann sphere C = C U {oo}. The largest such subset Q C C is called the
ordinary set of I' and its complement is called the limit set of T'.

For integers n and m, an automorphic form of type (n,m) for T is a
function f: Q — C such that

f(2) = f(y2)¥'(2)"y'(z) forall z€Q, yeTl.

We write the space of smooth forms of type (n,m) as A™™ (2,T") (abbre-
viating A™% = A"), and the space of holomorphic forms of type (n,0) as
H™ (Q,T). A function group is a Kleinian group which leaves some con-
nected component Qy C Q invariant, and a uniformization of a Riemann
surface X is a function group I" with invariant component g C €2 such that
X ~T'\Qp. Since Q is invariant, we can define the restrictions A™™ (o, T")
and H"™ (Q,T).

The exponent of convergence of a Kleinian group I' is the infimum of
6 € R such that the series ), r |7 (2)|° converges for all z € Q. For all
Kleinian groups, § < 2.

A Kleinian group I is called a Fuchsian group if it leaves some Euclidean
disc invariant; we will assume the disc has been conjugated to the upper
half-plane H= {z =z + iy € C: y > 0}, so that I' C PSL(2,R).
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A Kleinian group I is called a Schottky group if it is generated by
Ly,..., L, satisfying the following condition: there exist 2g smooth Jor-
dan curves Cp, r = %1,...,+g, which form the oriented boundary of a
domain D C C, such that L,C, = —C_,, r = 1,..., g (the negative sign
indicating opposite orientation). The domain D is a fundamental region
for . A Schottky group is a function group, and a free group on genera-
tors Ly,...,Ly. Each nontrivial element y of I is lozodromic: there exists
a unique number g, € C (the multiplier) such that 0 < |g,| < 1 and 7 is
conjugate in PSL(2,C) to z — ¢,z, that is,

VZ = Gy Z— Qy

vz — by Ty by
for some a., b, € C (respectively, the attracting and repelling fized points).
A marked Schottky group is a Schottky group together with an ordered set
of free generators L1,...,Lg; it is normalized if ar, = 0, by, = oo, and
ar, = 1.

It will be convenient to define L, := L', so that L,C, = —C_, is true
for all 7 € {£1,...,+g}. We abbreviate a, := ar,, b, := b, and ¢, := qr, -
Denote by D, the connected component of C - C, containing b,, for r =
+1,...,%g, so that —C, is the oriented boundary of D, and L(D) C D_,
for s > 0. Since I is free, every nontrivial v € T' has a unique expression
as a reduced word, v = Ly --- Ly™, for some r; € {£1,...,£g}, s; > 0,
j=1,...,m, where |rj| # |rj;1| for j=1,...,m — 1.

We collect some basic facts we will need about the action of a Schottky
group on C below.

LEMMA 2.1. Let I’ be a marked Schottky group. With notation as above,
the following statements hold:
(i) For allr # j and s > 0, L} (D) C D_,.
(i) Let v = Lj}---Lj™ € I' be a reduced word. Then a, € D_,, and
by € Dy,,.
(iii) Let v = Lj! --- L™ € T be a reduced word. Then

) € {Drm ify # L for all s > 0,

D_,=D_, ify=L; for somes>0.
Proof. Part (i) trivially follows from definitions. For part (ii), we observe
that v(D) C D_,,, which immediately follows from part (i) using induction
on m,
v(D) = L3} (L33 -+ - L3 (D)) € L (D-y,) € Dy, -

This shows that a, € D_;,. For b,, just note that b, = a,—1. Part (iii) is
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also proved by induction on m. For m = 1, if r; # r, then y~!(a,) €
v HD_,) = L? (D_;) C D,,, while if r; = r, then a, is fixed by v and
v~ (a;) = ar € D_,. Now assume for m — 1 and suppose v # L for all
s > 0. Then

,y—l(ar) = [Sm ((Lii "'Lsm’l)_l(ar)) e Ls—Wm(Dirm_l) C Drm ) O

—Tm Tm—1
For future use, we mention that an element v of a group I' is called
primitive if v # ~§ for all vo € I' and integers s > 1.

2.2 The operators 8,, and A,,. We follow [ZT1]. Let X be a compact
Riemann surface of genus g > 1. X carries a unique hyperbolic metric (a
Hermitian metric of constant curvature —1), written locally as p(z)|dz|?.
Let wx = T* X be the holomorphic cotangent bundle of X, i.e. the canonical
class, and for any integers n and m, let £4(X,w% ® W'¢) be the vector
space of smooth differential forms of type (p,q) on X with values in the line
bundle w% @wWS. An (n,m)-differential (or n-differential when m = 0) is an
element of A»™(X) = £%0(X, wh ®@wR) (or A*(X) when m = 0), written
locally as ¢(z)(dz)™(dz)™. Note that we may identify EP9(X, w% Q@ W}) ~
AMTPmHa(X). When X =~ '\ for some function group I’ and invariant
component g, we identify A™™(X) ~ A™™ (Qy,T). In what follows we
will make implicit identifications of this kind without further comment.
The hyperbolic metric on X induces a Hermitian metric

o) = [[ ot e, (2.1)

on A"™(X), where D is a fundamental region for ' in Qg, and d%z =
5dz Adz is the Euclidean area form on €. The metric and complex struc-
ture determine a connection

D =0,®8,: E9(X,wh) — EVO(X,wh) @ E4 (X, wh)

on the line bundle w’%, given locally by

5n:§ and an:p"%p

z
The metric determines d-Laplacians A,, = A0 — 00, and Apg = AY =
0n0;;, acting on vector spaces A"(X) and A™!(X) respectively, where 9 =
—p~19, is the adjoint of 9, with respect to (2.1).

Let §™™(X) be the L?-closure of A™™(X) with respect to the in-
ner product (2.1). The operators A, and A, ; are self-adjoint and non-
negative, and have pure discrete spectrum in the Hilbert spaces $™(X)
and $™'(X). The corresponding eigenvalues 0 < \g < A\ < --- of A,
(the non-zero eigenvalues of A, and A, ; coincide) have finite multiplicity

-n
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and accumulate only at infinity. The determinant of A,, is defined by zeta
regularization: the elliptic operator zeta-function

nls) = D A,

A >0

defined initially for Res > 1, has a meromorphic continuation to the entire
s-plane [MiP], and by definition [RaS1,2],

det A, = e~ (),
The non-zero spectrum of A;_,, is identical to that of A, ; (see, e.g. [ZT1]),
so that det A, = det Aj_,. Hence without loss of generality we will usually
assume n > 1.

Denote by I, and P,, respectively, the identity operator in $"(X ),_ and
the orthogonal projection operator from $"(X) onto H"(X) = kerd, =
ker A,,. The Green’s operators for 3, and A, for n > 1 are the unique
operators K, : §1(X) — H7(X) and Gy, : H*(X) — H"(X) respectively,
such that
GFl. K,0, = G,A, =1, — P,.

GF2. Knp|gerg: =0 and Gple,a, = 0.

They are related by K,, = G,0;. Now, let X ~ T'\Q for some function
group I and invariant component y. The Green’s functions for d, and A,
are the unique automorphic forms in two variables K, (z,2') and G(z, 2’)
respectively, smooth for 2’ # vz, z,2' € Qy and v € T, satisfying

(Kot (2) = / / Koz, 2)6(2) &7 forall € A™ (Qp,T)

and  (Goth)(2) = / / Gz, V() @24 forall o € A" (Qp,T) .
D

The form K,(z,2') is of type (n,0) in z and type (1 — n,0) in 2’, and the
form Gy (z,2') is of type (n,0) in 2 and type (1 —n,1) in 2’. Both forms
are holomorphic in z. The relation K,, = G,,0;, implies
Kn(z,2') = — (01_,)" Gn(z,7) = p(z')_”% (p(z")"'Gn(z,2")) .

REMARK 1. Our convention differs from [ZT1], where the Green’s function
Gn(z,2') is defined by (Gnv)(2) = (Gn(2,),%). The two are related by
Gnl(z,2") = p(Z)' " "Gp(z, 2').

The Green’s function @Q,(z,2") for A, on the upper half plane H is
uniquely determined by the following properties:

1. Qn(z,2") is smooth for z # 2/;
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2. Qu(v2,72)Y (2)™Y (2)' 7"y (2) = Qu(z,2') for all ¥ € PSL(2,R) and
z # 2';
3. Qn(z,7") = —1(Imz")2log |z — 7P +0(1) as z — 2/;
4. AnQn(2,2") =0 for z # 2/;
and an additional growth condition as z — OH (see [H2]). The terminology
is justified since if X ~ I'\H for a Fuchsian group I, then
Gn(2:2) = Qulz,77 )Y (') " (7).
vyer
Correspondingly, the Green’s function R, (z,2') for 9, on H is R,(z,2') =
—(87_,))*Qn(z,2"), and from the defining properties of Q, (2, ') we derive

R(z,#) = ~ - — ('g_zl>2n_1. (2.2)

T z—2Z \zZ—2z

2.3 Teichmiiller and Schottky spaces ([Be3,4], [H1]. A marked Rie-
mann surface is a compact Riemann surface X of genus g > 1, equipped
with (up to an inner automorphism of (X, z()) a canonical system of
generators o, ..., g, B1,..., 8y of T (X, xp), i.e. a system with the single
relation aifiay fyt - agﬁgag_lﬁg_ ! = 1. Marked Riemann surfaces will
be denoted by [X]| = (X;a1,...,04,061,-..,08¢). Let T4 be the Teichmiiller
space of marked Riemann surfaces of genus g > 1.

For a marked Riemann surface [X], let N be the smallest normal sub-
group in 71 (X, zp) containing v, ..., ay. By the classical retrosection the-
orem, there exists a Schottky group I ~ 71 (X, z9) /N with ordinary set
such that X ~ I'\Q2. The group T is unique if we require it to be normal-
ized; we will always assume that I' is normalized and marked by generators
Ly,..., Ly corresponding to the cosets 51NV, ..., B N. The correspondence

[(X]+ (a3,...,ag,b2,...,bg,q1,...,4)
defines a complex-analytic map ¥ : T, — C373. Its image &, = ¥(%,)
is a domain in C3973, called the Schottky space, and ¥ is a covering map
onto &,4. The correspondence ¢ — I';\Q; defines a complex-analytic cover-
ing map &, — M.

Equivalently, the Schottky space &, may be defined as the set of marked,
normalized Schottky groups of rank g > 1, with a complex structure de-
scribed as follows. For every t € &, let X; ~ I';\Q; be the corresponding
Riemann surface, and let dy(t) and A(i’}(t) be as defined in section 2.2,
for the surface X;. Then the holomorphic tangent space T;S, is naturally
isomorphic to H~"1(Q,Ty) = ker A%} (¢) ¢ A"11(Q;,T;) — the space of
harmonic Beltrami differentials — while the holomorphic cotangent space
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T} &, is naturally isomorphic to H2(Q,T;) = ker d5(t) C A?(Q,T;) — the
space of holomorphic quadratic differentials. For p € H~11(Qy,Ty) and
q € H?(4,T}), the pairing is given by

(M,Q)Z//qu2Z,

where D, is a fundamental region for I';. The inner product (2.1) on
harmonic (—1,1)-differentials defines a Hermitian metric on the Schot-
tky space &,. This metric is Kahler, and coincides with the projection
onto &, of the Weil-Petersson metric on ¥, (see [A]). We will call it the
Weil-Petersson metric on &, and will denote its symplectic form by wy ».

In this definition of &4, one defines complex coordinates for a neighbour-
hood of t € &, called Bers coordinates, as follows. Given u € HUH(Qy, Ty)
satisfying ||p||,, = sup,cq, [#(2)] < 1, there exists a unique homeomor-
phism f#: C—>C fixing 0, 1, 0o and satisfying the Beltrami equation

ofr  of*
0z Moz
Set TH = froT o (f*)~1, Q# = fH(), and X* = T*\QH. Choosing a basis
Py --- 5 p3g—3 for H_l’l(Qt,Pt) gives p = e1p1 + -+ + €3g—3139—3, Where
e;i € C. The correspondence ¢ = (e1,...,€35—3) — Y([X*]) introduces
complex coordinates in a neighborhood of ¢ € &,; the corresponding com-
plex structure agrees with that given by the first definition, considering &,
as a domain in C3973. In terms of Bers coordinates,
Wwp (%, %) = %(,uk,ul) att € 8,.

The Schottky universal curve is a fibration p : %, — &, with fibre
7 Ht) = Xy ~ T\ for t € S,. Let Ty.%, — .#; be the holomorphic
vertical tangent bundle — the holomorphic line bundle over .%; consisting
of vectors in the holomorphic tangent space T'.%; that are tangent to the
fibres X; = m1(¢). A family ¢¢ of (n, m)-differentials on Riemann surfaces
X*# is defined as a smooth section of the line bundle

(TvSy) " (TvSy) ™ = H.

The hyperbolic metric p gives rise to a family of (1,1)-differentials and
defines a natural Hermitian metric on the line bundle Ty, — .3, whose
restriction to each fibre coincides with the hyperbolic metric. It also defines
a Hermitian metric in the bundle (Ty,.%;) ™" — ., and in the direct image
bundle A,, = p.((Tyv-#y)™") = &4. The fibre of A, over ¢t € &, is the
vector space H™(,T;), and the corresponding Hermitian metric is given
by (2.1).
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The pullback of an (n, m)-differential ¢* over X is an (n, m)-differential
over X = X0, defined by

SP°) = @ o fE(L (T,
where f* . C — C is the corresponding solution of Beltrami equation.
The Lie derivatives of the family ¢° in the directions y and @, where y €
HB(Q,Ty) ~ TS, and t = U([X]), are defined by

0
_ EW(, E n,m
5“90_35‘520 Hef) € AV(X)

and dup= | () € AV,
0Z le=0

Every smooth function ¢ on &, is naturally identified with a family of

(0,0)-differentials, constant along the fibres of p, which we will continue

to denote by . In this case the Lie derivative coincides with the usual

directional derivative,

Sup = O0p(p) and dup = dp(p),
where 0 and O are the (1,0) and (0,1) components, respectively, of the
deRham differential d on the complex manifold &,. Similarly, for a family of
linear operators A° : A¥H(XeH) — A™"(XH) we define the Lie derivatives
by
0

= (rarm™)
0

= _ 9 eu Ae( pep)—1
and A= | (FAS(F7Y),

SuA =

so that
5u(A(9)) = 6,A(p) + A(dup) and  6,(A(p)) = 0, A(p) + A(Su0) -

Now we present some variational formulas we will need. For y €
H 51 (Q,T) define

0 0
FN = afgu —o and (}N = 8_§f6u —o .
Then [A
. % = and &,=0
gz M B

and x,[v] = F‘;ﬁ” — F, is a polynomial of order < 2 every v € I'. (For

groups other than Schottky, function @, is holomorphic on € but not nec-
essarily zero.) Note that the normalization of f* implies that F},(0) =
F,(1) = Fy(o0) = 0, and hence x,[L1](0) = 0, xu[Li](cc) = 0, and
XulL2)(1) = 0. (Here F,(c0) = 0 means F,(z) = o(|z|*) as z — oo, and
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similarly for x,[L1].) Another classical result of Ahlfors [A] is that for the
family p of (1,1)-differentials given by the hyperbolic metric,
dup=0 and Sup =0.
From this one finds (see, e.g. [ZT1]),
5u5n = —pud, and 6,0, =0,
and hence
JMA’IL = piluan-i—lan .
If ¢ is a smooth family of holomorphic automorphic forms of type (n,0),
then differentiating 9, = 0 one gets
On(0up) = nOnp and  On(dup) =0, (2.3)
where the last equation follows from Sugn = 0. Finally, for t € &, let
v € I'y be a group element corresponding to a fixed element [y] under the
isomorphism I'y ~ (X, z9)/N. Then the multipliers ¢,, give rise to a
holomorphic function ¢, : 6, — C. Identifying T} &, ~ H2(,Ty), we
have (see e.g. [Z1])
9y (ay — b7)2 10 N2
ogy = 11 : S0 ()2, (2.4)
™ ce(M\T (Jz - a’Y) (UZ - b’Y)

where the sum runs over the set of left cosets in I' of the cyclic subgroup
generated by ~.

2.4 Classical Liouville action ([ZT2], [TT]). The Schottky space &,
is a domain of holomorphy [H1], so that the Weil-Petersson metric on &,
has a globally defined Kahler potential. Here we present the potential for
the Weil-Petersson metric constructed in [ZT2]. It is given by the “classical
Liouville action” — the critical value of the “Liouville action functional” on
the family of Riemann surfaces parameterized by the Schottky space G4 -
and has the additional property of establishing a relation between Fuchsian
and Schottky uniformizations.

Namely for t € &, set X = Xy; for convenience, we omit the subscript ¢
here and write X ~ T\Q, etc. Let p(z)|dz|?> be the hyperbolic metric
on , pulled back from the hyperbolic metric on X ~ I'\Q2. Let D be a
fundamental region for the marked Schottky group I' (see section 2.1). Set

2
o [ ()
0z

D

Ly 1 Liog L) (ZF ao- ZE a2 1ar S0 e (Ly)|?
+§kz_:2£k ogp—gog‘k‘ L_;c z T z-l—7r20gc )l

k k=2
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where for v = (25) € T, we denote c(y) = c. This definition does not

depend on a particular choice of the fundamental region D. The values
Sy for t € &, define a smooth function S : &, — R, called the classical
Liouwille action (see [ZT2] for motivation and details, and [TT] for a co-
homological interpretation). The function S is invariant with respect to
transformations of &, corresponding to permutations of the generators of
the marked Schottky group [Z1]. For a holomorphic function f with f’ # 0,
the Schwarzian derivative of f is

f” ' f” 2
S(f) = (7) —3 (7) . (2.5)
For X ~T'\Q let J: H — € be the universal covering of {2 and set
9=28(J ).

Though the mapping J is not one-to-one, it follows from the properties of J
and S that o is a well-defined element of #2({Q,T) [ZT2]. Correspondingly,
the smooth family 1J; of holomorphic quadratic differentials on X; gives rise
to a (1,0)-form ¥ on &,.
PROPOSITION 2.2. The function S : 6, — R has the followng properties.

(i) 9S8 =

(i) 00S = 2iwwp.
Proof. See [ZT2] (and [TT] for generalization to Kleinian groups of
class A). o

3 Poincaré Series and the Green’s Function of 8,

Let X ~ I'\Qp for some function group I" and invariant component Q, and
let n be a positive integer. In this section we define a meromorphic Poincaré
series K, (z,7') and a smooth kernel K(z,2') associated with the subspace
H™(Q,T) = ker ,, such that for n > 1 the Green’s function K, (2, z') of
Oy, is given by K,, = I/(\'n + K9. (There is a slight modification when n = 1.)
This completes the outline sketched in [M].

For convenience, assume that oo is in the limit set of I'. For n > 1, fix
points Ay, ..., Aop_1 in the limit set of I', such that

Vj 3 at most n — 1 distinct k such that Ay = A;. (3.1)

If n =1, fix a single point A; in the ordinary set of I'. Then for n > 1 and
2,2 € Qg with 2/ # vz for all y € T, define [Bel]

. 1 1 /A,
Ry =13 ( e )7’(z)", (32)
mIEVE z o VE Aj

with the natural conventions if A; = oo for one or more j.
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LEMMA 3.1. Let I and I?n be defined as above.

(i) Suppose n > 1. For z,2' € Qo with 2’ # vz for all v € T, the series
I?n(z, 2') converges absolutely and uniformly on compact subsets. It
defines a meromorphic function on €y x o with only simple poles,
at 2/ =z, v €.

(ii) Suppose that T’ has exponent of convergence § < 1. Then for z, 2’ € Qg
with 2/ # vz and z # vA; for all v € T, the series K1(z,z') converges
absolutely and uniformly on compact subsets. It defines a meromor-
phic function on Qy X g with only simple poles, at 2 = vz and
z=7vA;,veTl.

Proof. Since L'-convergence of holomorphic functions implies uniform con-
vergence on compact sets, for (i) it is sufficient to show
2n—1

1 1 1-n/2 42
| I p(2) d“z < o0,
{/M 1 T Al
0

where p(z)|dz|? is the hyperbolic metric on Qg. This was proved in [Be2]
using Ahlfors’ estimates for p, under the assumption that A;,..., Ag, 1 are
distinct points in the limit set. Exactly the same proof works when some of
the A; coincide, provided they satisfy condition (3.1). Because A, is in the
ordinary set for n = 1, (ii) follows immediately from the definition of . o

Let IIy, 2 be the vector space of polynomials of degree < 2n — 2, con-
sidered as a right I'-module with the v € I" acting on p € Ily,_2 by
wp=poy-(Y),
and denote by Z! (T, IIa,_3) the vector space of 1-cocycles for the group T
with coefficients in IIa,_o — the Eichler cocycles [Bel]. Explicitly, a cocycle
isa map x : I' = Ilg,_o satisfying
x[mre] = r2.x[nl + x[re] forall 71,79 €T
A direct computation shows that for any v € I,
En(y2, 7)Y (2)" = Kn(2,7)
Kn(2,72 ) ()" = Kau(2,2) + xz (2, 2'),
where x7(2, ) € ZYD,Ha,—2) for every z € Qo, and xz[](+,7") €
H™(p,T) for every v € T and 2’ € C.
Now, let ¢1,...,¢@q be a basis for H"(Q,I"), where d = (2n —1)(g — 1)
(n > 1), ord =g (n=1). Define potentials Fy (there should be no

confusion with F), defined in section 2.3) of the automorphic forms ¢ by
[Be, 2],
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2n1

Fk(z):__// HC A]dz

_ // O (R (C.5) s (33)

= _<Kn i) Z), ‘Pk>a

where p(() is the hyperbolic metric on 4. Note that though I?n( -, z) is
not in H™(Qp, '), the inner product given by (2.1) is still well defined. The
function Fj, on g has the property

OF, o

97 Pl Py, (3.4)
Let [Nnljx = (@, k) be the Gram matrix of the basis ¢1,..., ¢4 with
respect to the inner product (2.1), and let Ni¥F = [N, ]k be the inverse
matrix. For z, 2’ € Q) set

d d
K%(z,7) ZZN (). (3.5)

j=1k=1

It follows from (3.4) that

oK}
8; (2,2") = Py(z,2") (3.6)
is the integral kernel of the orthogonal projection P, : $™(Qo,I') —>H"(Qp,T).

For any v € T we have
Kp(vz,2 )Y (2)" = Ky (2,2')

d d
K (2,72 )Y ()" = Kp(2,2") ZZ 2)(xg(+52"), ¢x)
j=1lk=1

= Kg(zaz) - X}?[’Y](zaz ) )
since xz[7](-,2") € H"(,T). Hence K, + K is an automorphic form of
type (n,0) in z and type (1 —n,0) in 2'.
PROPOSITION 3.2. Let I, I?n and K? be defined as above, and let K,, be
the Green’s function for 9, on I'\§y defined in section 2.2. Then,
(i) forn > 1 and z,2' € Qy,
Kn(z,7') = I/(\'n(z, )+ K22, 2');
(ii) if 6 < 1, then for z,2' € Qy,
Ki(z,2) — Ki(z,A1) = I?l(z, 2+ K¥(z,2).
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Proof. First we verify condition GF1, i.e. show that for any ¢ € A™ (,T),
[ @t KO0 ()2 = 00 - (P,

Do
where Dy is a fundamental region for I' in Q3. We have
J[ @t KO o) = 1~ o,
Do
where

e—0
Do\{|2'—z|<e}

I; = lim / 541((I?n + Kg)(z, ZI)(P(ZI))dzz”

I = 111% / 8 ((Kp + K9 (2, 7)) p(2')d%2.
E—
Do\{|2'—z|<e}
By Stokes’ theorem, I is a sum of an integral over the boundary of D,
which vanishes since (K, + K9)(z, 2')¢(2') is a (1,0)-differential in z’, and
a boundary term around the singularity 2’ = z, so that

I = lim —— 7{ (“O(z') + 0(1)> d2' = p(z).

£—0 273 2 —z
|2'—z|=€

Since K,(z,2') is holomorphic in 2’ for 2’ # z, using (3.6) we get I, =
(Pap)(2)-

Since condition GF2 is vacuous for n > 1, the above establishes (i) in
that case. When n = 1, the above argument shows that the operators K;

and I/(\'l + K? agree on Im 01, that is,
Ki(2,7) = Ki(2,2') + K{(2,2') + (2)

for some 1 € H'(Qo,T). Setting 2/ = A; evaluates 1 and yields (ii). o
REMARK 2. It follows that

0K, , 0Ky, ,  0KY |

W(Zaz) = W(zaz)-i_ B, (2,2'),

which is Fay’s formula relating Bergmann and Schiffer kernels on a compact
Riemann surface [F]. This was used in the proof of the local families index
theorem (1.11) in the case n = 1 given in [ZT1], and was the starting point
for the proof of Zograf’s factorization formula (1.9) in [Z2].
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4 Natural Basis for H°(S,, A,,)

It was proved by Kra [Krl] that the direct image vector bundle

An = p:((Ty #5)™") = G4
is holomorphically trivial, i.e. there exist ¢1,..., 04 € H°(S,4,A,) such
that for each ¢ € &4, the holomorphic n-differentials 1 (%), ..., 4(t) on X;

form a basis of the fibre H"(X;). For n = 1, the abelian differentials
@1(t),--.,pq(t) on the Riemann surface X; with the classical normalization

% P = 0jk
ag

form such a basis, since every ¢t € G, uniquely determines the a-cycles on
the Riemann surface Xy = I';\Q; (see [Z1]). Here we construct a natural
basis of the global sections of A, for n > 1, which reduces to the former
when n = 1.

Let I" be normalized, marked Schottky group with distinguished system
of generators Li,...,L,. For n > 1, a cocycle x € Z}(T',Ily,_2) is called

normalized if

J"x[L

Iy =0, 0<r<n—2, X[l =o(dl") as = oo,

Z

and x[Lg](1) = 0. Every cocycle x € ZN(T, II) = Z'(T',C) is called
normalized by definition. Let Z!(I", I3, 2) be the vector space of normal-
ized Eichler cocycles. Since any cocycle may be normalized by adding a
coboundary b € BY(T', g, 2) — a cocycle b[y] = v.p —p for some p € Ilo;, 2
— and every normalized b € B'(T', Ty, ) is identically zero, we have an
isomorphism

HY(D, Mgy _g) := ZY (T, Mg _o) /B (T, gy _3) ~ Z(T, Ty, _3)-

Let Hgn—2 = Hgn,Q Xoees X Hgn,Q, and define

g
g, ., = {(p1,---,pg) €M,y :p1(2) = cz" 1, pa(1) =0} .
Since the group T is free, the mapping from ZI(F, IIy,_2) to ﬁgn—Q given
by
X = (X[Lals- -, X[Lg))
is an isomorphism. Fix a basis of IIJ, _,; this fixes a basis
£,y g € ZHT, Mgy o) ~ HY (D, Tlg,_s).

This basis depends only on I" as an abstract group — that is, £x[y] depends
only on the reduced word L;! --- Lj™ representing v. Thus we have defined
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a basis of H!(T, Il ») simultaneously for all normalized marked Schottky
groups I'y, t € G,.

Now we deﬁne a basis for %" (€2,T’) corresponding to the basis &1, ..., &g
of Z! (T, Iy, o) associated with a fixed basis of 1'[271 - For this purpose
we use the Bers map 8* : H"(Q,T) — HY(T,Iy,_2), where xy = B*(y) is
defined by

XM =Foy-(y)'™~F,
with F' a potential of the holomorphic n-differential ¢ given by (3.3). The
potential F' depends on the points Aq,..., Ao,_1 in the limit set of I'; a
different choice of normalization points adds a coboundary to x. We will
always choose the normalization points to be 0,...,0,1,00,...,00. With
—— N——

n—1 n—1
this normalization, we get a mapping

B*: HY(Q,T) = ZHT, Hap_s) .
Since the Bers mapping 3* is injective, E* is also; and the vector spaces
H"™(Q,T) and Z1(I', I, o) have the same dimension d, so 3* is a complex
anti-linear isomorphism. Define a basis 11, ...,1%4 of H"(Q,T') by

B*(Yr) = &,
and let ¢1,...,pq be the dual basis of H™(2,T") with respect to the inner
product (2.1):

(05, ¥k) = djk -
LEMMA 4.1. The holomorphic n-differentials ¢1(t), ..., pq(t) € H™(X}),
constructed above for every pointt € &4, define global holomorphic sections
@1,-..,pq of the bundle A, over &,.

Proof. It follows from the construction that the ¢; are smooth global
sections of A,; we must show they are holomorphic. Fix t € &, and
abbreviate ¢;(t) = ¢;, [y =T, ete. Let u € H™"1(Q,T) represent a tangent
vector at t. It follows from (2.3) that 9,(8,p;) = 0, i.e. §,p; € H™(Q,T).
But by the definition of & and Stokes’ theorem,

— (5, 0x) = //sozap’“d2 ———275 03 €[Ls] (4.1)

Since & [L;] do not depend explicitly on £ and ®,, = 0, we have 6,£,[L] = 0,
SO

18 _ _
-1 ; ?ir(é“%)gk[m dz = (8.5, V)

for each k, and we conclude Sugoj = 0. O
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REMARK 3. It is necessary to take the dual basis ¢; because the v are
not holomorphic sections of the bundle A,, — &,. This is related to the
fact that the Bers mapping 8* is complex anti-linear.

We say that the sections @1, ..., 4 form a natural basis of HO(Gg, Ay)
corresponding to the basis &1, ...,&q of A (T, Ta,—2) associated with a fized
basis of 11, _, (for brevity, a natural basis). Note that for n = 1, if we
make the choice

fk[Lr] = =240k,
we recover the classical normalized basis of abelian differentials; we add
this condition to the definition of natural basis when n = 1.

The vector bundle A;, — &, has a Hermitian metric defined by the inner

product (2.1) on the fibres #"(, '), t € &4, which induces a Hermitian

metric || - ||i on its determinant line bundle )\, = A%A,,. The natural basis
gives a global holomorphic section ¢ = @1 A -+ A g of Ay, with
lloll; = det Ny,

where [N, = (¢j,¢k). The metric and complex structure define a con-
nection on A, which in the holomorphic frame given by ¢ is d+0logdet N,,,
where d = 9 + 0 is the deRham operator on S,.

When n = 1, the connection (1,0) form on &, can be found explic-
itly. By the Riemann bilinear relations, Ny = Im 7, and we have Rauch’s

formula [R]
0T ji (1) = —2i // <pj<pkud z

for u € H~11(Q,T), from which we obtaln

0log det N1 (u //ZZNl piorpd?z, (4.2)

j=1lk=1

where N7 = [N=1];;,

There is an analog of (4.2) for the natural basis when n > 1. Namely,
let
, (4.3)

0 0
0 _ v Y 0 !
Tn(z) - (naz/ (]‘ ’I’L) 8Z> Kn(Z,Z) Vs
where K9 is given by (3.5), and define
wn[y] =Tp oy - (V)? = Ty (4.4)

for each v € I'. Then we have the following.

PROPOSITION 4.2. Let 1, ..., pq be a natural basis of H*(G,4, A,,) as con-
structed above. Fixt € &, and abbreviate ¢;(t) = ¢, I'y =T, etc. Let N,
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Ty, @y be defined as above, and recall the notation for the marked normal-
ized Schottky groupT fixed in section 2.1. Then forp € H=11(Q,T) ~ T,6,
with potential F),, we have

dlog det N, (1 / / Toud2z—|— Z ]{ @ [Ly|F) dz . (4.5)

Proof.  Using holomorphy of the family ¢;, Stokes’ theorem, 7; =
Zzﬂ N3 and (2. 3) we have

d d
0log det Ny, (u ZZN Suj» Pk) ZZNTILCj //(6“%)%(12

j=1k=1 j=1k=1 D
d

// (0, K2) A,m%—%i% Z w07)&5(L

L4

where A stands for the restriction on the diagonal 2’ = z. This implies

0log det Ny, (i //Toud2z—n//81 KO‘A ,ud2

- 2% ;]2 ;(%%)ﬁj[h] dz

since 7O = — (aan)|A + nd; (K2|A). Using Stokes’ theorem again and
0_1p = 0, we obtain

1< d )
//al<K2|A>ud2z - 2—1.272 > pi Gl udz.
D r=1""7 j=1

Hence we must show that

Z% JF.ds = — 27{ Z o)) dz 4 ng; & [LoJndz. (4.6)

'r ] 1
It follows from (4.1) that

g9
Z f{; (6u05)Ek[Lr)dz + @ (8,&k[Ly])dz + @; Ex[Lrlpdz =0,
and werhave
uelE] = 51| &l (720

= %ll dr, el 2,
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since, by construction, {;[L;] does not depend explicitly on e. Using the
identity

0= %c d(s&k[Lr] Fy)

0

_ fc 5 (PG ILF) de + gi&[L)ndz,

we obtain

g
"¢ (upi)érlLr] dz + np; &Lyl dz
r=17Cr

2 O&k[Ly, 90
:;ﬁ (mpj fg[z I _ (1 —n)%ék[LrD F,dz.

Now, a straightforward computation shows that

d . .
mal] =3 (s - (1= w % gl )

Jj=1

which establishes (4.6) and completes the proof. o

To show the agreement of (4.5) with (4.2) when n = 1, it suffices to
observe that for this case, the properties of the potential F}, of the basis
element ¢ imply that

Fi(z) = / T o@de - [ o0

A Ay

5 Proof of Theorems 1 and 2

Since the functions det A, det N, and S on the Schottky space &4 are real-
valued and the function F'(n) on &, is holomorphic, to prove Theorems 1
and 2 it sufficient to show that

6n2 — 6n + 1

Ologdet A, — 0log F(n) = dlogdet N, — T&S (5.1)

at all points in &4. The (1,0) forms on &, appearing on the right-hand
side of (5.1) are given by Propositions 2.2 and 4.2. Here we complete the
proof by computing the (1,0) forms on the left-hand side.

5.1 Computation of dlogdet A,,. Let X be a compact Riemann
surface, with X ~ I'\Q for some function group I with invariant compo-
nent (g, and let p(z)|dz|? be the hyperbolic metric on Q. Define
. 0 0 1 1
Tn(z) = lim (n@ - (]. - n)£> (Kn(z, ZI) - ;Z — z,) , (52)

2=z




26 A. MCINTYRE AND L.A. TAKHTAJAN GAFA

where K, is the Green’s function for 9, on I'\€)y defined in section 2.2.
When Qy = H, we will denote T,, =T, ,f\‘mhs. It is easy to see that T,f\‘mhs €
A2(H,T). Indeed, it follows from (2.2) that

0 0 no 1 1 g
(n@—(l—n)a)Rn(z,z)— ——5 +0(z —2)

as 2/ — z, so that
TTlf‘uchs(z) _ lllIIl (n% — (1 — n)%) (Kn(z,zl) _ Rn(Z,z’)) .

z'—z

It follows from property 2 in section 2.2 that (K, — R,)|a is a (1,0) form,
and the identity

TS = — (0p (K — Rp))| 5 + 101 ((Kn — Rn)la) (5.3)
proves the claim. Here A stands for the restriction on the diagonal 2’ = z.
LEMMA 5.1. Let X ~T'\Qy for a function group I' with invariant compo-

nent g, let J : H — Qg be the holomorphic covering map of Qg by H, and
let T, and TF'" be defined as above. Then on €,
6n% — 6n + 1
+ .
6m

where S denotes the Schwarzian derivative (2.5). In particular, T,, €
A%(Qo,T).

Tn — TEUChS o J—l . ((J—I)I)Q S(J_l),

Proof. Note that while J~! is multiple-valued, the right side is a well-
defined element of A?(£2y,T"). The equality follows from the identity

0 0 J ()" J () 1 6n2 —6n + 1
et (”az' (1=n) 82) ( J(z) = J(2) 2=z 6 (1)
which is verified by direct computation. This is the classical result when
n=1 m

REMARK 4. In conformal field theory, this result is known as the statement
that “b-c system with spins n and 1 — n has central charge 6n? — 6n + 17
(see, e.g. [D] and references therein).

PROPOSITION 5.2.  Let det A,, be the function on the Schottky space
S, defined in section 2.2, and let ¥ be the (1,0) form on &, defined in
section 2.4. For each t € &,, abbreviate T, = T (t), Q = Q;, I' =T, etc.
Then for p € H 11(Q,T) ~ T;6,,

2
— 1
dlogdet Ay () = //Tn,u d?z — Mﬂ(u).
127
D
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Proof. Set pfuhs = 0.7 % It follows from Lemma 5.1 that it is sufficient
to prove

dlogdet A, (p) = // Truchs | Fuchs 42,
D

where D C H is a fundamental region for a Fuchsian group uniformizing
the Riemann surface X ~ I'\§2. Using the identity (5.3) and 0_1p = 0, this
reduces to the statement

dlogdet Ay () = — // (Bn(Kn - Rn))|AMd2z,
D

which is Theorem 1 in [ZT1]. O

5.2 Computation of 8log F(n). LetI bea marked, normalized Schot-
tky group. For positive integer n define

o0
Fom) = [T TT (0 - a2+ (5.4)
{r} m=0
where {7} runs over all distinct primitive conjugacy classes in I, omitting
the identity, and g, is the multiplier of v — see section 2.1. The product
converges absolutely if and only if the series ) v} Yoo olay|™ ™ converges.
One shows that this series converges provided that the multiplier series
Z[,Y]|q7|” converges, where [y] runs over all distinct conjugacy classes (not
necessarily primitive) in I'. By a theorem of Biiser [Bii], for a Schottky
group I' with exponent of convergence §, the latter series converges pro-
vided n > 4. It is known that § < 2, hence for n > 1 the product Fy(n)
converges absolutely for all Schottky groups I', and the product Fy(1) con-
verges absolutely provided that § < 1. Now we define
Fn) = Fy(1) ) ) Tf’n =1, (5.5)
(L=q)?- (1 =g — g5 Fo(n) ifn>1.
For n > 2 the expression F(n) defines a holomorphic function on &,.
For n = 1 the function F' = F(1) is defined on the open subset of &,
characterized by 6 < 1.

REMARK 5. The product [] 1} (1—g;) was briefly described in [Bow], where
it was asserted that with the values of ¢ chosen appropriately, the product
is defined for all Res > § and has an analytic continuation to the entire
s-plane. To our knowledge these results have not yet been proved. The
function |Fy(n)|? coincides with a product of Ruelle-type zeta functions
R,(s) associated to the hyperbolic 3-manifold X? defined by T, considered
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in [Fr]: |Fy(n)|? = Z,(n), where

Zn(s) = H Ry, . .(s+m),

m=0
and pp4m is the representation of 71(X?) on O(2) taking a closed geodesic
with twist parameter 6 to a rotation of angle (n 4+ m)6.

Set

To(2) = lim (n% —a —n)%) (f(n(z, WS ) (5.6)

2=z Tz— 2

where K, is the Poincaré series (3.2). We have

T, =T + T2, (5.7)
where T and 7T;, are defined in (4.3) and (5.2) respectively. Since 7T,, €
A2%(Q,T), we have for vy € T,

Thoy-(v)? = Tn = —wnhl,

where w,,[7] is given by (4.4).
PROPOSITION 5.3. Let F(n) : 6, — C be defined by (5.4) and (5.5). Fix
t € &, and abbreviate I'y = T, etc. Let T, and w, be defined by (5.6)
and (4.4) respectively, corresponding to X; = X = I'\Q, and recall the
notation for the marked normalized Schottky group T" fixed in section 2.1.
For p € H=Y(Q,T) ~ T;&, with potential F,,, the (1,0) form 0log F(n)
satisfies

~ 1 J
_ 2
dlog F(n) (k) —//Tnud 2= Elfcrw[Lr]Fudz-
D =

Proof. For v € T, v #id, and z € 2, we introduce the abbreviations

Lo ny 7(2)
Ay(z) = ;(any ! —”)QV)W,
_1( 8 ) R Ay P N

and split the computation into three steps.
Step 1. Claim that the right-hand side can be written as

~ 1 9 1 9
//Tnusz ~ 5 Zjéw[Lr]Fu de = - 3y Z}{C ByxulL—]dz.
D r=1 r -r

vyel' r=1
y#id
(5.8)
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We have
é/fnusz://é(fF :%i(%jf;)ﬁ‘ﬂ‘dz
- Z j{ — @ [Le) (Fu + XulLr]) = TuF) d2

~ 13
o 1\2
=5 ; 7{ T, o L.(L) X“[Lr]derﬂ ; fc @ Ly Fudz .

But for any Eichler cocycle, x[y 1] = —x[7] o v /(v !)’, so we have
$ TooL(LPalLlde = § Tuxllo]ds.
Cr C_,

This, together with T}, (2) = > er\jiay By(2), converging absolutely and
uniformly on compact subsets of 2, establishes (5.8). Note that the non-
automorphy of T;, necessitates the use of the integral over C_, rather
than C,.

Step 2. Computation of dlog Fy(n). Claim that

0log Fy(n Z Z}{ AyxulL—r]dz (5.9)

'yeI‘ r=1
y#id
Indeed, using the expression log Fy(n) = — 2{7} > m=t %% and the
Y
series (2.4), we get

BlogFo(n):—Z Z Z nq;n(n V(- n)q,'i;zn]

) ce\rm=1
gy (ay = by)* o (2)2
(1- qgl)2 (02 — a)? (02 — by)?

= —Z Z Z nq _1 (1_n)q2—1’ym(7]
{7} oM\’ m=1
1

(c=1ymoz — 2)?

= Z Ay(2)

vyer
v#id

(07'™0)' (2)
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where we have identified T} S, ~ H?(2,T). The convergence is absolute
and uniform on compact subsets of Q. Since dlog Fy(n), unlike T;,, is
automorphic, applying Stokes’ theorem as in Step 1 gives (5.9).

Step 3. When n = 1, we have w[y] = 0 and A,(z) = B,(z), so the
proposition is proved. For the case n > 1 we use the assumption that the
normalization points A1,..., A, 1 are0,...,0,1,00,...,00 (see section 4),

—— N —

n—1 n—1

and show that

(1ogH (- dPa-d™)w
:_Zz/ B)xulL_] dz. (5.10)

yel' r=1
y#id

We first compute the right-hand side of (5.10). Suppose y # L*, L™, or
L3 for any m > 0. Direct computation verifies that (A, —B,)(2)xu[L—](2)
is regular at oo, with poles at b,, v 1(0), v '(1) and v~ !(c0). By part (iii)
of Lemma 2.1, all these poles are in a single domain D, bounded by
Cr,, for vy = L31...Jm so that every integral in (5.10) is zero. Thus the
computation reduces to the cases when v = LT*, L™ or LT for m > 0.
For v = L*,m > 0, using Lemma 2.1 again we see that 0 € D_; and
7~1(1),00 € D;. By an elementary computation using the identity

i ng™ + (1 _ n)q(n—f—l B mq
(1—qm)? qm’

and the normalization x,[L_1](z) = az, we get

1 o] n—1 . {
= mizjf R LDy -t

When v = L™, m > 0, we have y~1(1), 0 € D_; and co € D;. Changing
z +— 1/z we get as before,

LS i~ B )l )2z = oS L
2im:1 » L L™ )\ Z) Xplb—1]\2 Z—aj:11_q{-.

For v = L' we have by Lemma 2.1 that 1 € D_5 and b,y 1(0),7~!(00)
€ D,. By an elementary computation, using the normalization x,[L_2](2)
=b(z—1) +c(z — 1)%, we get

lg| <1,

m=1
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1 & gyt
o (Azp — Brp)(2)xull—2](z)dz = b(n — 1) ——=.

To compute the left-hand side of (5.10), we use (2.4) and the identity

3 7(2)° RPN G 711 (G N
>, 2 BP9 A

c

where a = ar, b = br, and circles C and C' = —L(C) form the boundary for
a fundamental domain of (L) in C\ {a,b}. (It readily follows from Stokes’
theorem and automorphy properties of the sum 276 (L)\> See [Kr2]). This
computation establishes (5.10) and completes the proof of the proposition. o

Theorem 2 now follows from (5.7) and Propositions 2.2, 4.2, 5.2 and 5.3
in the case n > 1. For n = 1, this also gives a proof of Zograf’s formula —
Theorem 1 — for Schottky groups with § < 1. For the remainder of Theorem
1 we refer to [Z1].

REMARK 6. Note that the functions det’A,, Fy(n) and S on &, are in-
variant with respect to the transformations of &, which correspond to per-
mutations of the generators L, ..., Ly, whereas the function det IV, is not.
Consequently Theorem 2 implies that the extra factors in the definition
of F(n) guarantee that the product det N,, |[F(n)|? is invariant with respect
to these transformations. This can be also verified by a direct computation.
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