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Part 1

Quantum Mechanics





LECTURE 1

Observables and states in classical mechanics

1.1. Measurement in classical mechanics

A measurement of a classical system is the result of a physical experi-
ment which gives numerical values for classical observables. The experiment
consists of creating certain conditions that can be repeated over and over.
These conditions define a state of the system if they yield probability dis-
tributions for the values of all observables of the system.

Mathematically, a state µ on the algebra A = C∞(M ) of classical ob-
servables on the phase space M is the assignment

A 3 f 7→ µf ∈P(R),

where P(R) is a set of probability measures on R — Borel measures on R
such that the total measure of R is 1. For every Borel subset E ⊆ R the
quantity 0 ≤ µf (E) ≤ 1 is a probability that in the state µ the value of the
observable f is in E. The expectation value of an observable f in the state
µ is given by the Lebesgue-Stieltjes integral

Eµ(f) =

∫ ∞
−∞

λdµf (λ),

where µf (λ) = µf ((−∞, λ)) is a distribution function of the measure dµf .
The correspondence f 7→ µf should satisfy the following natural properties.

S1. |Eµ(f)| <∞ for f ∈ A0 — the subalgebra of bounded observables.

S2. Eµ(1) = 1, where 1 is the unit in A.

S3. For all a, b ∈ R and f, g ∈ A,

Eµ(af + bg) = aEµ(f) + bEµ(g),

if both Eµ(f) and Eµ(g) exist.

3



4 1. OBSERVABLES AND STATES IN CLASSICAL MECHANICS

S4. If f1 = ϕ ◦ f2 with smooth ϕ : R→ R, then for every Borel subset
E ⊆ R,

µf1(E) = µf2(ϕ−1(E)).

It follows from property S4 and the definition of the Lebesgue-Stieltjes
integral that

(1.1) Eµ(ϕ(f)) =

∫ ∞
−∞

ϕ(λ)dµf (λ).

In particular, Eµ(f2) ≥ 0 for all f ∈ A, so that the states define normalized,
positive, linear functionals on the subalgebra A0.

Assuming that the functional Eµ extends to the space of bounded, piece-
wise continuous functions on M , and satisfies (1.1) for measurable functions
ϕ, one can recover the distribution function from the expectation values by
the formula

(1.2) µf (λ) = Eµ (θ(λ− f)) ,

where θ(x) is the Heavyside step function,

θ(x) =

{
1, x > 0,

0, x ≤ 0.

Every probability measure dµ on M defines the state on A by assigning1

to every observable f a probability measure µf = f∗(µ) on R — a push-
forward of the measure dµ on M by the mapping f : M → R. It is
defined by µf (E) = µ(f−1(E)) for every Borel subset E ⊆ R, and has the
distribution function

µf (λ) = µ(f−1(−∞, λ)) =

∫
Mλ(f)

dµ,

where Mλ(f) = {x ∈ M : f(x) < λ}. It follows from the Fubini theorem
that

(1.3) Eµ(f) =

∫ ∞
−∞

λdµf (λ) =

∫
M
fdµ.

It turns out that probability measures on M are essentially the only
examples of states. Namely, for a locally compact topological space M the

1There should be no confusion in denoting the state and the measure by µ.
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Riesz-Markov theorem asserts that for every positive, linear functional l on
the space Cc(M ) of continuous functions on M with compact support, there
is a unique regular Borel measure dµ on M such that

l(f) =

∫
M
fdµ for all f ∈ Cc(M ).

This leads to the following definition of states in classical mechanics.

Definition. The set of states S for a Hamiltonian system with the phase
space M is the convex set P(M ) of all probability measures on M . The
states corresponding to Dirac measures dµx supported at points x ∈ M
are called pure states, and the phase space M is also called the space of
states2. All other states are called mixed states. A process of measurement
in classical mechanics is the correspondence

A× S 3 (f, µ) 7→ µf = f∗(µ) ∈P(R),

which to every observable f ∈ A and state µ ∈ S assigns a probability
measure µf on R — a push-forward of the measure dµ on M by f . For
every Borel subset E ⊆ R the quantity 0 ≤ µf (E) ≤ 1 is the probability
that for a system in the state µ the result of a measurement of the observable
f is in the set E. The expectation value of an observable f in a state µ is
given by (1.3).

Pure states are characterized by the property that a measurement of
every observable always gives a well-defined result. Namely, let

σ2µ(f) = Eµ
(

(f − Eµ(f))2
)

= Eµ(f2)− Eµ(f)2 ≥ 0

be the variance of an observable f in the state µ. The following result is
easy to prove.

Lemma 1.1. Pure states are the only states in which every observable
has zero variance.

In particular, a mixture of pure states dµx and dµy, x, y ∈M , is a mixed
state with

dµ = αdµx + (1− α)dµy, 0 < α < 1,

so that σ2µ(f) > 0 for every observable f such that f(x) 6= f(y).
Pure states are used for systems consisting of few interacting particles

(say, a motion of planets in celestial mechanics), when it is possible to

2The space of pure states, to be precise.



6 1. OBSERVABLES AND STATES IN CLASSICAL MECHANICS

measure all coordinates and momenta. Mixed states necessarily appear for
macroscopic systems, when it is impossible to measure all coordinates and
momenta3.

Remark. As a topological space, the space of states M can be recon-
structed from the commutative algebra A of classical observables (equipped
with the C∗-algebra structure) by using the Gelfand-Naimark theorem. Namely,
commutativity of the algebra of observables A results in its realization as
an algebra of functions on the topological space.

1.2. Hamilton’s and Liouville’s dynamical pictures

There are two equivalent ways of describing the dynamics — the time
evolution of a Hamiltonian system ((M , { , }), H) with the algebra of ob-
servables A = C∞(M ) and the set of states S = P(M ). Here we assume
that the Hamiltonian phase flow gt exists for all times, and that the phase
space M carries a volume form dx invariant under the phase flow4.

Hamilton’s Description of Dynamics. States do not depend on
time, and time evolution of observables is given by Hamilton’s equations of
motion,

dµ

dt
= 0, µ ∈ S and

df

dt
= {H, f}, f ∈ A.

The expectation value of an observable f in the state µ at time t is given by

Eµ(ft) =

∫
M
f ◦ gt dµ =

∫
M
f(gt(x))ρ(x)dx,

where ρ(x) =
dµ

dx
is the Radon-Nikodim derivative. In particular, the expec-

tation value of f in the pure state dµx corresponding to the point x ∈ M
is f(gt(x)). Hamilton’s picture is commonly used for mechanical systems
consisting of few interacting particles.

Liouville’s Description of Dynamics. The observables do not de-
pend on time

df

dt
= 0, ∈ A,

and states dµ(x) = ρ(x)dx satisfy the Liouville’s equation

dρ

dt
= −{H, ρ}, ρ(x)dx ∈ S.

3Typically, a macroscopic system consists of N ∼ 1023 molecules. Macroscopic sys-
tems are studied in classical statistical mechanics.

4It is Liouville’s volume form when the Poisson structure on M is non-degenerate.
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Here the Radon-Nikodim derivative ρ(x) =
dµ

dx
and the Liouville’s equation

are understood in the distributional sense. The expectation value of an
observable f in the state µ at time t is given by

Eµt(f) =

∫
M
f(x)ρ(g−t(x))dx.

Liouville’s picture, where states are described by the distribution func-
tions ρ(x) — positive distributions on M corresponding to probability mea-
sures ρ(x)dx — is commonly used in statistical mechanics. The equality

Eµ(ft) = Eµt(f) for all f ∈ A, µ ∈ S

follows from the invariance of the volume form dx and the change of variables
and expresses the equivalence between Liouville’s and Hamilton’s descrip-
tions of the dynamics.

Problem 1.1. Prove formula (1.2).

Problem 1.2. Prove Lemma 1.1.





LECTURE 2

Observables and states in quantum mechanics

Quantum mechanics studies the microworld — the physical laws at an
atomic scale — that cannot be adequately described by classical mechan-
ics. Thus classical mechanics and classical electrodynamics cannot explain
the stability of atoms and molecules. Neither can these theories reconcile
different properties of light, its wave-like behavior in interference and diffrac-
tion phenomena, and its particle-like behavior in photo-electric emission and
scattering by free photons. Moreover, in classical physics it is always as-
sumed that one can neglect the disturbances the measurement brings upon
a system, whereas in the microworld every experiment results in interaction
with the system and thus disturbs its properties. In particular, there exist
observables which cannot be measured simultaneously.

Still, it is quite remarkable that we can formulate quantum mechanics us-
ing the general notions of states, observables, and time evolution, described
in Lecture 1! Since commutativity of the algebra of observables A brings us
to the realm of classical mechanics, in order to get a different realization of
observables and states we must assume that the C∗-algebra associated with
the quantum observables is no longer commutative. A fundamental exam-
ple of a non-commutative C∗-algebra is given by the algebra of all bounded
operators on a complex Hilbert space, and it turns out that it is this algebra
which plays a fundamental role in quantum mechanics!

2.1. Dirac–von Neumann axioms

The following axioms constitute the basis of quantum mechanics.

A1. With every quantum system there is associated an infinite-dimensional
separable complex Hilbert space H , in physics terminology called the space
of states1. The Hilbert space of a composite quantum system is a tensor
product of Hilbert spaces of component systems.

1The space of pure states, to be precise.

9



10 2. OBSERVABLES AND STATES IN QUANTUM MECHANICS

A2. The set of observables A of a quantum system with the Hilbert
space H consists of all self-adjoint operators on H . The subset A0 =
A ∩L (H ) of bounded observables is a vector space over R.

A3. The set of states S of a quantum system with a Hilbert space
H consists of all positive (and hence self-adjoint) trace class operators M
with TrM = 1. Pure states are projection operators onto one-dimensional
subspaces of H . For ψ ∈ H , ‖ψ‖ = 1, the corresponding projection onto
Cψ is denoted by Pψ. All other states are called mixed states2.

A4. A process of measurement is the correspondence

A ×S 3 (A,M) 7→ µA ∈P(R),

which to every observable A ∈ A and state M ∈ S assigns a probability
measure µA on R. For every Borel subset E ⊆ R, the quantity 0 ≤ µA(E) ≤
1 is the probability that for a quantum system in the state M the result of a
measurement of the observable A belongs to E. The expectation value (the
mean-value) of the observable A ∈ A in the state M ∈ S is

〈A|M〉 =

∫ ∞
−∞

λdµA(λ),

where µA(λ) = µA((−∞, λ)) is a distribution function for the probability
measure µA.

The set of states S is a convex set. According to the Hilbert-Schmidt
theorem on the canonical decomposition for compact self-adjoint operators,
for every M ∈ S there exists an orthonormal set {ψn}Nn=1 in H (finite or
infinite, in the latter case N =∞) such that

(2.1) M =

N∑
n=1

αnPψn and TrM =

N∑
n=1

αn = 1,

where αn > 0 are non-zero eigenvalues of M . Thus every mixed state is a
convex linear combination of pure states. The following result characterizes
the pure states.

Lemma 2.1. A state M ∈ S is a pure state if and only if it cannot be
represented as a non-trivial convex linear combination in S .

2In physics terminology, the operator M is called the density operator.
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Explicit construction of the correspondence A × S → P(R) is based
on the general spectral theorem of von Neumann, which emphasizes the
fundamental role the self-adjoint operators play in quantum mechanics.

Namely, let PA be the projection-valued measure on R associated with
the self-adjoint operator A on H — a countably additive (in the strong
operator topology) map P : B(R)→ P (H ) of the σ-algebra B(R) of Borel
subsets of R into the set3 P (H ) of orthogonal projection operators on H
such that

D(A) =

{
ϕ ∈H :

∫ ∞
−∞

λ2d(P(λ)ϕ,ϕ) <∞
}
,

where P(λ) = P((−∞, λ)), is the domain of A, and for every ϕ ∈ D(A)

Aϕ =

∫ ∞
−∞

λ dP(λ)ϕ,

defined as a limit of Riemann-Stieltjes sums in the strong topology on H .
Now the correspondence (A,M) 7→ µA can be explicitly described as follows.

A5. The probability measure µA on R, which defines the correspondence
A ×S →P(R), is given by the celebrated Born-von Neumann formula

(2.2) µA(E) = TrPA(E)M, E ∈ B(R),

where PA is a projection-valued measure on R associated with the self-adjoint
operator A. In particular, when M = Pψ and ψ ∈ D(A),

〈A|M〉 =

∫ ∞
−∞

λd(PA(λ)ψ,ψ) = (Aψ,ψ).

Remark. The probability measure µA on R can be considered as a
“quantum push-forward” of the state M by the observable A.

From the Hilbert-Schmidt decomposition (2.1) we get

µA(E) =
N∑
n=1

αn(PA(E)ψn, ψn) =

N∑
n=1

αn‖PA(E)ψn‖2 ≤
N∑
n=1

αn = 1,

so that indeed 0 ≤ µA(E) ≤ 1.
Self-adjoint operators A and B commute if the corresponding projection-

valued measures PA and PB commute,

PA(E1)PB(E2) = PB(E2)PA(E1) for all E1, E2 ∈ B(R).

3Actually a complete lattice.
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Of course, for bounded operators this condition is equivalent to

AB = BA.

Slightly abusing notation4, we will often write [A,B] = AB − BA = 0 for
commuting self-adjoint operators A and B. It follows from the spectral
theorem that commutativity of self-adjoint operators A and B is equivalent
to the commutativity of the unitary operators eiuA and eivB for all u, v ∈ R,
or to the commutativity of the resolvents

Rλ(A) = (A− λI)−1 and Rµ(B) = (B − µI)−1

for all λ, µ ∈ C, Imλ, Imµ 6= 0.
For the simultaneous measurement of a finite set of observables A =

{A1, . . . , An} in the state M ∈ S it seems natural to introduce the probabil-
ity measure µA on Rn given by the following generalization of the Born-von
Neumann formula:

(2.3) µA(E) = Tr(PA1(E1) . . .PAn(En)M), E = E1 × · · · ×En ∈ B(Rn).

However, formula (2.3) defines a probability measure on Rn if and only
if PA1(E1) . . .PAn(En) defines a projection-valued measure on Rn. Since a
product of orthogonal projections is an orthogonal projection only when the
projection operators commute, we conclude that the operators A1, . . . , An
should form a commutative family. This agrees with the requirement that
simultaneous measurement of several observables should be independent of
the order of the measurements of individual observables. We summarize
these arguments as the following axiom.

A6. A finite set of observables A = {A1, . . . , An} can be measured
simultaneously (simultaneously measured observables) if and only if they
form a commutative family. Simultaneous measurement of the commutative
family A ⊂ A in the state M ∈ S is described by the probability measure
µA on Rn given by

µA(E) = TrPA(E)M, E ∈ B(Rn),

where PA(E) = PA1(E1) . . .PAn(En) for E = E1 × · · · × En ∈ B(Rn). For
every Borel subset E ⊆ Rn the quantity 0 ≤ µA(E) ≤ 1 is the probabil-
ity that for a quantum system in the state M the result of simultaneous
measurement of observables A1, . . . , An belongs to E.

The axioms A1-A6 are known as Dirac–von Neumann axioms.

4In general, for unbounded self-adjoint operators A and B the commutator [A,B] =
AB −BA is not necessarily closed, i.e., it could be defined only for ϕ = 0.
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2.2. Heisenberg’s uncertainty relations

The variance of the observable A in the state M measures the mean
deviation of A from its expectation value and is defined by

σ2M (A) = 〈(A− 〈A|M〉I)2|M〉 = 〈A2|M〉 − 〈A|M〉2 ≥ 0,

provided the expectation values 〈A2|M〉 and 〈A|M〉 exist. Thus for M = Pψ
and one has ψ ∈ D(A),

σ2M (A) = ‖(A− 〈A|M〉I)ψ‖2 = ‖Aψ‖2 − (Aψ,ψ)2.

Lemma 2.2. For A ∈ A and M ∈ S the variance σM (A) = 0 if and only
if ImM is an eigenspace for the operator A with the eigenvalue a = 〈A|M〉
or, equivalently, µA is a Dirac measure supported at a. In particular, if
M = Pψ and σM (A) = 0, then ψ is an eigenvector of A, Aψ = aψ.

Proof. It follows from the spectral theorem that

σ2M (A) =

∫ ∞
−∞

(λ− a)2dµA(λ),

so that σM (A) = 0 if and only if the probability measure µA is supported at
the point a ∈ R, i.e., µA({a}) = 1. It follows from the spectral theorem that
support of the projection-valued measure PA coincides with the spectrum of
A: λ ∈ σ(A) if and only if PA((λ−ε, λ+ε)) 6= 0 for all ε > 0. Since µA({a}) =
TrPA({a})M and TrM = 1, we conclude that this is equivalent to ImM
being an invariant subspace for PA({a}) so that ImM is an eigenspace for
A with the eigenvalue a. �

Now we formulate generalized Heisenberg’s uncertainty relations.

Proposition 2.1 (H. Weyl). Let A,B ∈ A and let M = Pψ be the pure
state such that ψ ∈ D(A) ∩D(B) and Aψ,Bψ ∈ D(A) ∩D(B). Then

σ2M (A)σ2M (B) ≥ 1
4〈i[A,B]|M〉2.

The same inequality holds for M ∈ S .

Proof. Let M = Pψ. Since

[A− 〈A|M〉I,B − 〈B|M〉I] = [A,B],

it is sufficient to prove the inequality

〈A2|M〉〈B2|M〉 ≥ 1
4〈i[A,B]|M〉2.
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We have for all α ∈ R,

‖(A+ iαB)ψ‖2 = α2(Bψ,Bψ)− iα(Aψ,Bψ) + iα(Bψ,Aψ) + (Aψ,Aψ)

= α2(B2ψ,ψ) + α(i[A,B]ψ,ψ) + (A2ψ,ψ) ≥ 0,

so that necessarily 4(A2ψ,ψ)(B2ψ,ψ) ≥ (i[A,B]ψ,ψ)2.
The same argument works for the mixed states. �

Heisenberg’s uncertainty relations provide a quantitative expression of
the fact that even in a pure state non-commuting observables cannot be
measured simultaneously. This shows a fundamental difference between the
process of measurement in classical mechanics and in quantum mechanics.

2.3. Dynamics

The set A of quantum observables does not form an algebra with respect
to an operator product5. Nevertheless, a real vector space A0 of bounded
observables has a Lie algebra structure with the Lie bracket

i[A,B] = i(AB −BA), A,B ∈ A0.

Remark. In fact, the C∗-algebra L (H ) of bounded operators on H
has a structure of a complex Lie algebra with the Lie bracket given by a
commutator [A,B] = AB −BA. It satisfies the Leibniz rule

[AB,C] = A[B,C] + [A,C]B,

so that the Lie bracket is a derivation of the C∗-algebra L (H ).

In analogy with classical mechanics, we postulate that the time evolution
of a quantum system with the space of states H is completely determined
by a special observable H ∈ A , called a Hamiltonian operator (Hamiltonian
for brevity). As in classical mechanics, the Lie algebra structure on A0 leads
to corresponding quantum equations of motion.

Specifically, the analog of Hamilton’s picture in classical mechanics is the
Heisenberg picture in quantum mechanics, where the states do not depend
on time

dM

dt
= 0, M ∈ S ,

and bounded observables satisfy the Heisenberg equation of motion

(2.4)
dA

dt
= {H,A}~, A ∈ A0,

5The product of two non-commuting self-adjoint operators is not self-adjoint.
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where

(2.5) { , }~ =
i

~
[ , ]

is the quantum bracket — the ~-dependent Lie bracket on A0. The positive
number ~, called the Planck constant, is one of the fundamental constants
in physics6.

The Heisenberg equation (2.4) is well defined when H ∈ A0. Indeed,
let U(t) be a strongly continuous one-parameter group of unitary operators
associated with a bounded self-adjoint operator H/~,

(2.6) U(t) = e−
i
~ tH , t ∈ R.

It satisfies the differential equation

(2.7) i~
dU(t)

dt
= HU(t) = U(t)H,

so that the solution A(t) of the Heisenberg equation of motion with the
initial condition A(0) = A ∈ A0 is given by

(2.8) A(t) = U(t)−1AU(t).

In general, a strongly one-parameter group of unitary operators (2.6), as-
sociated with a self-adjoint operator H by the spectral theorem, satisfies
differential equation (2.7) only on D(H) in a strong sense, that is, applied
to ϕ ∈ D(H). The quantum dynamics is defined by the same formula
(2.8), and in this sense all quantum observables satisfy the Heisenberg equa-
tion of motion (2.4). The evolution operator Ut : A → A is defined by
Ut(A) = A(t) = U(t)−1AU(t), and is an automorphism of the Lie algebra
A0 of bounded observables. This is a quantum analog of the statement
that the evolution operator in classical mechanics is an automorphism of
the Poisson algebra of classical observables.

By Stone’s theorem, every strongly-continuous one-parameter group of
unitary operators7 U(t) is of the form (2.6), where

D(H) =

{
ϕ ∈H : lim

t→0

U(t)− I
t

ϕ exists

}
and Hϕ = i~ lim

t→0

U(t)− I
t

ϕ.

6The Planck constant has a physical dimension of the action (energy × time). Its
value ~ = 1.054 × 10−27 erg × sec, which is determined from the experiment, manifests
that quantum mechanics is a microscopic theory.

7According to a theorem of von Neumann, on a separable Hilbert space every weakly
measurable one-parameter group of unitary operators is strongly continuous.
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The domain D(H) of the self-adjoint operator H, called the infinitesimal
generator of U(t), is an invariant linear subspace for all operators U(t).

We summarize these arguments as the following axiom.

A7 (Heisenberg’s Picture). The dynamics of a quantum system is
described by the strongly continuous one-parameter group U(t) of unitary
operators. Quantum states do not depend on time,

S 3M 7→M(t) = M ∈ S ,

and time dependence of quantum observables is given by the evolution op-
erator Ut,

A 3 A 7→ A(t) = Ut(A) = U(t)−1AU(t) ∈ A .

Infinitesimally, the evolution of quantum observables is described by the
Heisenberg equation of motion (2.4), where the Hamiltonian operator H is
the infinitesimal generator of U(t).

The analog of Liouville’s picture in classical mechanics is Schrödinger’s
picture in quantum mechanics, defined as follows.

A8 (Schrödinger’s Picture). The dynamics of a quantum system is
described by the strongly continuous one-parameter group U(t) of unitary
operators. Quantum observables do not depend on time,

A 3 A 7→ A(t) = A ∈ A ,

and time dependence of states is given by the inverse of the evolution oper-
ator U−1t = U−t,

(2.9) S 3M 7→M(t) = U−t(M) = U(t)MU(t)−1 ∈ S .

Infinitesimally, the evolution of quantum states is described by the Schrödinger
equation of motion

(2.10)
dM

dt
= −{H,M}h, M ∈ S ,

where the Hamiltonian operator H is the infinitesimal generator of U(t).

Proposition 2.2. Heisenberg and Schrödinger descriptions of dynamics
are equivalent.

Proof. Let µA(t) and (µt)A be, respectively, probability measures on
R associated with (A(t),M) ∈ A × S and (A,M(t)) ∈ A × S accord-
ing to A3-A4, where A(t) = Ut(A) and M(t) = U−t(M). We need to
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show that µA(t) = (µt)A. It follows from the spectral theorem that PA(t) =

U(t)−1PAU(t), so that using the Born-von Neumann formula (2.2) and the
cyclic property of the trace, we get for E ∈ B(R),

µA(t)(E) = TrPA(t)(E)M = Tr(U(t)−1PA(E)U(t)M)

= Tr(PA(E)U(t)MU(t)−1) = TrPA(E)M(t) = (µt)A(E). �

Corollary 2.1. 〈A(t)|M〉 = 〈A|M(t)〉.

In analogy with classical mechanics, we have the following definition.

Definition. An observable A ∈ A is a quantum integral of motion (or
a constant of motion) for a quantum system with the Hamiltonian H if in
Heisenberg’s picture

dA(t)

dt
= 0,

i.e., A commutes with U(t). Thus A ∈ A is an integral of motion if and
only if it commutes with the Hamiltonian H, so that, in agreement with
(2.4),

{H,A}~ = 0.

This is a quantum analog of the Poisson commutativity property.
It follows from (2.10) that the time evolution of a pure state M = Pψ

is given by M(t) = Pψ(t), where ψ(t) = U(t)ψ. Suppose that ψ ∈ D(H).
Since D(H) is invariant under U(t), the vector ψ(t) = U(t)ψ satisfies the
time-dependent Schrödinger equation

(2.11) i~
dψ

dt
= Hψ

with the initial condition ψ(0) = ψ.

Definition. A state M ∈ S is called stationary for a quantum system
with Hamiltonian H if in Schrödinger’s picture

dM(t)

dt
= 0.

The state M is stationary if and only if [M,U(t)] = 0 for all t, i.e.

{H,M}~ = 0,

in agreement with (2.10). The following simple result is fundamental.



18 2. OBSERVABLES AND STATES IN QUANTUM MECHANICS

Lemma 2.3. The pure state M = Pψ is stationary if and only if ψ is an
eigenvector for H,

Hψ = λψ,

and in this case
ψ(t) = e−

i
~λtψ.

Proof. It follows from U(t)Pψ = PψU(t) that ψ is a common eigen-
vector for unitary operators U(t) for all t, U(t)ψ = c(t)ψ, |c(t)| = 1.
Since U(t) is a strongly continuous one-parameter group of unitary op-
erators, the continuous function c(t) = (U(t)ψ,ψ) satisfies the equation

c(t1 + t2) = c(t1)c(t2) for all t1, t2 ∈ R, so that c(t) = e−
i
~λt for some λ ∈ R.

Thus by Stone’s theorem ψ ∈ D(H) and Hψ = λψ. �

In physics terminology, the eigenvectors ofH are called bound states. The
corresponding eigenvalues are called energy levels and are usually denoted
by E.

Problem 2.1. Prove Lemma 2.1.

Problem 2.2. Prove that the state M is a pure state if and only if TrM2 = 1.

Problem 2.3. Prove that the Born-von Neumann formula (2.2) defines a
probability measure on R, i.e., µA is a σ-additive function on B(R).

Problem 2.4. Show that if an observable A is such that for every state M
the expectation value 〈A|M(t)〉 does not depend on t, then A is a quantum integral
of motion. (This is the definition of integrals of motion in the Schrödinger picture.)

Problem 2.5. Prove Heisenberg uncertainty relation

σ2
M (A)σ2

M (B) ≥ 1
4 〈i[A,B]|M〉2

for mixed states.

Problem 2.6. Show that a solution of the initial value problem for the time-
dependent Schrödinger equation (2.11) is given by

ψ(t) =

∫ ∞
−∞

e−
i
~ tλdP(λ)ψ,

where P is the projection-valued measure associated with the Hamiltonian H.

Problem 2.7. Let D be a linear subspace of H , consisting of G̊arding vectors

ψf =

∫ ∞
−∞

f(s)U(s)ψ ds, f ∈ S (R), ψ ∈H ,

where S (R) is the Schwartz space of rapidly decreasing functions on R. Prove that
D is dense in H and is invariant for U(t) and for the Hamiltonian H. (Hint: Show
that U(t)ψf = ψft ∈ D, where ft(s) = f(s− t), and deduce Hψf = ~

i ψf ′ .)



LECTURE 3

Lecture 3. Quantization

A quantum system is described by the Hilbert space H and the Hamil-
tonian H, a self-adjoint operator in H , which determines the evolution of
a system. When the system has a classical analog, the procedure of con-
structing the corresponding Hilbert space H and the Hamiltonian H is
called quantization.

Definition. Quantization of a classical system ((M , { , }), Hc) with
the Hamiltonian function1 Hc is a one-to-one mapping Q~ : A → A from
the set of classical observables A = C∞(M ) to the set A of quantum
observables — the set of self-adjoint operators on a Hilbert space H . The
map Q~ depends on the parameter ~ > 0, and its restriction to the subspace
of bounded classical observables A0 is a linear mapping to the subspace A0

of bounded quantum observables, which satisfies the properties

lim
~→0

1
2Q−1~

(
Q~(f1)Q~(f2) + Q~(f2)Q~(f1)

)
= f1f2

and

lim
~→0

Q−1~
(
{Q~(f1),Q~(f2)}~

)
= {f1, f2} for all f1, f2 ∈ A0.

The latter property is the celebrated correspondence principle of Niels
Bohr. In particular, Hc 7→ Q~(Hc) = H — the Hamiltonian operator for a
quantum system.

Remark. In physics literature the correspondence principle is often
stated in the form

[ , ] ' ~
i
{ , } as ~→ 0.

Quantum mechanics is different from classical mechanics, so that the
correspondence f 7→ Q~(f) cannot be an isomorphism between the Lie alge-
bras of bounded classical and quantum observables with respect to classical

1Notation Hc is used to distinguish the Hamiltonian function in classical mechanics
from the Hamiltonian operator H in quantum mechanics.

19
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and quantum brackets. It becomes an isomorphism only in the limit ~→ 0
when quantum mechanics turns into classical mechanics. Since quantum
mechanics provides a more accurate and refined description than classical
mechanics, quantization of a classical system may not be unique.

Definition. Two quantizations Q
(1)
~ and Q

(2)
~ of a given classical system

((M , { , }), Hc) are said to be equivalent if there exists a linear mapping

U~ : A → A such that Q
(2)
~ = Q

(1)
~ ◦U~ and lim

~→0
U~ = id.

For many “real world” quantum systems — the systems describing actual
physical phenomena — the corresponding Hamiltonian H does not depend
on a choice of equivalent quantization, and is uniquely determined by the
classical Hamiltonian function Hc.

3.1. Heisenberg commutation relations

The simplest classical system with one degree of freedom is described
by the phase space R2 with coordinates p, q and the Poisson bracket { , },
associated with the canonical symplectic form ω = dp ∧ dq. The Poisson
bracket between classical observables p and q — momentum and coordinate
of a particle — has the following simple form:

(3.1) {p, q} = 1.

It is another postulate of quantum mechanics that under quantization clas-
sical observables p and q correspond to quantum observables P and Q —
self-adjoint operators on a Hilbert space H , satisfying the following prop-
erties.

CR1. There is a dense linear subset D ⊂ H such that P : D → D and
Q : D → D.

CR2. For all ψ ∈ D,

(PQ−QP )ψ = −i~ψ.

CR3. Every bounded operator on H which commutes with P and Q is
a multiple of the identity operator I.

Property CR2 is called the Heisenberg commutation relation for one
degree of freedom. In terms of the quantum bracket (2.5) it takes the form

(3.2) {P,Q}~ = I,
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which is exactly the same as the Poisson bracket (3.1)! Property CR3
is a quantum analog of the classical property that the Poisson manifold
(R2, { , }) is non-degenerate: every function which Poisson commutes with
p and q is a constant.

The operators P and Q are called, respectively, the momentum operator
and the coordinate operator. The correspondence p 7→ P , q 7→ Q with P and
Q satisfying CR1-CR3 is the cornerstone for the quantization of classical
systems. The validity of (3.2), as well as of quantum mechanics as a whole,
is confirmed by the agreement of the theory with numerous experiments.

Remark. It is tempting to extend the correspondence p 7→ P , q 7→ Q
to all observables by defining the mapping f(p, q) 7→ f(P,Q). However,
this approach to quantization is rather naive: operators P and Q satisfy
(3.2) and do not commute, so that one needs to understand how f(P,Q)
— a “function of non-commuting variables” — is actually defined. We will
address this problem of the ordering of non-commuting operators P and Q
later.

It follows from Heisenberg’s uncertainty relations (see Proposition 2.1),
that for any pure state M = Pψ with ψ ∈ D,

σM (P )σM (Q) ≥ ~
2
.

This is a fundamental result saying that it is impossible to measure the
coordinate and the momentum of a quantum particle simultaneously: the
more accurate the measurement of one quantity is, the less accurate the value
of the other is. It is often said that a quantum particle has no observed path,
so that “quantum motion” differs dramatically from the motion in classical
mechanics.

It is straightforward to consider a classical system with n degrees of
freedom, described by the phase space R2n with coordinates p = (p1, . . . , pn)
and q = (q1, . . . , qn), and the Poisson bracket { , }, associated with the
canonical symplectic form ω = dp ∧ dq. The Poisson brackets between
classical observables p and q — momenta and coordinates of a particle —
have the form

(3.3) {pk, pl} = 0, {qk, ql} = 0, {pk, ql} = δlk, k, l = 1, . . . , n.

Corresponding momenta and coordinate operators P = (P1, . . . , Pn) and
Q = (Q1, . . . , Qn) are self-adjoint operators that have a common invariant
dense linear subset D ⊂ H , and on D satisfy the following commutation
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relations:

(3.4) {Pk, Pl}~ = 0, {Qk, Ql}~ = 0, {Pk, Ql}~ = δlkI, k, l = 1, . . . , n.

These relations are called Heisenberg commutation relations for n degrees of
freedom. The analog of CR3 is the property that every bounded operator
on H which commutes with all operators P and Q is a multiple of the
identity operator I.

The fundamental algebraic structure associated with Heisenberg com-
mutation relations is the so-called Heisenberg algebra.

Definition. The Heisenberg algebra hn with n degrees of freedom is a
Lie algebra with the generators e1, . . . , en, f1, . . . , fn, c and the relations

(3.5) [ek, c] = 0, [fk, c] = 0, [ek, fl] = δkl c, k, l = 1, . . . , n.

The Heisenberg algebra hn is realized as a nilpotent subalgebra of the
Lie algebra gln+2 of (n+ 2)× (n+ 2) matrices with the elements

(3.6)
n∑
k=1

(ukfk + vke
k) + αc =



0 u1 u2 . . . un α
0 0 0 · · · 0 v1
0 0 0 · · · 0 v2
...

...
...

. . .
...

...
0 0 0 · · · 0 vn
0 0 0 · · · 0 0

 .

Remark. The faithful representation hn → gln+2, given by (3.6), is
clearly reducible: the subspace V = {x = (x1, . . . , xn+2) ∈ Rn+2 : xn+2 = 0}
is an invariant subspace for hn with the central element c acting by zero.
However, this representation is not decomposable: the vector space Rn+2

cannot be written as a direct sum of V and a one-dimensional invariant
subspace for hn. This explains why the central element c is not represented
by a diagonal matrix with the first n+1 zeros, but rather has a special form
given by (3.6).

Analytically, Heisenberg commutation relations (3.5) correspond to an
irreducible unitary representation of the Heisenberg algebra hn. Recall that
a unitary representation ρ of hn in the Hilbert space H is the linear mapping
ρ : hn → iA — the space of skew-Hermitian operators in H — such that all
self-adjoint operators iρ(x), x ∈ hn, have a common invariant dense linear
subset D ⊂H and satisfy

ρ([x, y])ϕ = (ρ(x)ρ(y)− ρ(y)ρ(x))ϕ, x, y ∈ hn, ϕ ∈ D.
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Formally applying Schur’s lemma we say that the representation ρ is irre-
ducible if every bounded operator which commutes with all operators iρ(x)
is a multiple of the identity operator I. Then Heisenberg commutation rela-
tions (3.5) define an irreducible unitary representation ρ of the Heisenberg
algebra hn in the Hilbert space H by setting

(3.7) ρ(fk) = −iPk, ρ(ek) = −iQk, k = 1, . . . , n, ρ(c) = −i~I.

Since the operators P k and Qk are necessarily unbounded, the condition

PkPlϕ = PlPkϕ for all ϕ ∈ D

does not necessarily imply that self-adjoint operators Pk and Pl commute
in the sense of the definition in Section 2.1. To avoid such “pathological”
representations, we will assume that ρ is an integrable representation, i.e.,
it can be integrated (in a precise sense specified below) to an irreducible
unitary representation of the Heisenberg group Hn — a connected, simply-
connected Lie group with the Lie algebra hn.

Explicitly, the Heisenberg group is a unipotent subgroup of the Lie al-
gebra SL(n+ 2,R) with the elements

g =



1 u1 u2 · · · un α
0 1 0 · · · 0 v1
0 0 1 · · · 0 v2
...

...
...

. . .
...

...
0 0 0 · · · 1 vn
0 0 0 · · · 0 1

 .

The exponential map exp : hn → Hn is onto, and the Heisenberg group Hn

is generated by two n-parameter abelian subgroups

expuX = exp

(
n∑
k=1

ukfk

)
, expvY = exp

(
n∑
k=1

vke
k

)
, u,v ∈ Rn,

and a one-parameter center expαc, which satisfy the relations

expuX expvY = exp(−uvc) expvY expuX, uv =
n∑
k=0

ukvk.(3.8)

Indeed, it follows from (3.5) that [uX,vY ] = −uvc is a central element, so
that using the Baker-Campbell-Hausdorff formula we obtain

expuX expvY = exp(−1
2uvc) exp(uX + vY ),

expvY expuX = exp(12uvc) exp(uX + vY ).
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In the matrix realization, the exponential map is given by the matrix expo-
nential and we get euX = I + uX, evY = I + vY , and eαc = I + αc, where
I is the (n+ 2)× (n+ 2) identity matrix.

Let R be an irreducible unitary representation of the Heisenberg group
Hn in the Hilbert space H — a strongly continuous group homomorphism
R : Hn → U (H ), where U (H ) is the group of unitary operators in H .
By Schur’s lemma, R(eαc) = e−iλαI, λ ∈ R. Suppose now that λ = ~,
and define two strongly continuous n-parameter abelian groups of unitary
operators

U(u) = R(expuX), V (v) = R(expvY ), u,v ∈ Rn.

Then it follows from (3.8) that unitary operators U(u) and V (v) satisfy
Weyl commutation relations

(3.9) U(u)V (v) = ei~uvV (v)U(u).

It follows from Stone theorem that

U(u) = e−iuP = e−i
∑n
k=1 u

kPk and V (v) = e−ivQ = e−i
∑n
k=1 vkQ

k
,

where infinitesimal generators P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) given
by

Pk = i
∂U(u)

∂uk

∣∣∣∣
u=0

and Qk = i
∂V (v)

∂vk

∣∣∣∣
v=0

, k = 1, . . . , n.

Taking the second partial derivatives of Weyl relations (3.9) at the origin
u = v = 0, we easily obtain the following result.

Lemma 3.1. Let R : Hn → U (H ) be an irreducible unitary represen-
tation of the Heisenberg group Hn in H such that R(eαc) = e−i~αI, and
let P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) be, respectively, infinitesimal
generators of the strongly continuous n-parameter abelian subgroups U(u)
and V (v). Then formulas (3.7) define an irreducible unitary representation
ρ of the Heisenberg algebra hn in H .

The representation ρ in Lemma 3.1 is called the differential of a represen-
tation R, and is denoted by dR. The irreducible unitary representation ρ of
hn is called integrable if ρ = dR for some irreducible unitary representation
R of Hn.

Remark. Not every irreducible unitary representation of the Heisenberg
algebra is integrable, so that Weyl relations cannot be obtained from the
Heisenberg commutation relations.
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The celebrated Stone-von Neumann theorem asserts that all integrable
irreducible unitary representations of the Heisenberg algebra hn with the
same action of the central element c are unitarily equivalent. This justi-
fies the following mathematical formulation of the Heisenberg commutation
relations for n degrees of freedom.

A9 (Heisenberg’s Commutation Relations). Momenta and coor-
dinate operators P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) for a quantum
particle with n degrees of freedom are defined by formulas (3.7), where ρ
is an integrable irreducible unitary representation of the Heisenberg algebra
hn with the property ρ(c) = −i~I.

3.2. Coordinate and momentum representations

We start with the case of one degree of freedom and consider two natural
realizations of the Heisenberg commutation relation. They are defined by
the property that one of the self-adjoint operators P and Q is “diagonal”
(i.e., is a multiplication by a function operator in the corresponding Hilbert
space).

In the coordinate representation, H = L2(R, dq) is the L2-space on the
configuration space R with the coordinate q, which is a Lagrangian subspace
of R2 defined by the equation p = 0. Set

D(Q) =

{
ϕ ∈H :

∫ ∞
−∞

q2|ϕ(q)|2dq <∞
}

and for ϕ ∈ D(Q) define the operator Q as a “multiplication by q operator”,

(Qϕ)(q) = qϕ(q), q ∈ R,

justifying the name coordinate representation. The coordinate operator Q
is obviously self-adjoint and its projection-valued measure is given by

(3.10) (P(E)ϕ)(q) = χE(q)ϕ(q),

where χE is the characteristic function of a Borel subset E ⊆ R. Therefore
suppP = R and σ(Q) = R.

Recall that a self-adjoint operator A has an absolutely continuous spec-
trum if for every ψ ∈H , ‖ψ‖ = 1, the probability measure νψ,

νψ(E) = (PA(E)ψ,ψ), E ∈ B(R),

is absolutely continuous with respect to the Lebesgue measure on R.
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Lemma 3.2. The coordinate operator Q has an absolutely continuous
spectrum R, and every bounded operator B which commutes with Q is a
function of Q, B = f(Q) with f ∈ L∞(R).

Proof. It follows from (3.10) that νψ(E) =
∫
E |ψ(q)|2dq, which proves

the first statement. Now a bounded operator B on H commutes with Q if
and only if BP(E) = P(E)B for all E ∈ B(R), and using (3.10) we get

(3.11) B(χEϕ) = χEB(ϕ).

Choosing in (3.11) E = E1 and ϕ = χE2 , where E1 and E2 have finite
Lebesgue measure, we obtain

B(χE1 · χE2) = B(χE1∩E2) = χE1B(χE2) = χE2B(χE1),

so that denoting fE = B(χE) we get supp fE ⊆ E, and

fE1 |E1∩E2
= fE2 |E1∩E2

for all E1, E2 ∈ B(R) with finite Lebesgue measure. Thus there exists a
measurable function f on R such that f |E = fE |E for every E ∈ B(R) with
finite Lebesgue measure. The linear subspace spanned by all χE ∈ L2(R) is
dense in L2(R) and the operator B is continuous, so that we get

(Bϕ)(q) = f(q)ϕ(q) for all ϕ ∈ L2(R).

Since B is a bounded operator, f ∈ L∞(R) and ‖B‖ = ‖f‖∞. �

For a pure state M = Pψ, ‖ψ‖ = 1, the corresponding probability mea-
sure µQ on R is given by

µQ(E) = νψ(E) =

∫
E
|ψ(q)|2dq, E ∈ B(R).

Physically, this is interpreted that in the state Pψ with the “wave function”
ψ(q), the probability of finding a quantum particle between q and q + dq
is |ψ(q)|2dq. In other words, the modulus square of a wave function is the
probability distribution for the coordinate of a quantum particle.

The corresponding momentum operator P is given by a differential op-
erator

P =
~
i

d

dq

with D(P ) = W 1,2(R) — the Sobolev space of absolutely continuous func-
tions f on R such that f and its derivative f ′ (defined a.e.) are in L2(R).
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The operator P is self-adjoint and it is straightforward to verify that on
D = C∞c (R), the space of smooth functions on R with compact support,

QP − PQ = i~I.

Proposition 3.1. The coordinate representation defines an irreducible,
unitary, integrable representation of the Heisenberg algebra.

Proof. To show that the coordinate representation is integrable, let
U(u) = e−iuP and V (v) = e−ivQ be the corresponding one-parameter groups
of unitary operators. Clearly, (V (v)ϕ)ψ(q) = e−ivqϕ(q) and it easily fol-
lows from the Stone theorem (or by the definition of a derivative) that
(U(u)ϕ)(q) = ϕ(q − ~u), so that unitary operators U(u) and V (v) satisfy
the Weyl relation (3.9). Such a realization of the Weyl relation is called the
Schrödinger representation.

To prove that the coordinate representation is irreducible, let B be a
bounded operator commuting with P and Q. By Lemma 3.2, B = f(Q) for
some f ∈ L∞(R). Now commutativity between B and P implies that

BU(u) = U(u)B for all u ∈ R,

which is equivalent to f(q − ~u) = f(q) for all q, u ∈ R, so that f = const
a.e. on R. �

To summarize, the coordinate representation is characterized by the
property that the coordinate operator Q is a multiplication by q operator
and the momentum operator P is a differentiation operator,

Q = q and P =
~
i

d

dq
.

Similarly, momentum representation is defined by the property that the
momentum operator P is a multiplication by p operator. Namely let H =
L2(R, dp) be the Hilbert L2-space on the “momentum space” R with the
coordinate p, which is a Lagrangian subspace of R2 defined by the equation
q = 0. The coordinate and momentum operators are given by

Q̂ = i~
d

dp
and P̂ = p,

and satisfy the Heisenberg commutation relation. As the coordinate rep-
resentation, the momentum representation is an irreducible, unitary, inte-
grable representation of the Heisenberg algebra. In the momentum repre-
sentation, the modulus square of the wave function ψ(p) of a pure state
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M = Pψ, ‖ψ‖ = 1, is the probability distribution for the momentum of the
quantum particle, i.e., the probability that a quantum particle has momen-
tum between p and p+ dp is |ψ(p)|2dp.

Let F~ : L2(R)→ L2(R) be the ~-dependent Fourier transform operator,
defined by

ϕ̂(p) = F~(ϕ)(p) =
1√
2π~

∫ ∞
−∞

e−
i
~pqϕ(q)dq.

Here the integral is understood as the limit ϕ̂ = limn→∞ ϕ̂n in the strong
topology on L2(R), where

ϕ̂n(p) =
1√
2π~

∫ n

−n
e−

i
~pqϕ(q)dq.

By Plancherel’s theorem, F~ is a unitary operator on L2(R),

F~F
∗
~ = F ∗~ F~ = I,

and
Q̂ = F~QF−1~ , P̂ = F~PF−1~ ,

so that coordinate and momentum representations are unitarily equivalent.
In particular, since the operator P̂ is obviously self-adjoint, this immediately
shows that the operator P is self-adjoint.

For n degrees of freedom, the coordinate representation is defined by
setting H = L2(Rn, dnq), where dnq = dq1 · · · dqn is the Lebesgue measure
on Rn, and

Q = q = (q1, . . . , qn), P =
~
i

∂

∂q
=

(
~
i

∂

∂q1
, . . . ,

~
i

∂

∂qn

)
.

Here Rn is the configuration space with coordinates q — a Lagrangian sub-
space of R2n defined by the equations p = 0. The coordinate and mo-
menta operators are self-adjoint and satisfy Heisenberg commutation rela-
tions. Projection-valued measures for the operators Qk are given by

(Pk(E)ϕ)(q) = χλ−1
k (E)(q)ϕ(q),

where E ∈ B(R) and λk : Rn → R is a canonical projection onto the k-th
component, k = 1, . . . , n. Correspondingly, the projection-valued measure
P for the commutative family Q = (Q1, . . . , Qn) is defined on the Borel
subsets E ⊆ Rn by

(P(E)ϕ)(q) = χE(q)ϕ(q).
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The family Q has absolutely continuous joint spectrum Rn.
Coordinate operators Q1, . . . , Qn form a complete system of commuting

observables. By definition this means that none of these operators is a
function of the other operators, and that every bounded operator commuting
with Q1, . . . , Qn is a function of Q1, . . . , Qn, i.e., is a multiplication by f(q)
operator for some f ∈ L∞(Rn). The proof repeats verbatim the proof of
Lemma 3.2. For a pure state M = Pψ, ‖ψ‖ = 1, the modulus square |ψ(q)|2
of the wave function is the density of a joint distribution function µQ for the
commutative family Q, i.e., the probability of finding a quantum particle in
a Borel subset E ⊆ Rn is given by

µQ(E) =

∫
E
|ψ(q)|2dnq.

The coordinate representation defines an irreducible, unitary, integrable
representation of the Heisenberg algebra hn. Indeed, n-parameter groups of
unitary operators U(u) = e−iuP and V (v) = e−ivQ are given by

(U(u)ϕ)(q) = ϕ(q − ~u), (V (v)ϕ)(q) = e−ivqϕ(q),

and satisfy Weyl relations (3.9). The same argument as in the proof of
Proposition 3.1 shows that this representation of the Heisenberg group Hn,
called the Schrödinger representation for n degrees of freedom, is irreducible.

In the momentum representation, H = L2(Rn, dnp), where dnp =
dp1 · · · dpn is the Lebesgue measure on Rn, and

Q̂ = i~
∂

∂p
=

(
i~

∂

∂p1
, . . . , i~

∂

∂pn

)
, P̂ = p = (p1, . . . , pn).

Here Rn is the momentum space with coordinates p — a Lagrangian sub-
space of R2n defined by the equations q = 0.

The coordinate and momentum representations are unitarily equivalent
by the Fourier transform. As in the case n = 1, the Fourier transform
F~ : L2(Rn)→ L2(Rn) is a unitary operator defined by

ϕ̂(p) = F~(ϕ)(p) =(2π~)−n/2
∫
Rn
e−

i
~pqϕ(q)dnq

= lim
N→∞

(2π~)−n/2
∫
|q|≤N

e−
i
~pqϕ(q)dnq,

where the limit is understood in the strong topology on L2(Rn). As in the
case n = 1, we have

Q̂k = F~QkF
−1
~ , P̂k = F~PkF

−1
~ , k = 1, . . . , n.
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In particular, since operators P̂1, . . . , P̂n are obviously self-adjoint, this im-
mediately shows that P1, . . . , Pn are also self-adjoint.

Remark. Following Dirac, physicists denote a vector ψ ∈ H by a ket
vector |ψ〉, a vector ϕ ∈H ∗ in the dual space to H (H ∗ 'H is a complex
anti-linear isomorphism) by a bra vector 〈ϕ|, and their inner product by
〈ϕ|ψ〉. In standard mathematics notation,

(ψ,ϕ) = 〈ϕ|ψ〉 and (Aψ,ϕ) = 〈ϕ|A|ψ〉,

where A is a linear operator. Dirac’s notation is intuitive and convenient
for working with coordinate and momentum representations. Denoting by

|q〉 = δ(q − q′) and |p〉 = (2π~)−n/2e
i
~pq the set of generalized common

eigenfunctions for the operators Q and P , respectively, we formally get

Q|q〉 = q|q〉, P |p〉 = p|p〉,

where operators Q act on q′, and

〈q|ψ〉 =

∫
Rn
δ(q − q′)ψ(q′)dnq′ = ψ(q),

〈p|ψ〉 = (2π~)−n/2
∫
Rn
e−

i
~pqψ(q)dnq = ψ̂(p),

as well as 〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′).

Problem 3.1. Give an example of a non-integrable representation of the
Heisenberg algebra.

Problem 3.2. Prove that there exists ϕ ∈H = L2(R, dq) such that the vec-
tors P(E)ϕ, E ∈ B(R), where P is a projection-valued measure for the coordinate
operator Q, are dense in H .

Problem 3.3. Find the projection-valued measure for the commutative family
P = (P1, . . . , Pn) in the coordinate representation.



LECTURE 4

Schrödinger equation

4.1. Examples of quantum systems

Here we describe quantum systems that correspond to classical Hamil-
tonian systems. The phase space of these systems is a symplectic vec-
tor space R2n with the canonical coordinates p = (p1, . . . , pn) and q =
(q1, . . . , qn) and the symplectic form ω = dp ∧ dq.

Example 4.1 (Free particle). A free classical particle with n degrees of
freedom is described by the Hamiltonian function

Hc(p, q) =
p2

2m
=

1

2m
(p21 + · · ·+ p2n).

The Hamiltonian operator of a free quantum particle with n degrees of
freedom is

H0 =
P 2

2m
=

1

2m
(P 2

1 + · · ·+ P 2
n),

and in the coordinate representation is

H0 = − ~2

2m
∆,

where

∆ =

(
∂

∂q

)2

=

(
∂

∂q1

)2

+ · · ·+
(

∂

∂qn

)2

is the Laplace operator1 in the Cartesian coordinates on Rn. The Hamil-
tonian H0 is a self-adjoint operator on H = L2(Rn, dnq) with D(H0) =
W 2,2(Rn) — the Sobolev space on Rn.

Example 4.2 (Newtonian particle). A classical particle in Rn moving
in a potential field V (q) is described by the Hamiltonian function

Hc(p, q) =
p2

2m
+ V (q).

1It is the negative of the Laplace-Beltrami operator of the standard Euclidean metric
on Rn.
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The Hamiltonian operator of a Newtonian particle is

H =
P 2

2m
+ V (Q),

in agreement with the prescription H = Hc(P ,Q)2, so that Heisenberg
equations of motion

(4.1) Ṗ = {H,P }~, Q̇ = {H,Q}~.

have the same form as Hamilton’s equations.
In coordinate representation the Hamiltonian is the Schrödinger operator

(4.2) H = − ~2

2m
∆ + V (q)

with the real-valued potential V (q).

Remark. Since the sum of two unbounded, self-adjoint operators is not
necessarily self-adjoint, one needs to describe potentials V (q) for which H
is a self-adjoint operator on L2(Rn, dnq). If V (q) is a real-valued, locally in-
tegrable function on Rn, then differential operator (4.2) defines a symmetric
operator on C2

c (Rn), and admissible potentials V (q) correspond to the case
when this symmetric operator has zero defect indices.

Example 4.3 (Interacting quantum particles). In Hamiltonian formal-
ism a closed classical system of N interacting particles on R3 is described
by the canonical coordinates r = (r1, . . . , rN ), the canonical momenta
p = (p1, . . . ,pN ), ra,pa ∈ R3, and by the Hamiltonian function

(4.3) Hc(p, r) =
N∑
a=1

p2
a

2ma
+ V (r),

where ma is the mass of the a-th particle, a = 1, . . . , N . The corresponding
Hamiltonian operator H in the coordinate representation has the form

(4.4) H = −
N∑
a=1

~2

2ma
∆a + V (r).

In particular, when

V (r) =
∑

1≤a<b≤N
V (ra − rb),

2In the special case Hc(p, q) = f(p) + g(q) the problem of the ordering of non-
commuting operators P and Q does not arise.
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the Schrödinger operator (4.4) describes the N -body problem in quantum
mechanics. The fundamental quantum system is the complex atom, formed
by a nucleus of charge Ne and mass M , and by N electrons of charge −e and
mass m. Denoting by R ∈ R3 the position of the nucleus, and by r1, . . . , rN
the positions of the electrons and assuming that the interaction is given by
the Coulomb attraction, we get for the Hamiltonian function (4.3)

Hc(P ,p,R, r) =
P 2

2M
+

N∑
a=1

p2
a

2m
−

N∑
a=1

Ne2

|R− ra|
+

∑
1≤a<b≤N

e2

|ra − rb|
,

where P is the canonical momentum of the nucleus. The corresponding
Schrödinger operator H in the coordinate representation has the form3

H = − ~2

2M
∆−

N∑
a=1

~2

2m
∆a −

N∑
a=1

Ne2

|R− ra|
+

∑
1≤a<b≤N

e2

|ra − rb|
.

In the simplest case of the hydrogen atom, when N = 1 and the nucleus
consists of a single proton4, the Hamiltonian is

H = − ~2

2M
∆p −

~2

2m
∆e −

e2

|rp − re|
,

where rp is the position of the proton and re is the position of the elec-
tron. As the first approximation, the proton can be considered as infinitely
heavy, so that the hydrogen atom is described by an electron in an attrac-
tive Coulomb field −e2/|r|, where now r = re − rp. The corresponding
Hamiltonian operator takes the form

(4.5) H = − ~2

2m
∆− e2

|r|
.

Example 4.4 (Charged particle in an electromagnetic field). A classical
particle of charge e and mass m moving in the time-independent electro-
magnetic field with scalar and vector potentials ϕ(r) and A(r), r ∈ R3, is
described by the Hamiltonian function

Hc(p, r) =
1

2m

(
p− e

c
A
)2

+ eϕ(r)

3Ignoring the fact that electron has spin.
4In the case of hydrogen-1 or protium; it includes one or more neutrons for deuterium,

tritium, and other isotopes.
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The corresponding classical velocity vector v = {Hc, r} is given by

v = p− e

c
A,

and its components v = (v1, v2, v3) have non-vanishing Poisson brackets:

{v1, v2} = − e

m2c
B3, {v2, v3} = − e

m2c
B1, {v3, v1} = − e

m2c
B2,

where B = (B1, B2, B3) are components of the magnetic field B = ∇×A.
The Hamiltonian operator of a quantum particle is

(4.6) H =
1

2m

(
P − e

c
A
)2

+ eϕ(r)

— the Schrödinger operator of a charged particle in an electromagnetic field.
The corresponding quantum velocity vector V = {H,Q}~ is given by the
same formula as in the classical case,

V = P − e

c
A,

and its components V = (V1, V2, V3) have non-vanishing quantum brackets:

{V1, V2}~ = − e

m2c
B3, {V2, V3}~ = − e

m2c
B1, {V3, V1}~ = − e

m2c
B2.

Thus in the presence of a magnetic field the three components of a quantum
velocity operator no longer commute and cannot be measured simultane-
ously.

4.2. Free quantum particle

The Hamiltonian of a free quantum particle with one degree of freedom

H0 =
P 2

2m
= − ~2

2m

d2

dq2

is a positive operator with absolutely continuous spectrum [0,∞) of mul-
tiplicity two. Indeed, let H0 = L2(R>0,C2; dσ) be the Hilbert space of
C2-valued measurable functions Ψ on the semi-line R>0 = (0,∞), which are
square-integrable with respect to the measure dσ(λ) =

√
m
2λ dλ,

H0 =

{
Ψ(λ) =

(
ψ1(λ)
ψ2(λ)

)
: ‖Ψ‖2 =

∫ ∞
0

(|ψ1(λ)|2 + |ψ2(λ)|2)dσ(λ) <∞
}
.
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It follows from the unitarity of the Fourier transform that the operator
U0 : L2(R, dq)→ H0,

U0(ψ)(λ) = Ψ(λ) =

(
ψ̂(
√

2mλ)

ψ̂(−
√

2mλ)

)
,

is unitary, U ∗
0 U0 = I and U0U ∗

0 = I0, where I and I0 are, respectively,
identity operators in H and H0. The operator U0 establishes the isomor-
phism L2(R, dq) ' H0, and since in the momentum representation H0 is a
multiplication by 1

2mp
2 operator, the operator U0H0U

−1
0 is a multiplication

by λ operator in H0.

Remark. The Hamiltonian operator H0 has no eigenvectors — the
eigenvalue equation

H0ψ = λψ

has no solutions in L2(R). However, for every λ = 1
2mk

2 > 0 this differential
equation has two linear independent bounded solutions

ψ
(±)
k (q) =

1√
2π~

e±
i
~kq, k > 0.

In the distributional sense, these eigenfunctions of the continuous spectrum
combine to a Schwartz kernel of the unitary operator U0, which establishes
the isomorphism between H = L2(R, dq) and the Hilbert space H0, where
H0 acts as a multiplication by λ operator.

The Cauchy problem

(4.7) i~
dψ(t)

dt
= H0ψ(t), ψ(0) = ψ,

is easily solved by the Fourier transform. Indeed, in the momentum repre-
sentation it takes the form

i~
∂ψ̂(p, t)

∂t
=

p2

2m
ψ̂(p, t), ψ̂(p, 0) = ψ̂(p),

so that

ψ̂(p, t) = e−
ip2

2m~ t ψ̂(p).

In the coordinate representation, the solution of (4.7) is given by

(4.8) ψ(q, t) =
1√
2π~

∫ ∞
−∞

e
i
~pqψ̂(p, t)dp =

1√
2π~

∫ ∞
−∞

e
i
~χ(p,q,t)tψ̂(p)dp,
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where

χ(p, q, t) = − p2

2m
+
pq

t
.

Formula (4.8) describes the motion of a quantum particle, and admits
the following physical interpretation. Let initial condition ψ in (4.7) be such

that its Fourier transform ψ̂ = F~(ψ) is a smooth function supported in a
neighborhood U0 of p0 ∈ R \ {0}, 0 /∈ U0, and∫ ∞

−∞
|ψ̂(p)|2dp = 1.

Such states are called “wave packets”. Then for every compact subset E ⊂ R
we have

(4.9) lim
|t|→∞

∫
E
|ψ(q, t)|2dq = 0.

Since ∫ ∞
−∞
|ψ(q, t)|2dq = 1

for all t, it follows from (4.9) that the particle leaves every compact subset
of R as |t| → ∞ and the quantum motion is infinite. To prove (4.9), observe
that the function χ(p, q, t) — the “phase” in integral representation (4.8) —

has the property that |∂χ∂p | > C > 0 for all p ∈ U0, q ∈ E and large enough

|t|. Integrating by parts we get

ψ(q, t) =
1√
2π~

∫
U0

e
i
~χ(p,q,t)tψ̂(p)dp

= − 1

it

√
~

2π

∫
U0

∂

∂p

 ψ̂(p)
∂χ(p,q,t)

∂p

 e
i
~χ(p,q,t)tdp,

so that uniformly on E,

ψ(q, t) = O(|t|−1) as |t| → ∞.

By repeated integration by parts, we obtain that for every n ∈ N, uniformly
on E,

ψ(q, t) = O(|t|−n),

so that ψ(q, t) = O(|t|−∞).
To describe the motion of a free quantum particle in unbounded regions,

we use the stationary phase method. In its simplest form it is stated as
follows.
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The Method of Stationary Phase. Let f, g ∈ C∞(R), where f is
real-valued and g has compact support, and suppose that f has a single
non-degenerate critical point x0, i.e., f ′(x0) = 0 and f ′′(x0) 6= 0. Then∫ ∞
−∞

eiNf(x)g(x)dx =

(
2π

N |f ′′(x0)|

) 1
2

eiNf(x0)+
iπ
4
sgnf ′′(x0)g(x0) +O

(
1

N

)
as N →∞.

Applying the stationary phase method to the integral representation
(4.8) (and setting N = t), we find that the critical point of χ(p, q, t) is
p0 = mq

t with χ′′(p0) = − 1
m 6= 0, and

ψ(q, t) =

√
m

t
ψ̂
(mq
t

)
e
imq2

2~t −
πi
4

+O(t−1)

= ψ0(q, t) +O(t−1) as t→∞.

Thus as t→∞, the wave function ψ(q, t) is supported on t
mU0 — a domain

where the probability of finding a particle is asymptotically different from
zero. At large t the points in this domain move with constant velocities
v = p

m , p ∈ U0. In this sense, the classical relation p = mv remains valid in
the quantum picture. Moreover, the asymptotic wave function ψ0 satisfies∫ ∞

−∞
|ψ0(q, t)|2dq =

m

t

∫ ∞
−∞

∣∣∣ψ̂ (mq
t

)∣∣∣2 dq = 1,

and, therefore, describes the asymptotic probability distribution. Similarly,
setting N = −|t|, we can describe the behavior of the wave function ψ(q, t)
as t→ −∞.

Remark. We have lim|t|→∞ ψ(t) = 0 in the weak topology on H . In-
deed, for every ϕ ∈H we get by Parseval’s identity for the Fourier integrals,

(ψ(t), ϕ) =

∫ ∞
−∞

ψ̂(p)ϕ̂(p)e
− ip

2t
2m~ dp,

and the integral goes to zero as |t| → ∞ by the Riemann-Lebesgue lemma.

Similarly, the Hamiltonian H0 of a free quantum particle with n degrees
of freedom is is a positive operator with absolutely continuous spectrum
[0,∞) of infinite multiplicity. Namely, let Sn−1 = {n ∈ Rn : n2 = 1} be
the (n − 1)-dimensional unit sphere in Rn, let dn be the measure on Sn−1

induced by the Lebesgue measure on Rn, and let

h = {f : Sn−1 → C : ‖f‖2h =

∫
Sn−1

|f(n)|2dn <∞}.
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Let H
(n)
0 = L2(R>0, h; dσn) be the Hilbert space of h-valued measurable

functions5 Ψ on R>0 = (0,∞), square-integrable on R>0 with respect to the

measure dσn(λ) = (2mλ)
n
2
dλ
2λ ,

H
(n)
0 =

{
Ψ : R>0 → h, ‖Ψ‖2 =

∫ ∞
0
‖Ψ(λ)‖2h dσn(λ) <∞

}
.

When n = 1, H
(1)
0 = H0 — the corresponding Hilbert space for one degree

of freedom. The operator U0 : L2(Rn, dnq)→ H
(n)
0 ,

U0(ψ)(λ) = Ψ(λ), Ψ(λ)(n) = ψ̂(
√

2mλn),

is unitary and establishes the isomorphism L2(Rn, dnq) ' H
(n)
0 . In the

momentum representation H0 is a multiplication by 1
2mp2 operator, so that

the operator U0H0U
−1
0 is a multiplication by λ operator in H

(n)
0 .

Remark. As in the case n = 1, the Hamiltonian operator H0 has no
eigenvectors — the eigenvalue equation

H0ψ = λψ

has no solutions in L2(Rn). However, for every λ > 0 this differential equa-
tion has infinitely many linearly independent bounded solutions

ψn(q) = (2π~)−
n
2 e

i
~
√
2mλnq,

parametrized by the unit sphere Sn−1. These solutions do not belong to
L2(Rn), but in the distributional sense they combine to a Schwartz kernel of
the unitary operator U0, which establishes the isomorphism between H =

L2(Rn, dnq) and the Hilbert space H
(n)
0 , where H0 acts as a multiplication

by λ operator.

As in the case n = 1, the Schrödinger equation

i~
dψ(t)

dt
= H0ψ(t), ψ(0) = ψ,

is solved by the Fourier transform

ψ(q, t) = (2π~)−n/2
∫
Rn
e
i
~ (pq−

p2

2m
t)ψ̂(p)dnp.

5That is, for every f ∈ h the function (f,Ψ) is measurable on R>0.
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For a wave packet, an initial condition ψ such that its Fourier transform
ψ̂ = F~(ψ) is a smooth function supported on a neighborhood U0 of p0 ∈
Rn \ {0} such that 0 /∈ U0 and∫

Rn
|ψ̂(p)|2dnp = 1,

the quantum particle leaves every compact subset of Rn and the motion is
infinite. Asymptotically as |t| → ∞, the wave function ψ(q, t) is different
from 0 only when q = p

m t, p ∈ U0.





LECTURE 5

Quantum harmonic oscillator

The simplest classical system with one degree of freedom, besides the
free particle, is the harmonic oscillator. It is described by the phase space
R2 with the canonical coordinates p, q, and the Hamiltonian function

(5.1) Hc(p, q) =
p2

2m
+
mω2q2

2

Hamilton’s equations

ṗ = {Hc, p} = −mω2q, q̇ = {Hc, q} =
p

m

with the initial conditions p0, q0 are readily solved,

p(t) = p0 cosωt−mωq0 sinωt,(5.2)

q(t) = q0 cosωt+
1

mω
p0 sinωt,(5.3)

and describe the harmonic motion. It is convenient to introduce complex
coordinates on the phase space R2 ' C,

(5.4) z =
1√
2ω

(
ωq +

ip

m

)
, z̄ =

1√
2ω

(
ωq − ip

m

)
.

We have

(5.5) {z, z̄} =
i

m
, Hc(z, z̄) = mω|z|2,

so that Hamilton’s equations decouple,

ż = {Hc, z} = −iωz, ˙̄z = {Hc, z̄} = iωz̄,

and are trivially solved,

(5.6) z(t) = e−iωtz0, z̄ = eiωtz̄0.

41
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Here

z0 =
1√
2ω

(
ωq0 +

ip0
m

)
, z̄0 =

1√
2ω

(
ωq0 −

ip0
m

)
.

For the quantum system, the corresponding Hamiltonian operator is

H =
P 2

2m
+
mω2Q2

2
,

and in the coordinate representation H = L2(R, dq) it is a Schrödinger
operator with a quadratic potential,

H = − ~2

2m

d2

dq2
+
mω2q2

2
.

The quantum harmonic oscillator is the simplest non-trivial quantum sys-
tem, besides the free particle, whose Schrödinger equation can be solved ex-
plicitly. It appears in all problems involving quantized oscillations, namely
in molecular and crystalline vibrations. The exact solution of the harmonic
oscillator, described below, has remarkable1 algebraic and analytic proper-
ties.

5.1. Exact solution

Temporarily set m = 1 and consider the operators

(5.7) a =
1√
2ω~

(ωQ+ iP ) , a∗ =
1√
2ω~

(ωQ− iP ) ,

which are quantum analogs of complex coordinates (5.4). The operators a

and a∗ are defined on W 1,2(R) ∩ Ŵ 1,2(R), where Ŵ 1,2(R) = F (W 1,2(R)),
and it is easy to show that a∗ is the adjoint operator to a and a∗∗ = a, so
that a is a closed operator. From the Heisenberg commutation relation (3.2)
we get the canonical commutation relation

(5.8) [a, a∗] = I

on W 2,2(R) ∩ Ŵ 2,2(R). Indeed,

aa∗ =
P 2 + ω2Q2

2ω~
+

iω

2ω~
[P,Q] =

P 2 + ω2Q2

2ω~
+

1

2
I,

1The algebraic structure of the exact solution of the harmonic oscillator plays a fun-
damental role in quantum electrodynamics and in quantum field theory in general.
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and

a∗a =
P 2 + ω2Q2

2ω~
− iω

2ω~
[P,Q] =

P 2 + ω2Q2

2ω~
− 1

2
I,

so that (5.8) holds on W 2,2(R) ∩ Ŵ 2,2(R), where Ŵ 2,2(R) = F (W 2,2(R)),
and

H = ω~
(
a∗a+ 1

2I
)

= ω~
(
aa∗ − 1

2I
)
.

In particular, it follows from the von Neumann criterion2 that the Hamil-
tonian operator H is self-adjoint.

The operators a, a∗ and N = a∗a satisfy the commutation relations

(5.9) [N, a] = −a, [N, a∗] = a∗, [a, a∗] = I.

Commutation relations (5.9) allow to solve explicitly the Heisenberg equa-
tions of motion for the harmonic oscillator. Namely, we have

ȧ = {H, a}~ = −iωa, ȧ∗ = {H, a∗}~ = iωa∗,

so that
a(t) = e−iωta0, a∗(t) = eiωta∗0.

Comparing with (5.6) we see that solutions of classical and quantum equa-
tions of motion for the harmonic oscillator have the same form!

Next, using commutation relations (5.9) and positivity of the operator
N , we will solve the eigenvalue problem for the Hamiltonian H of the har-
monic oscillator explicitly by finding its energy levels and corresponding
eigenvectors. We will prove that the eigenvectors form a complete system
of vectors in H , so that the spectrum of the Hamiltonian H is the point
spectrum. This is a quantum mechanical analog of the fact that classical
motion of the harmonic oscillator is always finite.

The algebraic part of the exact solution is the following fundamental
result.

Proposition 5.1. Suppose that there exists a non-zero ψ ∈ D(an) ∩
D((a∗)n), n = 1, 2, . . . , such that

Hψ = λψ.

Then the following statements hold.

2If A is a closed operator and D(A) = H , then H = A∗A is a self-adjoint operator.
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(i) There exists ψ0 ∈H , ‖ψ0‖ = 1, such that

Hψ0 = 1
2~ωψ0.

(ii) The vectors

ψn =
(a∗)n√
n!
ψ0 ∈H , n = 0, 1, 2, . . . ,

are orthonormal eigenvectors for H with the eigenvalues ~ω(n+ 1
2),

Hψn = ~ω(n+ 1
2)ψn.

(iii) Restriction of the operator H to the Hilbert space H0 — a closed
subspace of H , spanned by the orthonormal set {ψn}∞n=0 — is es-
sentially self-adjoint.

Proof. Rewriting commutation relations (5.9) as

Na = a(N − I) and Na∗ = a∗(N + I),

and putting λ = ~ω(µ+ 1
2), we get for all n ≥ 0,

(5.10) Nanψ = (µ− n)anψ and N(a∗)nψ = (µ+ n)(a∗)nψ.

Since N ≥ 0 on D(N), it follows from the first equation in (5.10) that there

exists n0 ≥ 0 such that an0ψ 6= 0 but an0+1ψ = 0. Setting ψ0 =
an0ψ

‖an0ψ‖
∈H

we get

(5.11) aψ0 = 0 and Nψ0 = 0.

Since H = ~ω(N + 1
2I), this proves part (i). To prove part (ii), we use

commutation relations

(5.12) [a, (a∗)n] = n(a∗)n−1,

which follow from (5.8) and the Leibniz rule. Using (5.11)-(5.12), we get

(5.13) a∗ψn =
√
n+ 1ψn+1, aψn =

√
nψn−1,

so that

‖ψn‖2 =
1√
n

(a∗ψn−1, ψn) =
1√
n

(ψn−1, aψn) = ‖ψn−1‖2 = · · · = ‖ψ0‖2 = 1.
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From the second equation in (5.10) it follows that Nψn = nψn, so ψn are
normalized eigenvectors of H with the eigenvalues ~ω(n+ 1

2). The eigenvec-
tors ψn are orthogonal since the corresponding eigenvalues are distinct and
the operator H is symmetric. Finally, part (iii) immediately follows from
the fact that, according to part (ii), the subspaces Im (H ± iI)|H0

are dense
in H0, which is the criterion of essential self-adjointness. �

Remark. Since the coordinate representation of the Heisenberg commu-
tation relations is irreducible, it is tempting to conclude, using Proposition
5.1, that H0 = H . Namely, it follows from the construction that the linear
span of vectors ψn — a dense subspace of H0 — is invariant for the opera-
tors P and Q. However, this does not immediately imply that the projection
operator Π0 onto the subspace H0 commutes with self-adjoint operators P
and Q in the sense of the definition in Section 2.1.

Using the coordinate representation, we can immediately show the exis-
tence of the vector ψ0 in Proposition 5.1, and prove that H0 = H . Indeed,
equation aψ0 = 0 becomes a first order linear differential equation(

~
d

dq
+ ωq

)
ψ0 = 0,

so that

ψ0(q) = 4

√
ω

π~
e
− ω

2~ q
2

,

and

‖ψ0‖2 =

√
ω

π~

∫ ∞
−∞

e
−ω~ q

2

dq = 1.

The vector ψ0 is called the ground state for the harmonic oscillator. Corre-
spondingly, the eigenfunctions

ψn(q) =
1√
n!

(
1√
2ω~

(
ωq − ~

d

dq

))n
ψ0

are of the form Pn(q)e
− ω

2~ q
2

, where Pn(q) are polynomials of degree n. The
following result guarantees that the functions {ψn}∞n=0 form an orthonormal
basis in L2(R, dq).

Lemma 5.1. The functions qne−q
2
, n = 0, 1, 2, . . . , are complete in

L2(R, dq).
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Proof. Let f ∈ L2(R, dq) is such that∫ ∞
−∞

f(q)qne−q
2
dq = 0, n = 0, 1, 2, . . . .

The integral

F (z) =

∫ ∞
−∞

f(q)eiqz−q
2
dq

is absolutely convergent for all z ∈ C and, therefore, defines an entire func-
tion. We have

F (n)(0) = in
∫ ∞
−∞

f(q)qne−q
2
dq = 0, n = 0, 1, 2, . . . ,

so that F (z) = 0 for all z ∈ C. This implies the function g(q) = f(q)e−q
2 ∈

L1(R)∩L2(R) satisfies F (g) = 0, where F is the “ordinary” (~ = 1) Fourier
transform. Thus we conclude that g = 0. �

The polynomials Pn are expressed through classical Hermite-Tchebyscheff
polynomials Hn, defined by

Hn(q) = (−1)neq
2 dn

dqn
e−q

2
, n = 0, 1, 2, . . . .

Namely, using the identity

e
q2

2
dn

dqn
e−q

2
= −

(
q − d

dq

)[
e
q2

2
dn−1

dqn−1
e−q

2

]
= · · · = (−1)n

(
q − d

dq

)n
e−

q2

2

we obtain

ψn(q) = 4

√
ω

π~
1√

2nn!
e
− ω

2~ q
2

Hn

(√
ω

~
q

)
.

We summarize the obtained results as follows.

Theorem 5.1. The Hamiltonian

H = − ~2

2m

d2

dq2
+
mω2q2

2

of the quantum harmonic oscillator with one degree of freedom is a self-
adjoint operator on H = L2(R, dq) with the domain D(H) = W 2,2(R) ∩
Ŵ 2,2(R). The operator H has pure point spectrum

Hψn = λnψn, n = 0, 1, 2, . . . ,
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with the eigenvalues λn = ~ω(n+ 1
2). Corresponding eigenfunctions ψn form

an orthonormal basis for H and are given by

(5.14) ψn(q) = 4

√
mω

π~
1√

2nn!
e
−mω

2~ q2

Hn

(√
mω

~
q

)
,

where Hn(q) are classical Hermite-Tchebyscheff polynomials.

Proof. Consider the operator H defined on the Schwartz space S (R)
of rapidly decreasing functions. Since the operator H is symmetric and has
a complete system of eigenvectors in S (R), the subspaces Im(H ± iI) are
dense in H , so that H is essentially self-adjoint. It is easy to show that
self-adjoint closure of H (which we continue to denote by H) has the domain

W 2,2(R) ∩ Ŵ 2,2(R). �

5.2. Holomorphic representation

Let

`2 =

{
c = {cn}∞n=0 : ‖c‖2 =

∞∑
n=0

|cn|2 <∞

}
be the Hilbert `2-space. The choice of an orthonormal basis {ψn}∞n=0 for
L2(R, dq), given by the eigenfunctions (5.14) of the Schrödinger operator for
the harmonic oscillator, establishes the Hilbert space isomorphism L2(R, dq)
' `2,

L2(R, dq) 3 ψ =
∞∑
n=0

cnψn 7→ c = {cn}∞n=0 ∈ `2,

where

cn = (ψ,ψn) =

∫ ∞
−∞

ψ(q)ψn(q)dq,

since the functions ψn are real-valued. Using (5.13) we get

a∗ψ =
∞∑
n=0

cna
∗ψn =

∞∑
n=0

√
n+ 1 cnψn+1 =

∞∑
n=1

√
n cn−1ψn, ψ ∈ D(a∗),

and

aψ =
∞∑
n=0

cnaψn =
∞∑
n=1

√
n cnψn−1 =

∞∑
n=0

√
n+ 1 cn+1ψn, ψ ∈ D(a),
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so that in `2 creation and annihilation operators a∗ and a are represented
by the following semi-infinite matrices:

a =


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , a∗ =


0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .

 .

As a result,

N = a∗a =


0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...
. . .

 ,

so that the Hamiltonian of the harmonic oscillator is represented by a diag-
onal matrix,

H = ~ω(N + 1
2) = diag{12~ω,

3
2~ω,

5
2~ω, . . . }.

This representation of the Heisenberg commutation relations is called
the representation by occupation numbers, and has the property that in this
representation the Hamiltonian H of the harmonic oscillator is diagonal.

Another representation where H is diagonal is constructed as follows.
Let D be the space of entire functions f(z) with the inner product

(5.15) (f, g) =
1

π

∫
C
f(z)g(z)e−|z|

2
d2z,

where d2z = i
2dz ∧ dz̄ is the Lebesgue measure on C ' R2. It is easy to

check that D is a Hilbert space with the orthonormal basis

fn(z) =
zn√
n!
, n = 0, 1, 2, . . . .

The correspondence

`2 3 c = {cn}∞n=0 7→ f(z) =
∞∑
n=0

cnfn(z) ∈ D

establishes the Hilbert space isomorphism `2 ' D . The realization of a
Hilbert space H as the Hilbert space D of entire functions is called a holo-
morphic representation, and D — holomorphic Fock-Bargmann space for
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one degree of freedom. In the holomorphic representation,

a∗ = z, a =
d

dz
, and H = ~ω

(
z
d

dz
+

1

2

)
,

and it is very easy to show that a∗ is the adjoint operator to a. The mapping

H 3 ψ =
∞∑
n=0

cnψn 7→ f(z) =
∞∑
n=0

cnfn(z) ∈ D

establishes the isomorphism between the coordinate and holomorphic rep-
resentations. It follows from the formula for the generating function for
Hermite-Tchebyscheff polynomials,

∞∑
n=0

Hn(q)
zn

n!
= e2qz−z

2
,

that the corresponding unitary operator U : H → D is an integral operator

Uψ(z) =

∫ ∞
−∞

U(z, q)ψ(q)dq

with the kernel

(5.16) U(z, q) =
∞∑
n=0

ψn(q)fn(z) = 4

√
mω

π~
e
mω
2~ q

2−
(√

mω
~ q− 1√

2
z
)2
.

Another useful realization is a representation in the Hilbert space D̄ of
anti-holomorphic functions f(z̄) on C with the inner product

(f, g) =
1

π

∫
C
f(z̄)g(z̄)e−|z|

2
d2z,

given by

a∗ = z̄, a =
d

dz̄
.

It is straightforward to generalize these constructions to n degrees of
freedom. Thus the Hilbert space Dn defining the holomorphic representation
is the space of entire functions f(z) of n complex variables z = (z1, . . . , zn)
with the inner product

(f, g) =
1

πn

∫
Cn
f(z)g(z)e−|z|

2
d2nz <∞,
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where |z|2 = z21 + · · ·+ z2n and d2nz = d2z1 · · · d2zn is the Lebesgue measure
on Cn ' R2n. The functions

fm(z) =
zm1
1 . . . zmnn√
m1! . . .mn!

, m1, . . . ,mn = 0, 1, 2, . . . ,

where m = (m1, . . . ,mn) is a multi-index, form an orthonormal basis for
Dn. Corresponding creation and annihilation operators are given by

a∗j = zj , aj =
∂

∂zj
, j = 1, . . . , n

and satisfy the commutation relations

[ak, al] = [a∗k, a
∗
l ] = 0, [ak, a

∗
l ] = δklI, k, l = 1, . . . , n.

Problem 5.1. Show that 〈H|M〉 ≥ 1
2~ω for every M ∈ S , where H is the

Hamiltonian of the harmonic oscillator with one degree of freedom.

Problem 5.2. Let q(t) = A cos(ωt + α) be the classical trajectory of the
harmonic oscillator with m = 1 and the energy E = 1

2ω
2A2, and let µα be the

probability measure on R supported at the point q(t). Show that the convex linear
combination of the measures µα, 0 ≤ α ≤ 2π, is the probability measure on R
with the distribution function µ(q) = θ(A2−q2)

π
√
A2−q2

, where θ(q) is the Heavyside step

function.

Problem 5.3. Show that when n → ∞ and ~ → 0 such that ~ω(n + 1
2 ) =

1
2ω

2A2 remains fixed, the envelope of the distribution function |ψn(q)|2 on the
interval |q| ≤ A coincides with the classical distribution function µ(q) from the
previous problem. (Hint: Prove the integral representation

e−q
2

Hn(q) =
2n+1

√
π

∫ ∞
0

e−y
2

yn cos(2qy − 1
2nπ)dy,

and derive the asymptotic formula

ψn(q) =

√
2

π

1
4
√
A2 − q2

cos
{ ω

2~

(
A2 sin−1

q

A
+ q
√
A2 − q2 − 1

2
A2π

)
+O(1)

}
when ~→ 0 and ~(n+ 1

2 ) = 1
2ωA

2, |q| < A.)

Problem 5.4. Complete the proof of Theorem 5.1.

Problem 5.5 (The N -representation theorem). Let ψ ∈ S (R). Show
that the L2-convergent expansion ψ =

∑∞
n=0 cnψn, where cn = (ψ,ψn), converges

in S (R). (Hint : Use Nψn = nψn.)

Problem 5.6. Show that the operators Eij = a∗i aj , i, j = 1, . . . , n, satisfy the
commutation relations of the Lie algebra gl(n,C).
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