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Part 1

Classical Mechanics



Lecture 1. Equations of motion

1.1. Generalized coordinates. Classical mechanics describes systems of
finitely many interacting partz'clesﬂ A system is called closed if its particles do
not interact with the outside material bodies. Position of the system in space
is specified by the positions of its particles and determines a point in some
smooth, finite-dimensional manifold M, called the configuration space of the
system. Coordinates on M are called generalized coordinates of a system, and
the dimension n = dim M is called the number of degrees of freedom.

A state of the system at any instant of time is described by a point ¢ € M and
by a tangent vector v € Ty M at this point. The basic principle of classical me-
chanics is the Newton-Laplace determinacy principle, which asserts that a state
of the system at a given instant completely determines its motion at all times
t (in the future and in the past). The motion is described by the classical tra-

jectory — a path ~(t) in the configuration space M. In generalized coordinates
i

v(t) = (¢ (1), ..., q"(t)), and corresponding derivatives ¢* = are called gen-

eralized velocities. The Newton-Laplace principle is 3 fundamental experimental
d 1
_ ar
by generalized coordinates ¢* and generalized velocities ¢*, so that classical tra-
jectories satisfy a system of second order ordinary differential equations, called
equations of motion.

A Lagrangian system on a configuration space M is defined by a smooth,
real-valued function L on T'M x R — the direct product of a tangent bundle
TM of M and the time axisﬂ — called the Lagrangian function (or simply,
Lagrangian).

fact. It implies that generalized accelerations §* = are uniquely determined

1.2. The principle of the least action. The most general principle gov-
erning the motion of Lagrangian systems is the principle of the least action in
the configuration space (or Hamilton’s principle), formulated as follows.

Let

P(M)Zéﬁé = {7 [to,t1] = M; ~v(to) = qo, ¥(t1) = @1 }

be the space of smooth parametrized paths in M connecting points go and
q1. The path space P(M) = P(M )gé:; is an infinite-dimensional real Fréchet
manifold, and the tangent space T, P(M) to P(M) at v € P(M) consists of all
smooth vector fields along the path v in M which vanish at the endpoints gy and
q1. A smooth path I" in P(M), passing through v € P(M), is called a variation
with fived ends of the path v(¢) in M. A variation T' is a family ~.(¢) = T'(¢,¢)

of paths in M given by a smooth map

I: [t(),tl} X [—E(],E()] — M

N particle is a material body whose dimensions may be neglected in describing its
motion.

2Tt follows from the Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.
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such that T'(t,0) = ~(t) for t¢ < t < t; and T'(tg,e) = qo,[(t1,6) = ¢ for
—gg < € < gg. The tangent vector

or

= — T,P(M
655:06’}/( )

oy

corresponding to a variation 7. (t) is traditionally called an infinitesimal varia-
tion. Explicitly,
5v(t) = T.(£)(t,0) € Ty M, to <t <t,

g

where % is a tangent vector to the interval [—eg, €] at 0. Finally, a tangential

lift of a path v : [to,t1] — M is the path ' : [to,t1] — TM defined by +/(t) =
7*(%) € TyyM, to <t < ty, where % is a tangent vector to [tg,?1] at ¢. In
other words, 7/(¢) is the velocity vector of a path (t) at time ¢.

DEFINITION. The action functional S : P(M) — R of a Lagrangian system
(M, L) is defined by

t1
s = [ Lot
to
PRINCIPLE OF THE LEAST ACTION (Hamilton’s principle). A pathy € PM
describes the motion of a Lagrangian system (M, L) between the position ¢y €
M at time ¢y and the position ¢ € M at time ¢; if and only if it is a critical
point of the action functional S,

d

dE S(’YE):O

e=0

for all variations v (t) of v(¢) with fixed ends.

The critical points of the action functional are called extremals and the
principle of the least action states that a Lagrangian system (M, L) moves along
the extremakﬂ The extremals are characterized by equations of motion — a
system of second order differential equations in local coordinates on T'M. The
equations of motion have the most elegant form for the following choice of local
coordinates on T M.

DEFINITION. Let (U, ¢) be a coordinate chart on M with local coordinates
q=(q¢',...,q"). Coordinates

(q,v) = (ql,...,q”,vl,...,v”)

on a chart TU on TM, where v = (v!,... v") are coordinates in the fiber cor-

. .0 0 )

responding to the basis 200 D for T, M, are called standard coordinates.
q q

3 The principle of the least action does not state that an extremal connecting points qo

and ¢; is a minimum of S, nor that such an extremal is unique. It also does not state that
any two points can be connected by an extremal.



Standard coordinates are Cartesian coordinates on ¢, (TU) C TR™ >~ R"™ x
R™ and have the property that for (q,v) € TU and f € C=(U),

et (U, ) and (U’, ¢') be coordinate charts on M with the transition functions
=(FL...,F") = ¢ oot pUNU") = ¢UNU'), and let (g,v) and
v'), respectlvely, be the standard coordinates on TU and TU’. We have
q F(q) and v’ = F,(q)v, where F,(q) = {?95]
function on @(UNU’). Thus “vertical” coordinates v = (v!,...,v") in the fibers
of TM — M transform like components of a tangent vector on M under the
change of coordinates on M.
The tangential lift v/(¢) of a path v(¢) in M in standard coordinates on TU
is (q(t),q(t)) = (¢*(t),...,q"(t),¢*(t),...,4"(t)), where the dot stands for the
time derivative, so that

""‘11

n
(q)} is a matrix-valued
ij=1

L(Y'(t),t) = L(q(t),4(t),1).

Following a centuries long traditiorﬂ we will usually denote standard coordi-
nates by

(q’q) = (q17"'7qn7q.17"'7q.n)7
where the dot does not stand for the time derivative. Since we only consider
paths in T'M that are tangential lifts of paths in M, there will be no confusiorﬂ

THEOREM 1.1. The equations of motion of a Lagrangian system (M, L) in
standard coordinates on T M are given by the Euler-Lagrange equations

Sela0.40.0 - 5 (Getat.d.n) =o.

PROOF. Suppose first that an extremal () lies in a coordinate chart U of
M. Then a simple computation in standard coordinates, using integration by
parts, gives

0=

e - S(’Ys)

d / " L(a(te). (6. 0). ) di

de e=0Yto

" /9L .. OL )
= 0q" + ——8¢" ) dt
Z/t (W 77 9"

brarL d oL . " 9L "
- = D) sqldt 27454
Z/to (aqz dt&jl) g +; ]

to

4Used in all texts on classical mechanics and theoretical physics.
5We reserve the notation (q(t), v(t)) for general paths in TM.
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The second sum in the last line vanishes due to the property dq'(tg) = d¢'(t1) =
0, i=1,...,n. The first sum is zero for arbitrary smooth functions é¢’ on the
interval [to, t1] which vanish at the endpoints. This implies that for each term
in the sum the integrand is identically zero,

Sarta.a0.0 - 5 (Gr@®.d0.0) =0 i=1n

Since the restriction of an extremal of the action functional S to a coordinate
chart on M is again an extremal, each extremal in standard coordinates on T'M
satisfies Euler-Lagrange equations. O

REMARK. In calculus of variations, the directional derivative of a functional
S with respect to a tangent vector V' € T, P(M) — the Gato derivative — is

defined by
d

oyS = — S

14 de o (’Ys)a
where 7. is a path in P(M) with a tangent vector V' at 79 = 7. The result of the
above computation (when 4 lies in a coordinate chart U C M) can be written

as

NI (OL  dOL , ;
s = [ 73 (G diag ) ta-d0.0v 0

(1.1) = /t ((;5 - jtgg) (q(t),q(t),t)v(t)dt.

n

Here V (t) = E vi(t)g is a vector field along the path v in M. Formula ((1.1])
, q'
=1
is called the formula for the first variation of the action with fized ends. The
principle of the least action is a statement that éy-S(y) = 0 for all V € T, P(M).

REMARK. It is also convenient to consider a space P(M) = {v : [to, t1] —
M} of all smooth parametrized paths in M. The tangent space T, P(M) to

o

P(M) at v € P(M) is the space of all smooth vector fields along the path 7 in
M (no condition at the endpoints). The computation in the proof of Theorem
yields the following formula for the first variation of the action with free
ends:

oL d oL OL
1.2 SvS = ob @ oh s 22
(12) v /t <6q dtaq)” " 9q"

t1

to

PROBLEM 1.1. Show that the action functional is given by the evaluation of the
1-form Ldt on TM x R over the 1-chain 4 on TM x R,

s = [ L,

e

where 7 = {(v/(t),t);to <t < t1} and Ldt (w,c2) = cL(q,v), w € T(g,0)TM, c € R.



PROBLEM 1.2. Let f € C°(M). Show that Lagrangian systems (M, L) and
(M, L +df) (where df is a fibre-wise linear function on T'M') have the same equations
of motion.

PROBLEM 1.3. Give examples of Lagrangian systems such that an extremal con-
necting two given points (i) is not a local minimum; (ii) is not unique; (iii) does not
exist.

PROBLEM 1.4. For v an extremal of the action functional S, the second variation

of S is defined by
82

851852
where ¢, e, is a smooth two-parameter family of paths in M such that the paths ¢, 0
and 7o,e, in P(M) at the point 0,0 = v € P(M) have tangent vectors Vi and Va,
respectively. For a Lagrangian system (M, L) find the second variation of S and verify
that for given Vi and V5 it does not depend on the choice of ve, e, -

6%/1‘/25: 5(751,52)7

g1=e29=0
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Lecture 2. Lagrangian systems

To describe a mechanical phenomena it is necessary to choose a frame of
reference. The properties of the space-time where the motion takes place depend
on this choice.

2.1. Newtonian space-time. The space-time is characterized by the fol-
lowing postulatesﬂ

NEWTONIAN SPACE-TIME. The space is a three-dimensional affine Eucli-
dean space E3. A choice of the origin 0 € E3 — a reference point — establishes
the isomorphism E3 ~ R3, where the vector space R? carries the Euclidean inner
product and has a fixed orientation. The time is one-dimensional — a time axis
R — and the space-time is a direct product E? x R. An inertial reference frame
is a coordinate system with respect to the origin 0 € E3, initial time t,, and
an orthonormal basis in R3. In an inertial frame the space is homogeneous and
isotropic and the time is homogeneous. The laws of motion are invariant with
respect to the transformations

r—g-T+ 70, t—t+4 1o,

where 7,79 € R3 and g € O(3) is an orthogonal linear transformation in R3.
The time in classical mechanics is absolute.

The Galilean group is the group of all affine transformations of E3 x R which
preserve time intervals and which for every ¢ € R are isometries in E2. Every
Galilean transformation is a composition of rotation, space-time translation,
and a transformation

(2.1) r—r+ot, t—t,

where v € R%. Any two inertial frames are related by a Galilean transformation.

The homogeneous Galilean group consists of rotations and special Galilean
transformations . As Lie group, it is isomorphic to the Euclidean Lie group
E(3), a semi-direct product O(3) x R? with the composition law

(91,v1)(g2,v2) = (9192, v1 + g1v2), 12 € O(3), v12 €R®.

Any two inertial frames are related by a Galilean transformation.

GALILEO’S RELATIVITY PRINCIPLE. The laws of motion are invariant with
respect to the Galilean group.

These postulates impose restrictions on Lagrangians of mechanical systems.
Thus it follows from the first postulate that the Lagrangian L of a closed system
does not explicitly depend on time.

6Strictly speaking, these postulates are valid only in the non-relativistic limit of special
relativity, when the speed of light in the vacuum is assumed to be infinite.



2.2. Examples of Lagrangian systems. Physical systems are described
by special Lagrangians, in agreement with the experimental facts about the
motion of material bodies.

EXAMPLE 2.1 (Free particle). The configuration space for a free particle
is M = R3, and it can be deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

-2

L = smr-.

1
2

Here m > (I']is the mass of a particle and 7> = |#*|? is the length square of the
velocity vector © € T,,R? ~ R3. Euler-Lagrange equations give Newton’s law of
mertia,
7 =0.
ExXAMPLE 2.2 (Interacting particles). A closed system of N interacting par-
ticles in R? with masses mq,..., my is described by a configuration space

M=R»N=R3x...xR?
N————
N

with a position vector » = (r1,...,7x), where 7, € R? is the position vector of
the a-th particle, a = 1,..., N. It is found that the Lagrangian is given by

a=1

mar2 —V(r)=T -V,

N

where
N
_ 1 .92
T = E 5MaTy
a=1

is called kinetic energy of a system and V(r) is potential energy. The Euler-
Lagrange equations give Newton’s equations

ma’i;a = Fa7
where p
|%
F, =—
or,
is the force on the a-th particle, a = 1,..., N. Forces of this form are called

conservative. Thus the interaction of particles is given by the action of potential
forces which is an instantaneous action at a distancdl

7Otherwise the action functional is not bounded from below.

8This means a phenomenon in which a change in intrinsic properties of one system induces
an instantaneous change in the intrinsic properties of a distant system without a process that
carries this influence contiguously in space and time.
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It follows from homogeneity of space that potential energy V(r) of a closed
system of N interacting particles with conservative forces depends only on rel-
ative positions of the particles, which leads to the equation

N
Z F, =0.
a=1

In particular, for a closed system of two particles F; + F» = 0, which is the
equality of action and reaction forces, also called Newton’s third law.

The potential energy of a closed system with only pair-wise interaction be-
tween the particles has the form

V(T‘) = Z Vab(ra — T‘b).

1<a<b<N

It follows from the isotropy of space that V' (r) depends only on relative distances
between the particles, so that the Lagrangian of a closed system of N particles
with pair-wise interaction has the form

L=> imat2 = > Val(lra — 7).

a=1 1<a<b<N

EXAMPLE 2.3 (Universal gravitation). According to Newton’s law of gravi-
tation, the potential energy of the gravitational force between two particles with
masses m, and my, is
Vre —m) = g el
|7 — 7]
where G is the gravitational constant. The configuration space of N particles
with gravitational interaction is

M={(ry,...,r5) ER¥N .9, £r,fora#b,ab=1,...,N}.

EXAMPLE 2.4 (Small oscillations). Consider a particle of mass m with n
degrees of freedom moving in a potential field V' (q), and suppose that potential
energy U has a minimum at ¢ = 0. Expanding V(q) in Taylor series around
0 and keeping only quadratic terms, one obtains a Lagrangian system which
describes small oscillations from equilibrium. Explicitly,

L= ymg’ —Vo(q),
where Vj is a positive-definite quadratic form on R™ given by
—~ PV
Volg) = 3 Z (0)g'¢’.

i,j=1 8qlaqj

Since every quadratic form can be diagonalized by an orthogonal transformation,
we can assume from the very beginning that coordinates q = (¢',...,q") are
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chosen so that Vy(q) is diagonal and

n

(2.2) L=1im(¢" - wi(d)?),

i=1
where wq,...,w, > 0. Such coordinates q are called normal coordinates. In
normal coordinates Euler-Lagrange equations take the form

G +wid =0, i=1,...,n,
and describe n decoupled (i.e., non-interacting) harmonic oscillators with fre-
qUENCIES W1, ..., Wn-

EXAMPLE 2.5 (Free particle on a Riemannian manifold). Let (M,ds?) be
a Riemannian manifold with the Riemannian metric ds?. In local coordinates
z,...,z" on M,
ds® = g, (z)dz"dz",
where following tradition we assume the summation over repeated indices. The
Lagrangian of a free particle on M is

L(v) = 3{(v,v) = 3|Jvl*, v € TM,

where (, ) stands for the inner product in fibers of TM given by the Riemannian
metric. The corresponding functional

ty t1
se =4 [ I OPd=1 [ guloir

t() t(J

is called the action functional in Riemannian geometry. The Euler-Lagrange
equations are

. 09 ., . 10gux ., .
Gt + —8;;:6“:3’\ = 576;’ Ha?,

and after multiplying by the inverse metric tensor g?¥ and summation over v
they take the form

o o ey _
7 +1y,8"2" =0, o=1,...,n,

where

= + —
29 oz Oz Oz
are Christoffel’s symbols. The Euler-Lagrange equations of a free particle moving
on a Riemannian manifold are geodesic equations.
Let V be the Levi-Civita connection — the metric connection in the tangent

bundle T'M — and let V¢ be a covariant derivative with respect to the vector
field ¢ € Vect(M). Explicitly,

1—\0' _ 1 o\ (agﬂ)\ aglj)\ 89#1/)
7

on* 0
(Ven) = (82” +1—‘5>\7]’\) &, where ¢= 5”(33)%’ n=n"()5—.
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For a path v(t) = (2#(t)) denote by V5 a covariant derivative along ~,

smre) = O rn )it (n) @), where 5= (1)

dt Ok

is a vector field along +. Formula (1.1)) can now be written in an invariant form

ty
55 = - [ (vsh o,

to

which is known as the formula for the first variation of the action in Riemannian
geometry.

PROBLEM 2.5. Prove that the second variation of the action functional in Rie-
mannian geometry is given by

t1
5252/ (T (817), 62)dL.
to

Here 617,02y € Ty PM, J = —V?-Y — R(*, - )% is the Jacobi operator, and R is a
curvature operator — a fibre-wise linear mapping R : TM ® TM — End(TM) of
vector bundles, defined by R(§,n) = V,Ve = VeVy + Vie : TM — TM, where
&, m € Vect(M).
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Lecture 3. Integrals of motion and Noether’s theorem

To describe the motion of a mechanical system one needs to solve the corre-
sponding Euler-Lagrange equations — a system of second order ordinary differ-
ential equations for the generalized coordinates. This could be a very difficult
problem. Therefore of particular interest are those functions of generalized co-
ordinates and velocities which remain constant during the motion.

DEFINITION. A smooth function I : TM — R is called the integral of motion
(first integral, or conservation law) for a Lagrangian system (M, L) if

d
SI6(0) =0

for all extremals « of the action functional.
3.1. Conservation of energy.

DEFINITION. The energy of a Lagrangian system (M, L) is a function E on
TM x R defined in standard coordinates on T'M by

E(q.q.t) Zq 8 ~(q,4,t) — L(q, . 1).

LEMMA 3.1. The energy E = q %{; — L is a well-defined function on T M xR.

PRrROOF. Let (U, p) and (U’,¢’) be coordinate charts on M with the tran-
sition functions F = (F1,...,F") = ¢’ oo™l : oUNU') — ¢ (UNU").
Corresponding standard coordinates (q, ) and (q’, ¢’) are related by q¢' = F(q)
and ¢’ = F.(q)q (see Lecture We have dq’ = F.(q)dq and dq¢’' = G(q, q)dq +
F.(q)dq, where

so that

oL oL oL
ar = L aq + O aq 4+ L
27" Toag™ T

oL 8L 8L
oL oL 8L
a—d +8—d + 5t

oL
F.(q)dq + 5 dt

Thus under a change of coordinates

so that F is a well-defined function on T'M. O
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COROLLARY 3.2. Under a change of local coordinates on M, components of
oL (@,d.4) = oL oL
aq" q, q7 - aq-l yrtt 8q-n
PROPOSITION 3.1 (Conservation of energy). The energy of a closed system
s an integral of motion.

> transform like components of a 1-form on M.

PROOF. For an extremal v set E(t) = E(y(t)). We have, according to the
Euler-Lagrange equations,

dE _d (OL\ . oL, OL. OL. 0L
at  dt\ag) 1T 9¢? 9q1 9¢1 w

_ (4 (oLy_oL\. oL 0L
“\a\aq) 8q)1 T

oL
Since for a closed system — = 0, the energy is conserved. O

ot

Conservation of energy for a closed mechanical system is a fundamental law
of physics which follows from the homogeneity of time. For a general closed
system of N interacting particles considered in Example [2.2]

N N
E=Y me2—L=>Y img}+V(r)
a=1 a

=1

In other words, the total energy £ =T + V is a sum of the kinetic energy and
the potential energy.

3.2. Noether theorem.

DEFINITION. A Lagrangian L : TM — R is invariant with respect to the
diffeomorphism g : M — M if L(g.(v)) = L(v) for all v € TM. The diffeo-
morphism ¢ is called the symmetry of a closed Lagrangian system (M, L). A
Lie group G is the symmetry group of (M,L) (group of continuous symme-
tries) if there is a left G-action on M such that for every g € G the mapping
M >x+— g -z € M is a symmetry.

Continuous symmetries give rise to conservation laws.

THEOREM 3.3 (Noether). Suppose that a Lagrangian L : TM — R is in-
variant under a one-parameter group {gs}ser of diffeomorphisms of M. Then
the Lagrangian system (M, L) admits an integral of motion I, given in standard
coordinates on T M by

) oL
= 7.0_,
s=0 8q ’

L N~OL o (dgi(q)
I == ey =
(a.9) ;:1 o (a.9) < Is
L o . . .
where X = E az(q)y is the vector field on M associated with the flow gs.
ql

i=1
The integral of motion I is called the Noether integral.
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PROOF. It follows from Corollary [3.2] that I is a well-defined function on
TM. Now differentiating L((gs)«(7'(t))) = L(7/(t)) with respect to s at s = 0
and using the Euler-Lagrange equations we get

0—% _A'_aiL'—i aiL +87Ld7a—i aiL
T g T 9% wt\oq) Y agat ~ at \aq®)’

where a(t) = (a*(y(t)),...,a"(v(1))). O

REMARK. A vector field X on M is called an infinitesimal symmetry if the
corresponding local flow g of X (defined for each s € R on some Ug; C M) is
a symmetry: Lo (gs). = L on Us. Every vector field X on M lifts to a vector
field X’ on T M, defined by a local flow on T M induced from the corresponding
local flow on M. In standard coordinates on T'M,

N iy N iy D N e O
(3.1) X*ZG(Q)aqi and X *ZG(Q)aququ 30 Va5

=1 i=1 2,j=1

It is easy to verify that X is an infinitesimal symmetry if and only if dL(X') = 0
on T'M, which in standard coordinates has the form

n n L
(3.2) ; Z:: aq] =0

The following generalization of Noether’s theorem will be used for Hamil-
tonian systems with symmetries.

PROPOSITION 3.2. Suppose that for the Lagrangian L : TM — R there exist
a vector field X on M and a function K on TM such that for every path v in
M

’

d

AL(X) (1) = 5

—K(y'(t)).
Then

"~ , . OL
=Y a'(q) a5 (@9~ K(@.d)
i=1
is an integral of motion for the Lagrangian system (M, L).

PRrOOF. Using Euler-Lagrange equations, we have along the extremal -,

d (0L \ 0L ot oL. dK -
— [ ==a —a=—".
aq 8q aq dt
ExaMPLE 3.1 (Conservation of momentum). Let M = V be a vector space,
and suppose that a Lagrangian L is invariant with respect to a one-parameter
group gs(q) = g+ sv, v € V. According to Noether’s theorem,

"\, 0L
el

I= ,
g’

i=1
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is an integral of motion. Now let (M, L) be a closed Lagrangian system of N
interacting particles considered in Example We have M =V = R3Y  and the
Lagrangian L is invariant under simultaneous translation of coordinates r, =
(rl, 72, r3) of all particles by the same vector ¢ € R®. Thus v = (¢, ...,c) € R3V
and for every ¢ = (c!,c?,¢®) € R?,

N
oL oL oL
— 1 2 3 _ 1 2 3
I—}Zl (c 87’%4—6 8752_'—6 37'“2>_CP1+C Py+4c’Ps

is an integral of motion. The integrals of motion P;, P5, P3 define the vector

N oL
P:Z:laf«

(or rather a vector in the dual space to R?), called the momentum of the system.
Explicitly,

e R?

a

N
P = § ma'f‘av
a=1

so that the total momentum of a closed system is the sum of momenta of in-
dividual particles. Conservation of momentum is a fundamental physical law
which reflects the homogeneity of space.

oL
Traditionally, p; = —— are called generalized momenta corresponding to gen-

04t
eralized coordinates ¢°, and F; = E are called generalized forces. In these no-
q

tations, the Euler-Lagrange equations have the same form
p=F

as Newton’s equations in Cartesian coordinates. Conservation of momentum
implies Newton’s third law.

ExaMPLE 3.2 (Conservation of angular momentum). Let M = V be a vector
space with Euclidean inner product. Let G = SO(V') be the connected Lie group
of automorphisms of V' preserving the inner product, and let g = so(V) be the
Lie algebra of GG. Suppose that a Lagrangian L is invariant with respect to the
action of a one-parameter subgroup gs(q) = e** - ¢ of G on V', where x € g and
e” is the exponential map. According to Noether’s theorem,

" 0L
i=1 94

is an integral of motion. Now let (M, L) be a closed Lagrangian system of N
interacting particles considered in Example We have M =V = R3*V and
the Lagrangian L is invariant under a simultaneous rotation of coordinates r, of
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all particles by the same orthogonal transformation in R®. Thus z = (u,...,u) €
50(3) @ -+ - ® s0(3), and for every u € s0(3),

N

N
oL oL oL
I = Z ((u c1rg)? ol + (u-7)? 72 +(u-r)? 87‘3>
a—1 a a a

00 0
is an integral of motion. Let v = u' X; +u? Xy +u3 X3, where X; = (8 @l)—é) , Xo =

001 0-10
(_9 0 8) , X3 = ((1) 0 8) is the basis in s0(3) ~ R3 corresponding to the rota-
tions about the vectors e, e, e3 of the standard orthonormal basis in R3. Since

U-Tq =u X rq, where u = (u!,u? u?), we have

I =u* My 4+ > My + u®Ms,

where M = (My, Ma, M3) € R? (or rather a vector in the dual space to s0(3))
is given by

N

oL

M = Zru X i
a=1

The vector M is called the angular momentum of the system. Explicitly,

N
M = Zra X MaTa,

a=1

so that the total angular momentum of a closed system is the sum of angu-
lar momenta of individual particles. Conservation of angular momentum is a
fundamental physical law which reflects the isotropy of space.
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Lecture 4. Integration of equations of motion-I

A complete general solution can be obtained for two very important exam-
ples: for a motion on the real line and for a system of two interacting particles.

4.1. One-dimensional motion. The motion of systems with one degree
of freedom is called one-dimensional. In terms of a Cartesian coordinate z on
M = R the Lagrangian takes the form

L=1imi® - V().

The conservation of energy

1
E= imﬁc2 + V(z)
allows us to solve the equation of motion in a closed form by separation of

variables. We have

dx 2
it = E(E - V(2)),

so that
P [0 / dx
V2 /) JE-V@)
The inverse function z(t) is a general solution of Newton’s equation

. av
mE=——,
with two arbitrary constants, the energy E and the constant of integration.

Since kinetic energy is non-negative, for a given value of E the actual motion
takes place in the region of R where V(z) < E. The points where V(z) = E are
called turning points. The motion which is confined between two turning points
is called finite. The finite motion is periodic — the particle oscillates between
the turning points x7 and x5 with the period

(F/W

If the region V(x) < E is unbounded, then the motion is called infinite and the
particle eventually goes to infinity. The regions where V(z) > FE are forbidden.
On the phase plane with coordinates (z,y) Newton’s equation reduces to the

first order system

. . av
mi =y, §=——

Trajectories correspond to the phase curves (z(t),y(t)), which lie on the level

sets
y2

~— 4V =F
5 TV (@)
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of the energy function. The points (zg,0), where xq is a critical point of the po-
tential energy V(x), correspond to the equilibrium solutions. The local minima
correspond to the stable solutions and local maxima correspond to the unstable
solutions. For the values of E which do not correspond to the equilibrium solu-
tions the level sets are smooth curves. These curves are closed if the motion is
finite.

The simplest non-trivial one-dimensional system, besides the free particle, is
the harmonic oscillator with V(z) = $kz* (k > 0), considered in Example
The general solution of the equation of motion is

z(t) = Acos(wt + ),

[k
where A is the amplitude, w = \/ — is the frequency, and « is the phase of a
m

2

simple harmonic motion with the period T = T The energy is F = %mwQAQ‘
w

and the motion is finite with the same period T" for E > 0.

4.2. Two-body problem. The motion of a system of two interacting par-
ticles — the two-body problem — can also be solved completely. Namely, in this
case (see Example M = R% and

ml'r‘% mgr%
2 2

L =

= V(lr1 —r2).

Introducing on R® new coordinates

mir moT
r=r —7ry and R = TATLTM2T2
mi + me
we get
L=1ImR*+ L —V(|r)),

mims

where m = my + mo is the total mass and p = is the reduced mass

mi + me
of a two-body system. The Lagrangian L depends only on the velocity R of
the center of mass and not on its position R. A generalized coordinate with
this property is called cyclic. It follows from the Euler-Lagrange equations that
generalized momentum corresponding to the cyclic coordinate is conserved. In
our case it is a total momentum of the system,

P = a—L = mR,
OR
so that the center of mass R moves uniformly. Thus in the frame of reference
where R = 0, the two-body problem reduces to the problem of a single particle
of mass p in the external central field V(|r|).
It follows from the conservation of the angular momentum M = ur X 7 that
during motion the position vector r lies in the plane P orthogonal to M in R3.
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Choosing the z-axis along M the plane P becomes the zy-plane and in polar
coordinates
T =7rcosp, y=rsiney

the Lagrangian takes the form

L= iu(i?+1r2¢%) = V(r).

The coordinate ¢ is cyclic and its generalized momentum ur?¢ coincides with
|M]| if ¢ > 0 and with —| M| if ¢ < 0. Denoting this quantity by M, we get the
equation

(4.1) wrip = M,

which is equivalent to Kepler’s second lauﬂ Using (4.1) we get for the total
energy

2

(4.2) E = $u(P® +7°¢%) + V(r) = §® + V(r) + R

Thus the radial motion reduces to a one-dimensional motion on the half-line
r > 0 with the effective potential energy

M2
V;fff(T) = V(T) + 2/‘LT2)

where the second term is called the centrifugal energy. As in the previous section,
the solution is given by

(4.3)

t\/g/J#ww

It follows from (4.1) that the angle ¢ is a monotonic function of ¢, given by
another quadrature

(4.4)

M / dr
= :
V21 ) 13/ E = Veyp(r)

yielding an equation of the trajectory in polar coordinates.

The set Veys(r) < E is a union of annuli 0 < 7y <7 < rppge < 00, and the
motion is finite if 0 < 7,5 < 7 < Tpae < 00. Though for a finite motion r(t)
oscillates between r,,,;, and 7,,4., corresponding trajectories are not necessarily
closed. The necessary and sufficient condition for a finite motion to have a closed
trajectory is that the angle

M Tmax d,r

V20 e, B = Vg (r)

91t is the statement that sectorial velocity of a particle in a central field is constant.

Ay
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is commensurable with 27, i.e., Ap = 270 for some m,n € Z. If the angle Ay

n
is not commensurable with 27, the orbit is everywhere dense in the annulus
Tmin <r< Tmaz- If

lim Vegp(r) = lim V(r) =V < oo,

r—o00 r—o0
the motion is infinite for £ > V — the particle goes to oo with finite velocity
A /%(E -V).

PROBLEM 4.6. Prove all the statements made in this section.

PROBLEM 4.7. Show that if
l% ‘/eff(r) = —00,

then there are orbits with 7y, = 0 — “fall” of the particle to the center.

PROBLEM 4.8. Prove that all finite trajectories in the central field are closed only

when o
V(r)=kr®, k>0, and V(r)=-—, a>0.
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Lecture 5. Integration of equations of motion-II

5.1. Kepler problem. A very important special case is when

It describes Newton’s gravitational attraction (o > 0) and Coulomb electrostatic
interaction (either attractive or repulsive). First consider the case when « > 0
— Kepler’s problem. The effective potential energy is

o} M?
Vepp(r) = —=
ff (r) r + 212
and has the global minimum
Vp = on
Y VE

M2
at 1o = —. The motion is infinite for £ > 0 and is finite for V; < E < 0. The
«

explicit form of trajectories can be determined by an elementary integration in

(4.4), which gives
M M

LT +C
2u(E — Vo)

Choosing a constant of integration C' = 0 and introducing notation

/ E
= d =4/1— —
p=rg and e Vo’

we get the equation of the orbit (trajectory)

© = cos

(5.1) b 1+ ecoso.
r

This is the equation of a conic section with one focus at the origin. Quantity
2p is called the latus rectum of the orbit, and e is called the eccentricity. The
choice C' = 0 is such that the point with ¢ = 0 is the point nearest to the origin
(called the perihelion). When Vy < E < 0, the eccentricity e < 1 so that the
orbit is the ellipsdﬂ with the major and minor semi-axes

p a p | M]

=" —=_——\ b= .
1—e2  2|E| Vi—e2  \/2u|E]

(5.2) a

b

Correspondingly, rpin = e

s Tmaz = 1L7 and the period T of elliptic orbit
—e

[ i
T = .
T 3B

10The statement that planets have elliptic orbits with a focus at the Sun is Kepler’s first
law.

is given by
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The last formula is Kepler’s third law. When E > 0, the eccentricity e > 1 and
the motion is infinite — the orbit is a hyperbola with the origin as internal
focus. When F = 0, the eccentricity e = 1 — the particle starts from rest at oo
and the orbit is a parabola.

For the repulsive case a < 0 the effective potential energy Vess(r) is always
positive and decreases monotonically from co to 0. The motion is always infinite
and the trajectories are hyperbolas (parabola if E = 0)

B:—l—i—ecosgo
r
with
M? 2EM?
p=— and e=4/l14+—F5—.
ap Qo

Kepler’s problem is very special: for every o € R the Lagrangian system on
R3 with
_ 1,2 @
(5.3) L = spur + -
has three extra integrals of motion W7, Wy, W3 in addition to the components

of the angular momentum M. The corresponding vector W = (Wy, Wo, W3),
called the Laplace-Runge-Lenz vector, is given by

. ar
(5.4) W=rxM-—.
T
. . . . ar .
Indeed, using equations of motion u# = ——5 and conservation of the angular
r

momentum M = pr X 7, we get

W:m"'x(rxf)—g-l-ia(r.gr)r
r r
:(uﬁf’)rf(uf~r)f’fﬁ+7a(r'r)r
r

=0.

r3

Using p(r x M) -r = M? and the identity (a X b)? = a?b? — (a - b)?, we get

2M?E
(5.5) W?=a?+
I
where
_p _a
C2u 7

is the energy corresponding to the Lagrangian (5.3)). The fact that all orbits are
conic sections follows from this extra symmetry of the Kepler problem.
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5.2. The motion of a rigid body. The configuration space of a rigid
body in R? with a fixed point is a Lie group G' = SO(3) of orientation preserving
orthogonal linear transformations in R3. Every left-invariant Riemannian metric
(, ) on G defines a Lagrangian L : TG — R by

L(v) = 3(v,v), veTG.

According to Example equations of motion of a rigid body are geodesic
equations on G with respect to the Riemannian metric ( , ). Let g = s0(3) be
the Lie algebra of G. A velocity vector § € T,G defines the angular velocity of
the body by Q = (Lg-1).g € g, where L, : G — G are left translations on G. In
terms of angular velocity, the Lagrangian takes the form

L=1(Q,9),

where ( , )¢ is an inner product on g = T.G given by the Riemannian metric
().
Let
B(z,y) = —3 Tray

be the Killing form on the Lie algebra g = so(3) — the Lie algebra of 3 x 3
skew-symmetric matrices. It determines ad g-invariant inner product on g,

B(L%Z],y) + B("Ev [y,z]) =0

for all z,y,z € g. Thus we have (Q,Q). = B(A - Q,Q) for some symmetric
linear operator A : g — g which is positive-definite with respect to the Killing
form. Such a linear operator A is called the inertia tensor of the body. The
principal axes of inertia of the body are orthonormal eigenvectors ey, e, ez of A;
corresponding eigenvalues [1, I5, I3 are called the principal moments of inertia.
Setting Q = Q1e1 + Qges + NQze3 we get

(5.6) L =3(LO7 + LO3 + 1393).

Choosing the principal axes of inertia as a basis in R? we get the Lie algebra
isomorphism g ~ R3,

0 —Q3 Qo

g20=| Q5 0 - | > (Q,2,0) €R?,
0 0

where the Lie bracket in R? is given by the cross-product. Indeed, for the ma-
trices

0 —as as 0 —b3 ba
a = as 0 —ai and b= b3 0 —b1
—asg aq 0 —b2 bl 0

corresponding to the vectors a = (a1, aq, az) and b = (b, by, b3) we have

[a,b] = ¢,
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where ¢ corresponds to the vector ¢ = a x b. Moreover,
B(a,b) =a-b.

Now let A € End g be symmetric with respect to the inner product given
by the Killing form. It is easy to see that there is a symmetric 3 x 3 matrix A
such that
A-Q=A0+ QA.

Indeed, the matrix AQ 4+ QA is skew-symmetric and the transformation Q —
AQ + QA defines a linear mapping 2 — A - Q on g. By the cyclic property of

the trace,
B(A-Q,Q)=-TrAQ? = B(Q,A-Q),
so that A is symmetric. The assignment A — A is a linear map between six-

dimensional vector spaces and to prove that it is surjective it is sufficient to
show that it is injective. Suppose that symmetric A is such that

AQ+QA=0

for all skew-symmetric €. Let  be an eigenvector of A with the eigenvalue .
Since Q- x = Q X x, we have

A xz) + ANQ x x) =0,

so in the orthogonal complement to & the matrix A is —\ times the identity
operator. The same argument applied to any vector in this teo-dimensional
subspace then shows that x is an eigenvector with the eigenvalue —\, so that
A = 0. Finally, if A = diag(l;,I2, I3), then elementaryt calculation shows that
A = diag(ly,12,13), where

L+ I3-1 L+ I3 1 L+ L1

l l ls
1 2 5 b2 2 s 43 2

Now we are ready to derive the equations of motion for Lagrangian (5.6). As
in Lecture [1} for the family g(¢,) of paths in G with fixed end points we put

_ g(t,e)

dg(t) 9%
e=0

€ T,,yG and wu(t) =g '(t)ég(t) € g.

Correspondingly, the infinitesimal variation d§2(¢) is defined by

00t e)
B e e=0 ’

5Q(t)

where Q(t,e) = g7 1(t,e)g(t,€) € g. We have
60 =—g 099 g +97"0g
d
= —g 09+ (97 "d9) + g g9 "0y

dt
=0+ [Q,u].
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Though this formula is valid for the motion on any Lie group G, in case of the
matrix Lie group G = SO(3) we will use the formula using multiplication of
matrices 6Q = —uQ + g~ 14g.

For the action functional

S(g.9) = / " LQ)dt

t1
where L = —% Tr AQ? we have using integration by parts

=205 = Tr(AdQQ + AQ6Q)dt

- /t2 Tr {(AQ + QA)(—uQ + g~ '69) } dt

t1

tz . .
- / Tr { (—(QAQ +Q2A) — (AQ+ QA) + (AQ + QA)Q) u} dt
t1

t2 . .
- / Tr { (A(22 —024) — (A + QA)) u(t)} dt.
(31
Since w(t) is arbitrary smooth skew-symmetric matrix with u(t;) = u(t2) = 0
and the bilinear form Tr AB is non-degenerate we obtain the following equations
of motion

AQ + QA = AQ? — Q%A
Specializing A = diag(ly, I, l3) we readily celebrated Euler’s equations
L = (I — I3)Q2Qs,
L = (Is — I1)2:Qs,
Qs = (I} — I,),Qs.

They describe the rotation of a free rigid body around a fixed point. In the
system of coordinates with axes which are the principal axes of inertia, principal
moments of inertia of the body are I, I, I5.

It is easy to see by direct computation that Euler’s equations have two
integrals of motion, the total kinetic energy 1103 + I,Q3 + 1303 and the total
angular momentum I2Q3 + 12032 + 12Q3. Leaving aside the trivial case I; =
I, = I3 we conclude that the motion in R® is constrained to the intersection of
two quadrics which is a real form of elliptic curve.

PROBLEM 5.9. Find parametric equations for orbits in Kepler’s problem.

PROBLEM 5.10. Prove that the Laplace-Runge-Lenz vector W points in the di-
rection of the major axis of the orbit and that |W| = «e, where e is the eccentricity
of the orbit.

PROBLEM 5.11. Using the conservation of the Laplace-Runge-Lenz vector, prove
that trajectories in Kepler’s problem with E < 0 are ellipses. (Hint: Evaluate W - r
and use the result of the previous problem.)

PROBLEM 5.12. Solve Euler’s equations.
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Lecture 6. Legendre transform and Hamilton’s equations

6.1. Legendre transform. The equations of motion of a Lagrangian sys-
tem (M, L) in standard coordinates associated with a coordinate chart U C M
are the Euler-Lagrange equations. In expanded form, they are given by the
following system of second order ordinary differential equations:

o (0.4) = <§L (a q))

- = (9(]18(]3 q? 8(]18(]3 q7q q 9 I I

In order for this system to be solvable for the highest derivatives for all initial
conditions in TU, the symmetric n X n matrix

. 9*L "
HL(q>q) = {aqiaq] (q q)}lj_l

should be invertible on TU.

DEFINITION. A Lagrangian system (M, L) is called non-degenerate if for
every coordinate chart U on M the matrix Hy,(q, q) is invertible on TU.

REMARK. Note that the n X n matrix Hy, is a Hessian of the Lagrangian
function L for vertical directions on T'M. Under the change of standard coor-
dinates ¢’ = F(q) and ¢’ = F.(q)q (see Lecture [1]) it has the transformation
law

Hi(q,4) = Fu.(¢9)"Hi(qd',¢')Fu(q),

where F,(q)7 is the transposed matrix, so that the condition det Hy, # 0 does
not depend on the choice of standard coordinates.

For an invariant formulation, consider the 1-form 6, defined in standard
coordinates associated with a coordinate chart U C M by

g = L

QL—

It follows from Corollary [3.2] that 07, is a well-defined 1-form on TM.

LEMMA 6.2. A Lagrangian system (M, L) is non-degenerate if and only if
the 2-form dfr, on TM is non-degenerate.

PROOF. In standard coordinates,

. o’L .. .. 0°L
o = <aqiaqjdqj/\dq * 353 quM\dq)

ij=1

and it is easy to see, by considering the 2n-form df} = df; A --- A dfy, that the
—_——

n
2-form dfy, is non-degenerate if and only if the matrix Hj, is non-degenerate. [J
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REMARK. Using the 1-form 6, the Noether integral I in Theorem can
be written as

(6.1) I=ix/(01),

where X' is a lift to TM of a vector field X on M given by (3.1)).

DEFINITION. Let (U, ¢) be a coordinate chart on M. Coordinates

(p,q) = (pla"'apnvqla"'aqn)

on the chart T*U ~ R™ x U on the cotangent bundle T*M are called standard
coordinatesﬂ if for (p,q) € T*U and f € C>(U)

of

i=1,...,n.

Equivalently, standard coordinates on 7*U are uniquely characterized by
the condition that p = (p1,...,pn) are coordinates in the fiber corresponding

to the basis dg', ..., dq" for T; M, dual to the basis %, e % for Ty M.
q q

DEFINITION. The 1-form 6 on T*M, defined in standard coordinates by
0= pidg' = pdq,
i=1
is called Liouville’s canonical 1-form.

Corollary [3:2] shows that 6 is a well-defined 1-form on T*M. Clearly, the
1-form 6 also admits an invariant definition

O(u) = p(m.(u)), where wue Ty \T"M,

and 7 : T*M — M is the canonical projection.

DEFINITION. A fibre-wise mapping 77, : TM — T*M is called a Legendre
transform associated with the Lagrangian L if

In standard coordinates the Legendre transform is given by

. oL, .
7..(q,q9) = (p,q), where p= %(q,q)

The mapping 77, is a local diffeomorphism if and only if the Lagrangian L is
non-degenerate.

uFollowing tradition, the first n coordinates parametrize the fiber of T*U and the last
n coordinates parametrize the base.
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6.2. Hamiltonian function.

DEFINITION. Suppose that the Legendre transform 7 : TM — T*M is a
diffeomorphism. The Hamiltonian function H : T*M — R, associated with the
Lagrangian L : TM — R, is defined by

L
HOTL:EL:qi_—L.
dq

In standard coordinates,

H(p,q) = (pq — L(q; d))lp:% ;

OL
where ¢q is a function of p and g defined by the equation p = ?(q, q) through

the implicit function theorem. The cotangent bundle T*M is called the phase
space of the Lagrangian system (M, L). It turns out that on the phase space the
equations of motion take a very simple and symmetric form.

THEOREM 6.4. Suppose that the Legendre transform 7, : TM — T*M is a
diffeomorphism. Then the FEuler-Lagrange equations in standard coordinates on
TM,

d 0L 0L

dtd¢*  dq'

are equivalent to the following system of first order differential equations in
standard coordinates on T*M :

t=1,...,n,

S
pbi = aq“ q_apla A R
ProoF. We have
OH OH
dH = —d —d
op D+ q q
. oL oL .
= (pdq—i—qdp— aid — dQ)
q 9q ") |p,_oL
oq

. oL
=

Thus under the Legendre transform,

_oL’
P—aq

oH . _dOL_oL__oH .
- P=4tog ~aq =~ oq

Corresponding first order differential equations on T*M are called Hamil-
ton’s equations (canonical equations).

COROLLARY 6.5. The Hamiltonian H is constant on the solutions of Hamil-
ton’s equations.
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PRroOF. For H(t) = H(p(t),q(t)) we have

dH  OH . g+ 87H OHOH OHOH
dt 3q 8p aq ap ap 8q
For the Lagrangian

2

L= m; —V(r)=T-V, recRs,
of a particle of mass m in a potential field V (r) we have
= 8—L =mr
P=or ="

Thus the Legendre transform 7, : TR? — T*R3 is a global diffeomorphism,
linear on the fibers, and

p2

H(p,r)= (pr—L)l,_p = 5~ +V(r)=T+V.
Hamilton’s equations
po 01 _p
Op m’
,_ _OH _ oV
p= or  Or

Vv
are equivalent to Newton’s equations with the force F' = ——

r
For the Lagrangian system describing small oscillators, considered in Exam-
ple we have p = mq, and using normal coordinates we get

2

H(p.q) = (pd - L(g,d))|;_» = T+ Vola) = %(1@2 +m? Y wi(d)?)

Similarly, for the system of N interacting particles, considered in Example
we have p = (p1,...,pn), where

oL
or,

Pa = =Myrq, a=1,...,N.

The Legendre transform 77, : TR3N — T*R3¥ is a global diffeomorphism, linear
on the fibers, and

N
p
H(p, 7 — L =T+V.
(p,r) = (pr ;:1 2ma

In particular, for a closed system with pair-wise interaction,

Zp“ + D Va(ra — 7).

Ma 1<a<b<N




30

In general, consider the Lagrangian
n
L= lay(a)i'd - V(g), q R,
i5=1

where A(q) = {ai;(q)}};—; is a symmetric n x n matrix. We have

OL G

and the Legendre transform is a global diffeomorphism, linear on the fibers, if
and only if the matrix A(q) is non-degenerate for all ¢ € R™. In this case,

n

H(p.q) = (P4~ L(g:9))],_or = > La"(q)pip; + V(q),
q i,j=1

where {a*(q)}}";—; = A~'(q) is the inverse matrix.

PROBLEM 6.13 (Second tangent bundle). Let m : TM — M be the canonical
projection and let T3 (T'M) be the vertical tangent bundle of TM along the fibers of
m — the kernel of the bundle mapping m. : T(T'M) — TM. Prove that there is a
natural bundle isomorphism ¢ : #*(T'M) ~ Ty (T M), where 7*(T'M) is the pullback of
the tangent bundle TM of M under the map 7.

PROBLEM 6.14 (Invariant definition of the 1-form ). Show that 8. (v) =
dL((i o ms)v), where v € T(TM).

PROBLEM 6.15. Prove that if a vector field X on M is an infinitesimal symmetry
of the Lagrangian system (M, L), then Lx/(6r) = 0, where Lx- stands for the Lie
derivative.

PROBLEM 6.16. Prove that the path «(t) in M is a trajectory for the Lagrangian
system (M, L) if and only if

i4r 1y (dOL) + dEL(Y () = 0,
where 4/(t) is the velocity vector of the path +/(¢) in TM.

PROBLEM 6.17. Suppose that for a Lagrangian system (R",L) the Legendre

transform 77, is a diffeomorphism and let H be the corresponding Hamiltonian. Prove
that for fixed g and ¢ the function pg — H(p, q) has a single critical point at p = g—
q
PROBLEM 6.18. Give an example of a non-degenerate Lagrangian system (M, L)
such that the Legendre transform 7, : TM — T* M is one-to-one but not onto.
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Lecture 7. Hamiltonian formalism

7.1. Hamilton’s equations on 7*M. With every function H : T*M —
R on the phase space T*M there are associated Hamilton’s equations — a
first-order system of ordinary differential equations, which in the standard co-
ordinates on T*U has the form

oH . OH

(7.1) P:—Tq» q‘aT;'

The corresponding vector field Xy on T*U,

" (0H 0 OH 0 OH 0 0H 0
XH:Z(aw‘wa.) = %p9a  Dq op’
im1 pi 09 q" Op; p 0q q Op
gives rise to a well-defined vector field Xy on T*M, called the Hamiltonian
vector field. Suppose now that the vector field Xy on T*M is complete, i.e.,
its integral curves exist for all times. The corresponding one-parameter group
{9+ }ter of diffeomorphisms of T*M generated by Xy is called the Hamiltonian
phase flow. It is defined by g:(p,q) = (p(t),q(t)), where p(t), ¢(t) is a solution
of Hamilton’s equations satisfying p(0) = p, ¢(0) = q.

Liouville’s canonical 1-form 6 on T* M defines a 2-form w = df. In standard
coordinates on T*M it is given by

w=Y dp; Ndq' = dp Adq,

=1

and is a non-degenerate 2-form. The form w is called the canonical symplectic
form on T* M. The symplectic form w defines an isomorphism J : T*(T* M) —
T(T*M) between tangent and cotangent bundles to T*M. For every (p,q) €
T*M the linear mapping J ! : TppT*M — T(’;’q)T*M is given by

wlug,ug) = J M(ug)(ur), i, up € Tip,gT" M.

The mapping J induces the isomorphism between the infinite-dimensional vector
spaces AY(T*M) and Vect(T* M), which is linear over C°°(T*M). If ¥ is a 1-
form on T*M, then the corresponding vector field J(¢) on T*M satisfies

w(X,J(9) = 0(X), X € Vect(T*M),

and J~1(X) = —ixw. In particular, in standard coordinates,
0 0
dp) = — d J(dq)=———,
J(dp) = 5 . ™ (dq) ap

so that Xy = J(dH).

THEOREM 7.6. The Hamiltonian phase flow on T* M preserves the canonical
symplectic form.
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PrOOF. We need to prove that (¢:)*w = w. Since g; is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d
% —EXHQJ = 0,

t=0

(9t)*w

where Ly, is the Lie derivative along the vector field X . Since for every vector
field X,

Lx (df) = d(X(f)),

we compute

OH i o0H
Lx, (dp;) = —d (W) and Lx,(d¢")=d <3pi> ,

so that

n

Lx,w= Z (EXH (dpi) A dq' + dp; A\ Lx,, (dqi))
i=1

- OH ; oH
72 <d <aqi> A dg +dpi/\d<8pi>) = —d(dH)=0. O

=1

COROLLARY 7.7. Lx,,(0) = d(—H+0(Xg)), where 0 is Liouville’s canonical
1-form.
" 1
The canonical symplectic form w on T* M defines the volume form w—| =S WA Aw
n!  nl ——~
on T*M, called Liouville’s volume form.
COROLLARY 7.8 (Liouville’s theorem). The Hamiltonian phase flow on T* M

preserves Liouville’s volume form.

The restriction of the symplectic form w on T*M to the configuration space
M is 0. Generalizing this property, we get the following notion.

DEFINITION. A submanifold .Z of the phase space T*M is called a La-
grangian submanifold if dim .# = dim M and w|, = 0.

It follows from Theorem that the image of a Lagrangian submanifold
under the Hamiltonian phase flow is a Lagrangian submanifold.

7.2. The action functional in the phase space. With every function
H on the phase space T* M there is an associated 1-form

0 — Hdt = pdq — Hdt

on the extended phase space T*M x R, called the Poincaré-Cartan form. Let
v : [to, t1] = T*M be a smooth parametrized path in T* M such that w(v(¢)) =
qo and 7(y(t1)) = q1, where 7 : T*M — M is the canonical projection. By
definition, the lift of a path v to the extended phase space T*M x R is a path



LECTURE 7. HAMILTONIAN FORMALISM 33

o : [to,t1] = T*M x R given by o(t) = (v(¢),t), and a path o in T*M x R
is called an admissible path if it is a lift of a path v in T*M. The space of
admissible paths in 7*M x R is denoted by P(T*M)g;ié A variation of an
admissible path o is a smooth family of admissible paths o., where € € [—¢q, £¢]
and o¢ = o, and the corresponding infinitesimal variation is

do.
oo = 9%

€ T,P(T" M)}
e=0

(cf. Section . The principle of the least action in the phase space is the
following statement.

THEOREM 7.9 (Poincaré). The admissible path o in T*M xR is an extremal
for the action functional

swaz/hmq—ﬂﬁrzllwq—HMt

if and only if it is a lift of a path v(t) = (p(t),q(t)) in T*M, where p(t) and
q(t) satisfy canonical Hamilton’s equations

,__oH . oH
b= aq’ q_ap'

PROOF. As in the proof of Theorem for an admissible family o.(t) =
(p(t,e),q(t,e),t) we compute using integration by parts,

[ . O0H_, OH
S(oe) = / (425131' —pidq" — 04" — 51%) dt
e=0 (72) ; to oq' op;
£ o]
i=1

Since dq(to) = dq(t1) = 0, the path o is critical if and only if p(¢) and q(t)
satisfy canonical Hamilton’s equations (|7.1)). O

d

de

REMARK. For a Lagrangian system (M, L), every path ~v(t) = (g(¢)) in the
configuration space M connecting points gy and ¢; defines an admissible path

oL
A(t) = (p(t), q(t),t) in the phase space T*M by setting p = 20 If the Legendre
q

transform 77, : TM — T*M is a diffeomorphism, then

awz/Rm—sz/"uﬂmww

to to

Thus the principle of the least action in a configuration space — Hamilton’s
principle — follows from the principle of the least action in a phase space. In
fact, in this case the two principles are equivalent (see Problem [6.17]).

From Corollary we immediately get the following result.
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COROLLARY 7.10. Solutions of canonical Hamilton’s equations lying on the
hypersurface H(p,q) = E are extremals of the functional fo pdq in the class of
admissible paths o lying on this hypersurface.

COROLLARY 7.11 (Maupertuis’ principle). The trajectory v = (q(7)) of a
closed Lagrangian system (M, L) connecting points go and ¢1 and having energy
E is the extremal of the functional

/ pdq / g—gmm,qm)q(f)w

on the space of all paths in the configuration space M connecting points gy and
q1 and parametrized such that H(%(T), q(t))=FE.

The functional

So(v) = / pdq
Y
is called the abbreviated action 3

PRrOOF. Every path v = g(7), parametrized such that H(‘g—s, q) = E, lifts

to an admissible path o = (‘3—5(7‘), q(7),7), a <7 < b, lying on the hypersurface

H(p.q)=E. O
7.3. The action as a function of coordinates. Consider a non-degene-

rate Lagrangian system (M, L) and denote by ~(t; go, vg) the solution of Euler-

Lagrange equations
doL 0L 0

dt0q 0Oq

with the initial conditions v(to) = go € M and (to) = vo € Ty, M. Suppose
that there exist a neighborhood Vy C T, M of vy and ¢; > ¢ such that for all
v € Vp the extremals 7(t; g, v), which start at time ¢y at gg, do not intersect in
the extended configuration space M x R for times ty < t < t;. Such extremals
are said to form a central field which includes the extremal vo(t) = v(¢; g0, vo).
The existence of the central field of extremals is equivalent to the condition that
for every tg < t < t; there is a neighborhood Uy C M of 7 (t) € M such that
the mapping

(7.2) Vo 2 v q(t) = y(t;qo,v) € Uy

is a diffeomorphism. Basic theorems in the theory of ordinary differential equa-
tions guarantee that for ¢; sufficiently close to to every extremal ~(t) for tg < t <
t; can be included into the central field. In standard coordinates the mapping
is given by ¢ — q(t) = v(t; o, §).-

For the central field of extremals v(t; qo, 4), to < t < t1, we define the action
as a function of coordinates and time (or, classical action) by

S(a,t: o, to) = / L(y/(r))dr,

to

12The accurate formulation of Maupertuis’ principle is due to Euler and Lagrange.
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where v(7) is the extremal from the central field that connects gy and gq. For
given go and tg, the classical action is defined for t € (tg,¢1) and q € Ut0<t<t1 U;.
For a fixed energy F,

(7.3) 5(q,t;q0,t0) = So(g.t; go, to) — E(t — to),
where Sy is the abbreviated action from the previous section.

THEOREM 7.12. The differential of the classical action S(q,t) with fized
iatial point is given by
dS = pdq — Hdt,

OL
where p = a—q(q, q) and H = pq — L(q,q) are determined by the velocity q of

the extremal (1) at time t.

PROOF. Let g. be a path in M passing through q at ¢ = 0 with the tangent
vector v € TgM ~ R", and for ¢ small enough let ~.(7) be the family of
extremals from the central field satisfying ~.(tp) = qo and ~.(t) = g.. For the
infinitesimal variation §y we have 6v(tg) = 0 and d(t) = v, and for fixed t we
get from the formula for variation with the free ends that

)

dS(v) = a—qv.

a8
This shows that 90 p. Setting g(t) = v(t), we obtain

d as . 0S8
%S(Q(t)’t) = 87qq + i L,

sothat%:L—pq:—H. O

COROLLARY 7.13. The classical action satisfies the following nonlinear par-
tial differential equation

oS aS

This equation is called the Hamilton-Jacobi equation. Hamilton’s equations
(7.1) can be used for solving the Cauchy problem

(7.5) 5(q t)l;—o = s(q), s€C™(M),

for Hamilton-Jacobi equation ([7.4)) by the method of characteristics.
We can also consider the action S(q,t; qo,to) as a function of both variables
q and qg. The analog of Theorem is the following statement.

ProPOSITION 7.3. The differential of the classical action as a function of
initial and final points is given by

dS = pdq — podqo — H(p, q)dt + H(po, qo)dlo.
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PROBLEM 7.19. Verify that Xy is a well-defined vector field on T* M.

PROBLEM 7.20. Show that if all level sets of the Hamiltonian H are compact
submanifolds of T* M, then the Hamiltonian vector field X is complete.

PROBLEM 7.21. Let w: T*M — M be the canonical projection, and let £ be a
Lagrangian submanifold. Show that if the mapping 7|, : £ — M is a diffeomorphism,
then .Z is a graph of a smooth function on M. Give examples when for some ¢t > 0
the corresponding projection of g¢(-%’) onto M is no longer a diffeomorphism.
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Lecture 8. Poisson bracket and symplectic form

8.1. Classical observables and Poisson bracket. Smooth real-valued
functions on the phase space T* M are called classical observables. The vector
space C°(T*M) is an R-algebra — an associative algebra over R with a unit
given by the constant function 1, and with a multiplication given by the point-
wise product of functions. The commutative algebra C*°(T*M) is called the
algebra of classical observables. Assuming that the Hamiltonian phase flow g,
exists for all times, the time evolution of every observable f € C*°(T*M) is
given by

fe(p, @) = f(ge(p,q)) = f(p(t),q(t)), (p,q) € TM.

Equivalently, using the Hamiltonian vector field
_9HO 0HO
"~ opoq 0qop

the time evolution is described by the differential equation

dfe  dfs _ d(fiogs) _
dt — ds |,  ds |, Xu(f)
L (OH 0N OHOLY _OH 05 0 0f
- = \Opi0¢' O’ dp;)  Op Oq  Oq Ip’
called Hamilton’s equation for classical observables. Setting
af 0g Of dg
1 =X === <(T*M

we can rewrite Hamilton’s equation in the concise form

(82) Ty,

where it is understood that (8.2)) is a differential equation for a family of func-
tions f; on T M with the initial condition f;(p,q)|,_q = f(p,q). The properties
of the bilinear mapping

{, }:C®(T*"M) x C*(T*M) = C(T*M)
are summarized below.

THEOREM 8.14. The mapping { , } satisfies the following properties.

(i) (Relation with the symplectic form)
{f.9} = w(J(df), J(dg)) = w(Xy, Xy).
(i) (Skew-symmetry)
{f,9} =g/}
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(iii) (Leibniz rule)
{fg,h} = flg,h} +9{f, h}.
(iv) (Jacobi identity)

{£.Ag.htt +{g.{h, f}} +{hA{f.g}} =0
forall f,g,h € C=(T*M).

PROOF. Property (i) immediately follows from the definitions of w and
J in Section Properties (ii)-(iii) are obvious. The Jacobi identity could
be verified by a direct computation using , or by the following elegant
argument. Observe that {f, g} is a bilinear form in the first partial derivatives
of f and g, and every term in the left-hand side of the Jacobi identity is a
linear homogenous function of second partial derivatives of f, g, and h. Now the
only terms in the Jacobi identity which could actually contain second partial
derivatives of a function h are the following:

{fa {gvh}} + {g? {hvf}’} = (XfXg - Xng)<h)

However, this expression does not contain second partial derivatives of h since
it is a commutator of two differential operators of the first order which is again
a differential operator of the first order! O

The observable {f, g} is called the canonical Poisson bracket of the observ-
ables f and g. The Poisson bracket map { , } : C*(T*M) x C*(T*M) —
C(T*M) turns the algebra of classical observables C*°(T*M) into a Lie al-
gebra with a Lie bracket given by the Poisson bracket. It has an important
property that the Lie bracket is a bi-derivation with respect to the multiplica-
tion in C*°(T*M). The algebra of classical observables C*°(T™* M) is an example
of the Poisson algebra — a commutative algebra over R carrying a structure of
a Lie algebra with the property that the Lie bracket is a derivation with respect
to the algebra product.

In Lagrangian mechanics, a function I on T'M is an integral of motion for the
Lagrangian system (M, L) if it is constant along the trajectories. In Hamiltonian
mechanics, an observable I — a function on the phase space T* M — is called an
integral of motion (first integral) for Hamilton’s equations if it is constant
along the Hamiltonian phase flow. According to , this is equivalent to the
condition

{H,I} =0.
It is said that the observables H and I are in involution (Poisson commute).
8.2. Canonical transformations and generating functions.

DEFINITION. A diffeomorphism g of the phase space T* M is called a canon-
ical transformation, if it preserves the canonical symplectic form w on T* M, i.e.,
9*(w) = w. By Theorem the Hamiltonian phase flow g; is a one-parameter
group of canonical transformations.
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PROPOSITION 8.4. Canonical transformations preserve Hamilton’s equations.

PRrROOF. From ¢g*(w) = w it follows that the mapping J : T*(T*M) —
T(T*M) satisfies

(8.3) g.oJogt =
Indeed, for all X,Y € Vect(M) we havd"|
w(X,Y) =g ()(X,Y) = w(g«(X), 9:(Y)) 0 g,
so that for every 1-form 9 on M,
w(X, J(g"(9))) = " (9)(X) = ¥(g:(X)) 0 g = w(g«(X), J (V) o g,
which gives g.(J(g*(0))) = J(9). Using (8.3), we get
9+(Xm) = g:(J(dH)) = J((¢") " (dH)) = Xk,

where K = H o g~'. Thus the canonical transformation g maps trajectories of
the Hamiltonian vector field X g into the trajectories of the Hamiltonian vector
field Xg. O

REMARK. In classical terms, Proposition means that canonical Hamil-
ton’s equations

=g, a="pag
b= dq D, q), q_ap b,q
in new coordinates (P, Q) = ¢g(p, q) continue to have the canonical form

0K K

. .0
P:_%(PvQ)a Q: 87P(P7Q)

with the old Hamiltonian function K (P, Q) = H(p, q).

Consider now the classical case M = R™. For a canonical transformation

(P,Q) = g(p,q) set P = P(p,q) and Q = Q(p, q). Since dP A\ dQ = dp /\ dq
on T*M ~ R?", the 1-form pdq — PdQ — the difference between the canoni-
cal Liouville 1-form and its pullback by the mapping g — is closed. From the
Poincaré lemma it follows that there exists a function F(p, q) on R?" such that

(8.4) pdg — PdQ = dF (p,q).

, . 0P orP\" .
Now assume that at some point (pg, qo) the n x n matrix — = is
op Opj } ;2
non-degenerate. By the inverse function theorem, there exists a neighborhood
U of (po, qo) in R?™ for which the functions P, q are coordinate functions. The

function
S(P,q) = F(p,q) + PQ

13Since g is a diffeomorphism, g+ X is a well-defined vector field on M.
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is called a gemerating function of the canonical transformation g in U. It follows

from (8.4) that
dS = pdq + QdP,

whence in new coordinates P, q on U,

08 oS

p=afq(P,q) and Q:a?(PaQ)'

The converse statement below easily follows from the implicit function theorem.

PROPOSITION 8.5. Let S(P,q) be a function in some neighborhood U of a
point (Py, qo) € R?™ such that the n x n matriz

928 928 "
M(PO,QO) = {W(Poﬂo)}m_l

is non-degenerate. Then S is a generating function of a local (i.e., defined in
some neighborhood of (Py, qo) in R?™) canonical transformation.

Suppose there is a canonical transformation (P,Q) = g¢(p,q) such that
H(p,q) = K(P) for some function K. Then in the new coordinates Hamilton’s
equations take the form

. . 0K
and are trivially integrated:
0K
P(t) = P(0), Q(t)=Q(0)+ ta?(P(O))-

oP
Assuming that the matrix o is non-degenerate, the generating function S(P, q)

satisfies the differential equation

(86) 1(5.(P.a).a) = K(P)

where after the differentiation one should substitute ¢ = q(P, Q), defined by
the canonical transformation g~—'. The differential equation for fixed P,

as it follows from (7.3]), coincides with the Hamilton-Jacobi equation for the
abbreviated action Sy = S — Et where E = K(P),

H(%(P,q),q) - E.

THEOREM 8.15 (Jacobi). Suppose that there is a function S(P,q) which de-
pends on n parameters P = (Py, ..., Py), satisfies the Hamilton-Jacobi equation
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2

0POq

for some function K(P), and has the property that the n xn matriz

18 non-degenerate. Then Hamilton’s equations

0H . 0H

p:_aiq’ ‘I—a*p

can be solved explicitly, and the functions P(p,q) = (Pi(p,q),...,P.(p,q)),

defined by the equations p = a—(P,q), are integrals of motion in involution.
q
oS a5 . .
PROOF. Setp = 6—q(P7 g)and Q = 8—P(P, q). By the inverse function the-

orem, g(p,q) = (P, Q) is a local canonical transformation with the generating
function S. It follows from that H(p(P,Q),q(P,Q)) = K(P), so that
Hamilton’s equations take the form (8.5). Since w = dP A dQ, integrals of
motion Pi(p,q),..., P.(p,q) are in involution. O

The solution of the Hamilton-Jacobi equation satisfying conditions in Theo-
rem [8.15]is called the complete integral. At first glance it seems that solving the
Hamilton-Jacobi equation, which is a nonlinear partial differential equation, is
a more difficult problem then solving Hamilton’s equations, which is a system
of ordinary differential equations. It is quite remarkable that for many problems
of classical mechanics one can find the complete integral of the Hamilton-Jacobi
equation by the method of separation of variables. By Theorem [8.15] this solves
the corresponding Hamilton’s equations.

PROBLEM 8.22. Find the generating function for the identity transformation
P=pQ=gq
PROBLEM 8.23. Prove Proposition

PROBLEM 8.24. Suppose that the canonical transformation g(p,q) = (P, Q) is
such that locally (Q, g) can be considered as new coordinates (canonical transforma-
tions with this property are called free). Prove that S1(Q, q) = F(p, q), also called a
generating function, satisfies

851 8Sl
= d P=——-.
p 94 an 90

PROBLEM 8.25. Find the complete integral for the case of a particle in R® moving

in a central field.
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Lecture 9. Symplectic and Poisson manifolds

The notion of a symplectic manifold is a generalization of the example of a
cotangent bundle T* M

DEFINITION. A non-degenerate, closed 2-form w on a manifold .# is called
a symplectic form, and the pair (#,w) is called a symplectic manifold.

Since a symplectic form w is non-degenerate, a symplectic manifold .Z is

necessarily even-dimensional, dim .# = 2n. The nowhere vanishing 2n-form w”
n

w

defines a canonical orientation on ., and as in the case .# = T*M, — is
n!

called Liouville’s volume form. We also have the general notion of a Lagrangian

submanifold.

DEFINITION. A submanifold .Z of a symplectic manifold (., w) is called a
Lagrangian submanifold, if dim ¥ = %dim/{ and the restriction of the sym-
plectic form w to .Z is 0.

Symplectic manifolds form a category. A morphism between (.#1,w;) and
(Mo, ws), also called a symplectomorphism, is a mapping f : M1 — Mo such
that w1 = f*(w2). When 4, = #> and w; = wo, the notion of a symplectomor-
phism generalizes the notion of a canonical transformation. The direct product
of symplectic manifolds (#,w1) and (.#2,ws) is a symplectic manifold

(M % Mo, 7T (w1) + 75 (w2)),

where 7; and 7o are, respectively, projections of .#| x .#5 onto the first and
second factors in the Cartesian product.

Besides cotangent bundles, another important class of symplectic manifolds
is given by Kéhler manifoldﬂ Recall that a complex manifold .# is a Kahler
manifold if it carries the Hermitian metric whose imaginary part is a closed
(1,1)-form. In local complex coordinates z = (z1,...,2") on .# the Hermitian
metric is written as

h = Z ho5(z, z)dz* ® dz’.
a,B=1
Correspondingly,

1
g=Reh= D hap(z2)(d2" @ d2° + dz° © dz®)

is the Riemannian metric on .# and

w:fIrnh— Zh (z,2)dz" A dzP
aﬂl

is the symplectic form on .# (considered as a 2n-dimensional real manifold).

14Needless to say, not every symplectic manifold admits a complex structure, not to
mention a K&hler structure.
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The simplest compact Kihler manifold is CP! ~ S? with the symplectic
form given by the area 2-form of the Hermitian metric of Gaussian curvature 1
— the round metric on the 2-sphere. In terms of the local coordinate z associated
with the stereographic projection CP! ~ C U {cc},

Similarly, the natural symplectic form on the complex projective space CP" is
the symplectic form of the Fubini-Study metric. By pull-back, it defines sym-
plectic forms on complex projective varieties.

The simplest non-compact Kéahler manifold is the n-dimensional complex
vector space C" with the standard Hermitian metric. In complex coordinates

z=(z',...,2") on C" it is given by

hzdz@didez“@déa.

a=1

In terms of real coordinates (z,y) = (x!,..., 2" y',...,y") on R?" ~ C", where
z = x + 1y, the corresponding symplectic form w = —Imh has the canonical
form
7: n
w=dzndz = > da® Ady® = dx A dy.

a=1
This example naturally leads to the following definition.

DEFINITION. A symplectic vector space is a pair (V,w), where V' is a vector
space over R and w is a non-degenerate, skew-symmetric bilinear form on V.

It follows from basic linear algebra that every symplectic vector space V has
a symplectic basis — a basis e',...,e", fi,..., fn of V, where 2n = dim V, such
that

w(el,el) = w(fi, fj) =0 and w(ei,fj) = 5;, ,j=1,...,n.

In coordinates (p,q) = (p1,---,Pn,q",...,q") corresponding to this basis, V =~
R?” and

w=dpAdq = dei/\dqi.
i=1

Thus every symplectic vector space is isomorphic to a direct product of the
phase planes R? with the canonical symplectic form dpAdq. Introducing complex
coordinates z = p+iq, we get the isomorphism V' ~ C", so that every symplectic
vector space admits a Kahler structure.

It is a basic fact of symplectic geometry that every symplectic manifold is
locally isomorphic to a symplectic vector space.
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THEOREM 9.16 (Darboux’ theorem). Let (.#,w) be a 2n-dimensional sym-
plectic manifold. For every point x € .# there is a neighborhood U of x with
local coordinates (p,q) = (p1,--.,0n,q,...,q") such that on U

w=dpANdq= dei/\dqi.
i=1

Coordinates p, g are called canonical coordinates (Darboux coordinates). The
proof proceeds by induction on n with the two main steps stated as Problems

[0.28 and 029

A non-degenerate 2-form w for every x € .# defines an isomorphism J :
Tr M — Ty M by

w(ug,uz) = J_l(ug)(ul), uy,Ug € Ty M .
Explicitly, for every X € Vect(.#) and 9 € Al (.#) we have
w(X,J() =9(X) and J HX)=—ix(w)
(cf. Section . In local coordinates & = (z!,...,22") for the coordinate chart
(U, ) on A, the 2-form w is given by

2n
w=1 Z wij(x) dx’ A da?,
ij=1
where {w;; () ?3-:1 -
on ¢(U). Denoting the inverse matrix by {w" (x)

is a non-degenerate, skew-symmetric matrix-valued function

2n

ij=1, we have
:

2n
J(da') = waij(m)%, i=1,...,2n.
j=1

DEFINITION. A Hamiltonian system is a pair consisting of a symplectic man-
ifold (A ,w), called a phase space, and a smooth real-valued function H on .#,
called a Hamiltonian. The motion of points on the phase space is described by
the vector field

Xpg = J(dH),

called a Hamiltonian vector field.

The trajectories of a Hamiltonian system ((.#,w), H) are the integral curves
of a Hamiltonian vector field Xg on .. In canonical coordinates (p, q) they
are described by the canonical Hamilton’s equations (7.1)),

,__oH . _oH
b= aq’ q_ap'

Suppose now that the Hamiltonian vector field Xy on .# is complete. The
Hamiltonian phase flow on 4 associated with a Hamiltonian H is a one-
parameter group {g:}+cr of diffeomorphisms of .# generated by Xp. The fol-
lowing statement generalizes Theorem [7.6]
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THEOREM 9.17. The Hamiltonian phase flow preserves the symplectic form.
Proor. It is sufficient to show that Lx,w = 0. Using Cartan’s formula
Lx =ixod+doix
and dw = 0, we get for every X € Vect(.#),
Lxw=(doix)(w).
Since ix (w)(Y) = w(X,Y), we have for X = X and every Y € Vect(.#) that
i (@)(Y) = w(J(dH),Y) = —dH(Y).
Thus ix,, (w) = —dH, and the statement follows from d* = 0. O

COROLLARY 9.18. A wector field X on 4 is a Hamiltonian vector field if
and only if the 1-form ix(w) is exact.

DEFINITION. A vector field X on a symplectic manifold (.#,w) is called

a symplectic vector field if the 1-form ix(w) is closed, which is equivalent to
ﬁxw =0.

The commutative algebra C*°(.#), with a multiplication given by the point-
wise product of functions, is called the algebra of classical observables. Assuming
that the Hamiltonian phase flow g; exists for all times, the time evolution of
every observable f € C°°(.#) is given by

fi(x) = flge(2)), =€ A,
and is described by the differential equation

dfy
o= Xu(ft)

— Hamilton’s equation for classical observables. Hamilton’s equations for ob-
servables on .Z have the same form as Hamilton’s equations on .# = T*M,
considered in Section 2.3. Since

Xu(f) = df(Xu) = w(Xu, J(df) = w(Xu, Xy),

we have the following.

DEFINITION. A Poisson bracket on the algebra C°°(.#) of classical observ-
ables on a symplectic manifold (.#,w) is a bilinear mapping { , } : C°° () x
C®(M) — C®(M), defined by

{fvg}:w(Xf7Xg)’ fvgecoo('//)'
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Now Hamilton’s equation takes the concise form

daf
9.1 - ={H
(9.1 @ = qm gy,
understood as a differential equation for a family of functions f; on .# with the
initial condition f;|,_, = f. In local coordinates & = (z',...,2*") on .#,
2n
i 0f (®) Og(x)
= — v .
(hate) == 3 @) 52T

THEOREM 9.19. The Poisson bracket { , } on a symplectic manifold (A ,w)
1s skew-symmetric and satisfies Leibniz rule and the Jacobi identity.

PROOF. The first two properties are obvious. It follows from the definition
of a Poisson bracket and the formula

that the Jacobi identity is equivalent to the property
(9.2) (X, Xg] = X501
Let X and Y be symplectic vector fields. Using Cartan’s formulas we get

i[)@y](&)) = £X(iy(w)) - iy(ﬁx(w))
= d(ix o iy (w)) +ixd(iy (w))
= d(w(Y, X)) = iz(w),

where Z is a Hamiltonian vector field corresponding to w(X,Y) € C®(.#).
Since the 2-form w is non-degenerate, this 1mphes [X,Y] = Z, so that setting
X =X;,Y =X, and using {f, g} = w(Xs, X,), we get . O

From (9.2) we immediately get the following result.

COROLLARY 9.20. The subspace Ham(.#) of Hamiltonian vector fields on
A is a Lie subalgebra of Vect(#). The mapping C°(A) — Ham (.4 ), given
by f — Xy, is a Lie algebra homomorphism with the kernel consisting of locally
constant functions on A .

As in the case .# = T*M (see Section [8.I]), an observable I — a function
on the phase space .# — is called an integral of motion (first integral) for the
Hamiltonian system ((.#,w), H) if it is constant along the Hamiltonian phase
flow. According to , this is equivalent to the condition

(9.3) {H,I} =0.

It is said that the observables H and I are in involution (Poisson commute).
From the Jacobi identity for the Poisson bracket we get the following result.
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COROLLARY 9.21 (Poisson’s theorem). The Poisson bracket of two integrals
of motion is an integral of motion.

Proor. If {H,I1} = {H,I,} =0, then
{H L, Io}} = {{H, 1}, I} — {{H, >}, I} = 0. O

It follows from Poisson’s theorem that integrals of motion form a Lie algebra
and, by , corresponding Hamiltonian vector fields form a Lie subalgebra in
Vect(#). Since {I,H} = dH(X;) = 0, the vector fields X are tangent to
submanifolds .#g = {x € # : H(x) = E} — the level sets of the Hamiltonian
H. This defines a Lie algebra of integrals of motion for the Hamiltonian system
((A ,w), H) at the level set .

9.1. Poisson manifolds. he notion of a Poisson manifold generalizes the
notion of a symplectic manifold.

DEFINITION. A Poisson manifold is a manifold .# equipped with a Poisson
structure — a skew-symmetric bilinear mapping
{,}:0°(l)x C®(M) — C*(M)
which satisfies the Leibniz rule and Jacobi identity.

Equivalently, .# is a Poisson manifold if the algebra A = C°(.#) of classical
observables is a Poisson algebra — a Lie algebra such that the Lie bracket is
a bi-derivation with respect to the multiplication in A (a point-wise product
of functions). It follows from the derivation property that in local coordinates

x = (2',...,2") on .#, the Poisson bracket has the form
N
i O0f (x) 9g(x)
— ij (o) ZIA\L) GINL)
IEEWIES - T8

The 2-tensor 1% (x), called a Poisson tensor, defines a global section 7 of the
vector bundle T.# N T.# over M .

The evolution of classical observables on a Poisson manifold is given by
Hamilton’s equations, which have the same form as 7

a _

dt
The phase flow g; for a complete Hamiltonian vector field Xy = {H, -} defines
the evolution operator U, : A — A by

Ue(f)(x) = fa:(2)), [ € A

THEOREM 9.22. Suppose that every Hamiltonian vector field on a Poisson
manifold (A ,{ , }) is complete. Then for every H € A, the corresponding
evolution operator Uy is an automorphism of the Poisson algebra A, i.e.,

(9.4) Ue{f.9}) ={U:(f), Us(g)}  forall f,g€ A

Xu(f) ={H, [}.
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Conversely, if a skew-symmetric bilinear mapping { , } : C®° (M) x C°(H)
— C®(M) is such that Xg = {H, -} are complete vector fields for all H € A,
and corresponding evolution operators Uy satisfy , then (A,{ , }) is a
Poisson manifold.

ProoF. Let fi = Ui(f), g = U(g), ancﬁ hy = U ({f,9}). By definition,

dhy

S0 (H b,
dt {H, b}

d
%{fhgt}: {{Haft}agt}+{fta{H7gt}} and
If (#,{, })is a Poisson manifold, then it follows from the Jacobi identity that

{{Hv ft}?gt} + {ftv {Hv gt}} = {H, {fhgt}}»

so that h; and {f, g:} satisfy the same differential equation . Since these
functions coincide at t = 0, follows from the uniqueness theorem for the
ordinary differential equations.

Conversely, we get the Jacobi identity for the functions f, g, and H by dif-
ferentiating with respect to ¢ at t = 0. O

COROLLARY 9.23. A global section n of T.# NT. M is a Poisson tensor if
and only if
Lx,n=0 forall fecA.

DEFINITION. The center of a Poisson algebra A is
Z(A)={fecA:{f,g) =0 foral gecA}.

A Poisson manifold (.#,{, }) is called non-degenerate if the center of a Poisson
algebra of classical observables A = C*(.#) consists only of locally constant
functions (Z(A) = R for connected .#).

Equivalently, a Poisson manifold (.#,{ , }) is non-degenerate if the Poisson
tensor 7 is non-degenerate everywhere on .#, so that .# is necessarily an even-
dimensional manifold. A non-degenerate Poisson tensor for every x € .# defines
an isomorphism J : T} .# — T,.# by

n(ur,ug) = ua(J(u1)), ur,ug € Ty M.

In local coordinates & = (1, ..., 2") for the coordinate chart (U, ) on ., we
have
_ N P
J(dz") = K — ,=1,...,N.
( x ) Jz:; ’r} (m) axj ) 7 ) K

Poisson manifolds form a category. A morphism between (.#1,{ , }1) and
(M2,{ , }2) is a mapping ¢ : #1 — #> of smooth manifolds such that

{fow,govh ={f,gtaop forall fgeC™(4>).

15Here gt is not the phase flow!
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A direct product of Poisson manifolds (.#1,{, }1) and (.#2,{, }2) is a Poisson
manifold (A4 x #2,{ , }) defined by the property that natural projection
maps w1 : M1 X Moy — M1 and wy : M1 X Mo — Mo are Poisson mappings. For
f € C®(y x M) and (x1,22) € M1 X M denote, respectively, by fg) and
fé?) restrictions of f to .# x {xs} and {x1} X 5. Then for f, g € C° (M X M),

{f, 9} (@1, 2) = {£D, g0 (@) + {£2, 92 }a(@2).

Non-degenerate Poisson manifolds form a subcategory of the category of Poisson
manifolds.

THEOREM 9.24. The category of symplectic manifolds is (anti-) isomorphic
to the category of non-degenerate Poisson manifolds.

PRrOOF. According to Theorem every symplectic manifold carries a
Poisson structure. Its non-degeneracy follows from the non-degeneracy of a sym-
plectic form. Conversely, let (.#,{ , }) be a non-degenerate Poisson manifold.
Define the 2-form w on .# by

wX,Y)=JHY)(X), X,Y € Vect(#),

where the isomorphism J : T*.# — T.# is defined by the Poisson tensor 7. In

local coordinates = (z*,...,2") on .,
w=— Z nij(x) dz’ A da?
1<i<j<N

where {n;;()}}¥;_, is the inverse matrix to {n" (x)}\;_,. The 2-form w is skew-

symmetric and non-degenerate. For every f € Alet Xy = {f, -} be the corre-
sponding vector field on .#. The Jacobi identity for the Poisson bracket { , }
is equivalent to Lx,n = 0 for every f € A, so that

LXfw =0.
Since Xy = Jdf, we have w(X, Jdf) = df (X) for every X € Vect(.#), so that
w(Xf’Xg) = {f7 g}
By Cartan’s formula,

dw(X,Y,Z) = 3 (Lxw(Y,Z) — Lyw(X,Z) + Lzw(X,Y)

~w([X,Y],Z) +w([X, Z],Y) —w(]Y, Z], X)),
where XY, Z € Vect(#). Now setting X = X, Y = X,,Z = X}, we get
dW(Xf’Xg’Xh) = % (w(Xn, [vaXg]) + W(va [Xg?Xh]) + w(Xga [X}MXf]))
= 5 (WX, Xip0)) + (X5, Xggny) +0(Xgs Xin51))
1

=0.
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The exact 1-forms df, f € A, generate the vector space of 1-forms A!(.#)
as a module over 4, so that Hamiltonian vector fields X; = Jdf generate the
vector space Vect(.#) as a module over A. Thus dw = 0 and (AZ,w) is a
symplectic manifold associated with the Poisson manifold (.#,{ , }). It follows
from the definitions that Poisson mappings of non-degenerate Poisson manifolds
correspond to symplectomorphisms of associated symplectic manifolds. O

REMARK. One can also prove this theorem by a straightforward computation

in local coordinates x = (z',...,2") on .#. Just observe that the condition

Mij(x) +5'77jl(€8) Onui(x)

- — =0, 4,750l=1,...,N
axl 82’:1 8{EJ ) Z’.]? ) Y )

which is a coordinate form of dw = 0, follows from the condition

N k(g ) ik (g ) li(g
Z <?7ij (@) 8n5x(j ) T nl] (x) 877333(j ) + nk] () ar(gm(j )> =0

j=1

which is a coordinate form of the Jacobi identity, by multiplying it three times
by the inverse matrix 7;;(x) using

N D (g
> (1) 25D 2D (2)) =

REMARK. Let .# = T*R™ with the Poisson bracket { , } given by the
canonical symplectic form w = dp A dq, where (p,q) = (p1,---,Pn,q",---,q")
are coordinate functions on T*R"™. The non-degeneracy of the Poisson manifold
(T*R™,{, }) can be formulated as the property that the only observable f €
C>(T*R™) satisfying

{fimy=-={fipm}=0, {fi¢'}=--={fq"}=0

is f(p, q) = const.

PROBLEM 9.26. Show that a symplectic manifold (.#,w) admits an almost com-
plex structure: a bundle map ¢ : T.# — T.# such that /2 = —id.

PROBLEM 9.27. Give an example of a symplectic manifold which admits a com-
plex structure but not a Kéhler structure.

PROBLEM 9.28. Let (#,w) be a symplectic manifold. For z € .# choose a
function ¢' on .# such that ¢'(z) = 0 and dg" does not vanish at z, and set X = —X_1.
Show that there is a neighborhood U of € .# and a function p; on U such that
X(ql) =1 on U, and there exist coordinates p1,q*, 2%, ..., 222 on U such that

9 and Y =X, =

_ 9
T op1 oqt”

PROBLEM 9.29. Continuing Problem [9.28] show that the 2-form w — dp; Adg* on
U depends only on coordinates z*, ..., 2°" "2 and is non-degenerate.
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PrOBLEM 9.30 (Dual space to a Lie algebra). Let g be a finite-dimensional Lie
algebra with a Lie bracket [, ], and let g* be its dual space. For f,g € C*°(g"*) define

{f,9}(w) = u(ldf, dg]) ,

where u € g* and T,;g" ~ g. Prove that { , } is a Poisson bracket. (It was introduced
by Sophus Lie and is called a linear, or Lie-Poisson bracket.) Show that this bracket
is degenerate and determine the center of A = C*(g*).

PROBLEM 9.31. A Poisson bracket {, } on .# restricts to a Poisson bracket {, }o
on a submanifold .4 if the inclusion ¢ : A4~ — . is a Poisson mapping. Show that the
Lie-Poisson bracket on g* restricts to a non-degenerate Poisson bracket on a coadjoint
orbit, associated with the Kirillov-Kostant symplectic form.
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Lecture 10. Noether theorem with symmetries

Let G be a finite-dimensional Lie group that acts on a connected symplectic
manifold (.#,w) by symplectomorphisms. The Lie algebra g of G acts on .#
by vector fields

d

ds s=0

Xe(f) () flet ),
and the linear mapping g 3 £ — X¢ € Vect(.#) is a homomorphism of Lie
algebras,

[(Xe, Xn] = Xie), EmE

The G-action is called a Hamiltonian action if X¢ are Hamiltonian vector fields,
ie., for every ¢ € g there is ¢ € C*°(.#), defined up to an additive constant,
such that X¢ = Xg, = J(d®¢). It is called a Poisson action if there is a choice of
functions ®, such that the linear mapping ® : g — C°°(.#) is a homomorphism
of Lie algebras,

(101) {(I)Ev q)'r?} = (I)[ﬁ,n]a ga neg.

DEFINITION. A Lie group G is a symmetry group of the Hamiltonian system
((A ,w), H) if there is a Hamiltonian action of G on .# such that

H(g-x)=H(x), g€G, ze€ A.

THEOREM 10.25 (Noether theorem with symmetries). If G is a symmetry
group of the Hamiltonian system ((M,w), H), then the functions ®¢, £ € g, are
the integrals of motion. If the action of G is Poisson, the integrals of motion

satisfy (0-1).

PRrROOF. By definition of the Hamiltonian action, for every £ € g,
0=Xe(H) = Xo,(H) = {P¢, H}. O

COROLLARY 10.26. Let (M, L) be a Lagrangian system such that the Le-
gendre transform 71, : TM — T*M 1is a diffeomorphism. Then if a Lie group
G is a symmetry of (M, L), then G is a symmetry group of the corresponding
Hamiltonian system ((T*M,w), H = Ey o1, "), and the corresponding G-action
onT*M is Poisson. In particular, ®¢ = —1I OTL_l, where I¢ are Noether integrals
of motion for the one-parameter subgroups of G generated by & € g.

ProOF. Let X be the vector field associated with the one-parameter sub-
group {e*¢},cr of diffeomorphisms of M, used in Theorem and let X' be
its lift to TM. We havd™

(10.2) Xe = —(10).(X"),

16The negative sign reflects the difference in definitions of X and X¢.



LECTURE 10. NOETHER THEOREM WITH SYMMETRIES 53

and it follows from (6.1) that ®¢ = ix,(0) = 6(X¢), where 6 is the canonical
Liouville 1-form on T*M. From Cartan’s formula and formula Lx/(6r,) = 0 (see

Problem we get
dq)g = d(iX5 (9)) = —’L'X5 (de) + £X5 (9) == _iXE (w),

so that

J(dDe) = ~J(ix, () = Xe,
and the G-action is Hamiltonian. Using again the formula Lx/(6z) = 0 and
another Cartan’s formula, we obtain

ey = ix x,](0) = Lx(ix, (0) +ix, (Lx,(0))
:Xé(q>77) = {‘I)ﬁaq)n}- U

ExAMPLE 10.1. The Lagrangian
L=1imr?*—V(r)

for a particle in R? moving in a central field (see Section is invariant with
respect to the action of the group SO(3) of orthogonal transformations of the
Euclidean space R3. Let uy,us,us be a basis for the Lie algebra so(3) corre-
sponding to the rotations with the axes given by the vectors of the standard
basis e, ez, e3 for R? (see Example in Section. These generators satisfy
the commutation relations
[Ui7uj] = EijkUk,

where i,7,k = 1,2,3, and €;5; is a totally anti-symmetric tensor, 123 = 1.
Corresponding Noether integrals of motion are given by ®,,, = —M;, where

M, = (r X p)1 = r2p3 — 32,
My = (r X p)2 = r3p1 — 113,
M3z = (r x p)3 = ripz — m2p1

are components of the angular momentum vector M = r x p. (Here it is conve-
nient to lower the indices of the coordinates 7; by the Euclidean metric on R3.)

For the Hamiltonian )
D
H=1
5y, TV()

we have

{H, M} = 0.

According to Theorem [10.25| and Corollary [10.26] Poisson brackets of the com-
ponents of the angular momentum satisfy

{M;, M;} = —&;1, My,
which is also easy to verify directly using (8.1)),

_0fdg Of 9g

{f,9}(p,r) = %E - 5%
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ExAMPLE 10.2 (Kepler’s problem). For every o € R the Lagrangian system
on R? with
L=1m#?4+2
r
has three extra integrals of motion — the components Wy, Wy, W3 of the Laplace-
Runge-Lenz vector, given by

w=Lym-2
m r
(see Section [5.1). Using Poisson brackets from the previous example, together
with {r;, M;} = —e;x7 and {p;, M;} = —eixDk, we get by a straightforward
computation,

2H
{Wi, M} = —€ij Wy, and  {W;, W} = ﬁsijkMzm

2
where H = % _ 2 is the Hamiltonian of Kepler’s problem.
m T

The Hamiltonian system ((.#,w),H), dim.#Z = 2n, is called completely
integrable if it has n independent integrals of motion Fy = H, ..., F}, in involu-
tion. The former condition means that dFy(z),...,dF,(x) € T;.# are linearly
independent for almost all x € .#. Hamiltonian systems with one degree of
freedom such that dH has only finitely many zeros are completely integrable.
Complete separation of variables in the Hamilton-Jacobi equation (see Section
provides other examples of completely integrable Hamiltonian systems.

Let ((A#,w),H) be a completely integrable Hamiltonian system. Suppose
that the level set A4y = {x € A : Fi(x) = f1,...,F.(x) = fn} is compact and
tangent vectors JdFi,...,JdF, are linearly independent for all z € .#. Then
by the Liouville-Arnold theorem, in a neighborhood of .# there exist so-called
action-angle variables: coordinates I = (I1,...,1,) € R? = (Rso)™ and ¢ =
(15 y0n) € T" = (R/27Z)" such that w =dI Adyp and H = H(I1,...,I,).
According to Hamilton’s equations,

. . 0H .
I;, =0 and goi:wiza—li, i=1,...,n,
so that action variables are constants, and angle variables change uniformly,
wi(t) = vi(0) + w;t, i = 1,...,n. The classical motion is almost-periodic with
the frequencies wq, ..., wy.
PROBLEM 10.32 (Coadjont orbits). Let G be a finite-dimensional Lie group, let

g be its Lie algebra, and let g* be the dual vector space to g. For u € g* let # = O,
be the orbit of u under the coadjoint action of G on g*. Show that the formula

"J(ulv u2) = u([xlv 1‘2]),

where u1 = ad*z1(u), u2 = ad*z2(u) € Ty, and ad™ stands for the coadjoint action
of a Lie algebra g on g*, gives rise to a well-defined 2-form on ., which is closed and
non-degenerate. (The 2-form w is called the Kirillov-Kostant symplectic form.)
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PrROBLEM 10.33. Do the computation in Example and show that the Lie
algebra of the integrals M1, Ma, M3, W1, W2, W3 in Kepler’s problem at H(p,r) = E
is isomorphic to the Lie algebra so(4), if £ < 0, to the Euclidean Lie algebra e(3), if
E =0, and to the Lie algebra so(1,3), if E > 0.

PROBLEM 10.34. Find the action-angle variables for a particle with one degree of
freedom, when the potential V' (z) is a convex function on R satisfying lim|,| e V(2)
= oo. (Hint: Define I = § pdx, where integration goes over the closed orbit with
H(p,x) =E.)

PROBLEM 10.35. Show that a Hamiltonian system describing a particle in R3
moving in a central field is completely integrable, and find the action-angle variables.

PROBLEM 10.36 (Symplectic quotients). For a Poisson action of a Lie group G
on a symplectic manifold (.#,w), define the moment map P : .# — g by

P(x)(§) = Pe(z), E€g, v €A,

where g is the Lie algebra of G. For every p € g* such that a stabilizer G}, of p acts
freely and properly on ., = Pil(p) (such p is called the regular value of the moment
map), the quotient M, = G,\ .4, is called a reduced phase space. Show that M, is a
symplectic manifold with the symplectic form uniquely characterized by the condition
that its pull-back to .#}, coincides with the restriction to .#}, of the symplectic form
w.






Part 2

Classical electrodynamics



Lecture 11. Maxwell equations

11.1. Physics formulation. The electromagnetic force is a fundamental
force responsible for the interaction of electrically charged particles. Particles
with positions 7, € R?, @ = 1,..., N, may carry electric charges e, with the
density function

N
p(r) = Zeaé(r —Tq).

In general one considers the charge density — a signed o-additive measure,
which is absolutely continuous with respect to the standard Lebesgue measure
on R? | i.e., a signed measure p(r)d>r. Moving charges produce electric current.
A single charge eg at a moving point r((¢) produces a current

§(r.1) = equ(®(r —o(t)), where v(t) = X

In general, the current density is

j(T’ t) = p(T‘, t)v(r, t)7

where v(7,t) is a charge velocity at point » € R? at time t.

An electric field E is generated by electric charge and time-varying mag-
netic field B, which produced by moving electric charges. They satisfy Maxwell
equations, which summarize the basic laws of electromagnetism. In a free space
they have the following form

1
(11.1) V-E= E—Op (Gauss law)

— the electric flux leaving a volume is proportional to the charge inside;
(11.2) V-B=0 (Gauss law for magnetism)

— there are no magnetic charges, the total magnetic flux through a closed
surface is zero;

0B
(11.3) VxE= ~ o (Faraday’s induction law)

— the voltage induced in a closed circuit is proportional to the rate of change
of the magnetic flux it encloses;

OFE
(11.4) V x B = poj + Hog0 - (Ampere’s circular law)

— the magnetic field induced arou