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Abstract. The concept of Lorentz-invariant classical elementary particle is made
precise and it is found that there are exactly two families: (0) the well-known free point-
particles distinguished only by their masses and (+) a family with eight-dimensional phase
space whose members are distinguished either by their mass or their positive spin.

1. Introduction

An invariant elementary one-particle system has a space of states M
in which the space-time group (here Poincaré, i.e., inhomogeneous
Lorentz group) operates or acts in a transitive way. We require transi-
tivity in our definition because if there were a non-trivial subset of states
which was invariant then this would define a more elementary system.

We require also that for each state m (or initial condition for some
Lorentz frame) there should be defined a position and velocity m(m),
to be thought of as the state of the centroid. This map = should be such
that the centroid moves in the way a free point-particle is always supposed
to move.

The last requirement is that there should be a Poisson bracket
defined for functions on M and “generating” functions h, ..., h;, such
that the infinitesimal space-time transformations X, ..., X;, are re-
presented by X;f = {h;, f}.

In the present paper, we classify only the cases where M is connected.
The result is that there is allowed not only the free point-particles with
various positive masses, but also systems with eight-dimensional state
space. These are distinguished by their masses and their positive spin
value.

For different values of these parameters the systems are not canoni-
cally equivalent. However, those with non-zero spin have general
features in common with the example (mass 1 and spin 1, usually called %)
already presented in [3, Section 5]. It was also shown that this system
is the correspondence-limit of the Dirac system.

In all systems of spin zero, the space M is essentially R® (real cartesian
six-space) and the action of £ there is the same for all. The individual
particle parameter resides in the Poisson bracket. In the systems of non-
zero spin, M is essentially RS x S? where S? is the set of unit vectors in R>.
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Again the action of 2 in M is independent of the values of the mass and
spin parameters. Again, these reside in the symplectic structure. The
spin cannot be told by looking at the Hamiltonian.

The point of the paper is then to prove that this list exhausts the
possibilities. There is, for example, no system in which M is ten dimen-
sional, even though the ten-dimensional Lie group £ is an excellent
space for £ to act in.

The Lie-group-theoretical investigation needed to establish the
existence and classification of such particles was completed in [4], and
reference to that paper is indispensable.

2. Invariant Elementary Particle Systems

Let us take R® as the configuration space for a particle in the most
classical sense. Assuming a second-order dynamics, the space of states
(or initial conditions) is T*(R?), which is to say the space of (“bound”)
vectors in R3. If the dynamics is to be compatible with Einstein-Min-
kowski space-time structure one will make sure that initial conditions
with speed less than 1 never lead to conditions with speed greater than
or equal to 1, and discard all vectors in T*(R®) except those of length
less than 1, for which set we adopt the symbol T!(R?)°.

We know, of course, how the euclidean group E(3) acts in R®. From
this action there arises an action in T*(R®). This latter action preserves
the lengths of vectors and hence defines an action of E(3) in T*(R?)°. We
shall call this the usual action. Now E(3) corresponds to a certain sub-
group of the Poincaré group (or inhomogeneous Lorentz group) £
which shall be the space-time group underlying our discussion.

By an invariant system we understand a space M (of “states”) in which
the space-time group acts [3]. By an elementary (invariant) system we
mean one in which this action is transitive on M. We impose also a
slight regularity condition [4, 3.8] and achieve that M is equivalent to
the space of cosets oS of a closed subgroup S of . The action in this
coset space £/S is that 7 in £ sends ¢S to 7oS.

“Equivalent” has the following meaning here. Let M and N be two
spaces in which & acts. These actions are equivalent if there is a 1:1
map of M onto N such that U(em) = g U(m), and U is called the equiv-
alence.

For a one-particle invariant system we require, besides the action of
2 in M, also a transitive action of 2 in T*(R?)°. In this latter action we
require that the action of E(3) be the usual action. Finally we require a
mapping n from M to T*(R*)° such that n(om) = o(n(m)) for all m in M
and all ¢ in 2. In the right-hand side of this equation we understand
the action of 2 in T*(R?)".
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The (real) orthogonal group O(3) lies in E(3) and thus in 2. We use
E(1) to denote the subgroup of time-translations and time-reversal. The
subgroup E(1) x O(3) of £ is of special interest.

2.1. Theorem. For an elementary invariant one-particle system, the
state space M is equivalent to the coset space P/S where S is some closed
subgroup of E(1)x O(3).

The proof begins with examining the presumed action of £ in
T*(R®)°. Let z denote the zero vector at (000) in R>. Let U be the sub-
group of those ¢ in £ such that oz = z. Since O(3) acts in the usual way
we see that O(3) lies in U. Now we shall show that E(1) does. Let o, be the
time-translation by t. Then o,z is some vector z(f) in R?, say at the point
x(t), and with components v, (t), v,(t), v3(f) so that we may write sym-
bolically

o,z = (x(t), v(1)) .

Now let ¢ belong to O(3). Then go,z = (¢x(f), ov(t)). But 9o, =00
s0 00,z = 0,z. Thus ox(t) = x(t) and gv(t) = v(f) for all 9. Hence x(f) and
v(t) must be O for all t. Thus ¢,z =z and o, belongs to U.

Now consider time-reversal, calling it i. Let iz = (x, v). The preceeding
argument shows x = v =0 whence we can now assert E(1)xO(3)CU.

Suppose we had an element ¢ of U which is not in E(1) x O(3). Let t
be its square. Consider the Lorentz component ¢ of 7. (This is the image
of = under the map from £ to the Lorentz group.) Then ¢ is in the com-
ponent of the identity, that is proper and orthochronous. Availing our-
selves of the O(3) contained in U we may suppose ¢ has the form

where ¢ — s* = 1 and the empty spaces are to be filled with zeros. Let y
be a rotation
1
cos@ sin 0

v= —sinf  cosf

1

Then gpo~*¢p ™! is the Lorentz component of something in U. The
reader is asked to compute d/d0 of this for 6 = 0 and observe thatitis a
non-zero infinitesimal Lorentz matrix, unless ¢ is the identity. Hence
if ¢ were not the identity then U would have at least one dimension more
than that of E(1) x 0(3), i.e., 4. This would make dim%/U < 6. But /U
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is equivalent to T*(R3)° as we required this action to be transitive. Thus
¢ is the identity. As we already have space and time inversion in U, we
can suppose that the aforementioned o is merely a translation, and thus
already in E(1) x O(3). This contradiction proves U = E(1) x O(3).

We know M is equivalent to /S and = is an equivariant map of M
onto 2/U. It follows from this that some conjugate of S must be a sub-
group of U. Shifting to a conjugate subgroup gives an equivalent action.
Thus 2.1 is proved.

The theory of such elementary particles is therefore completed when
the subgroups of E(1) x O(3) are listed. We list here their connected com-
ponents, and take only one sample from each class of conjugate subgroups.

One-dimensional Subgroups.

la: The time-translations, here called R.

1b: The rotations in the xy plane, here called SO(2).

Ic: Let g, be as above and let g, be a rotation in the xy plane through
the angle t6. Then this subgroup consists of all g,9,.

2.2 Two-dimensional Subgroups. There is only one, that generated by
la and 1b. As this subgroup is important, we shall refer to it later.

Three-dimensional Subgroups. There is only SO(3).

The list is completed by the zero-dimensional subgroup, and by
E(1) x O(3) itself, which is four dimensional.

As we shall see later, the odd-dimensional subgroups and the zero
subgroup are ruled out by the requirement of Hamiltonicity.

We shall give two examples to show that, conversely, with either the
subgroup 2.2 or E(1) x O(3), elementary one-particle systems are possible.

Consider the usual Minkowski form (x!)? + --- +(x%)? — (x*)? in R*.
Let T be the family of time-like straight lines in R*, where a line is time-
like if it has direction components a’, ..., a* with (a*)? > (a')* + --- +(a®)*.
The Poincaré group, in its action in R*, sends time-like lines into time-
like lines, i.e., it acts in this six-dimensional space T. Moreover, it acts
transitively. Now we construct a map n: T— T*(R*)°. For a line A in T,
there is a point (a*, a?,a® 0) on it. It can be given direction numbers
(b*, b2, b3, 1). We let m(1) be the vector in R® at the point (a!, a?, @) with
cartesian components (b, b%, b*). This mapping is in fact 1: 1 and so we
obtain an action of 2 in T*(R?)°. The subgroup S leaving the x* (or
“time”) axis fixed is evidently E(1)xO(3), so T is equivalent to
PJE(1)x O(3).

Let L, be the class of light-like straight lines through the origin
0000, where “light-like” means that direction components b', b2, b>, 1
can be found for which (b')* + (b*)* + (b)* = 1. Thus L, is equivalent
to the (two-dimensional) unit sphere in R*. Thus 2 acts there.
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Of course this yields an action of 2 in T x L,. The interesting fact is
that it is transitive. Moreover, there is a map =, from T x L, onto
T*(R?)°, where indeed (4, u) = n(4) where this second 7 is the one
mentioned in connection with T. This =, has the desired equivariance
property, for indeed m,(cA, ou)=mn(cA)=on(l)=on,(4, u). Here the
second “=" sign is simply the manner in which £ was made to act in
T*(R?)°. Thus we have an elementary one-particle system. Let 1, be the
x*-axis, and let pu, have components (0,0,1,1). Then the subgroup S
of those o such that 6 1, = Ay and o u, = 1, is readily seen to be E(1) x O(2).

These examples will be referred to as:

2.3 the standard actions

involving T, or T*(R?)°, or T x L,, etc., as the case may be.

3. Completely Hamiltonian Systems

Following [2], we call an invariant system completely hamiltonian
if the infinitesimal space-time mappings in M act by means of generating
functions, relative to some Poisson bracket. The purely mathematical
aspects of this are exposed in [4], where such actions are called hamil-
tonian actions of the group in question — here £.

It follows from the preceding enumeration of the subgroups of
E(1) x O(3), and from the fact [4, 3.5] that M has to be of even dimension,
that the only elementary completely hamiltonian one-particle systems
would have to be associated with even-dimensional subgroups S of
E(1)x O(3). The component of the identity has therefore to be either

3.0 the identity element of 2,
3.1 the group 2.2, that is, Rx SO(2)
3.2 the group R x SO(3).

If we take the trivial subgroup 3.0, then the quotient space is 2 itself
and [4, 4.5] shows that no completely hamiltonian systems can have 2
as a space of states. The same holds for S any closed discrete subgroup.

We pass over 3.1 in order to study first the simpler case of 3.2. To
achieve a connected coset space M (see the introduction) we must have
S = E(1) x O(2) and the action is just the standard action in T (or equiv-
alently, in T*(R®)°). Let G be the connected component of #. Then G
acts transitively in this connected M, and [4, 4.8] may be applied, yielding
the following.

3.3 Theorem. There is a one-parameter family of completely hamil-
tonian one-particle systems with T*(R®)° as state space and the standard
action.
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It will appear that this parameter can be identified with the mass.
To do so we introduce co-ordinates x!, x2, x3, x!, X2, X3 into T'(R?) in
the well-known way (compare [3]): x' of a vector in R® is the i-th cartesian
co-ordinate of its base point, and X' of a vector is its i-th cartesian com-
ponent.

Consideration of the Lagrangian

=)= = (@) =—(1—x- %)}
suggests replacing the X' by
p=xi(1—%-%)"%,

These co-ordinates x!, ..., x>, p;, ..., p3 have as their domain of definition
exactly T*(R*)° and map it in 1: 1 fashion onto R®.
We consider a 2-form of familiar appearance:

3.4 dp;Andx" (sum from 1 to 3)
in TY(R3)°. It is evidently non-singular. It is a fact that
3.5 the standard action of G in T*(R®)° preserves this 2-form.

The proof of this is laborious. One first expresses the infinitesimal
actions [3,2.72] in terms of the p’s (one sets the 4; = 0) and verifies that
the ten of them, in the order imposed by the list 4.3 (below), have, in the
Poisson bracket based on 3.4, generating functions

351 (14+p-pt —pi, —eup;xt, —x(1+p- p)t.
As observed in [4, second sentence after 2.5], this shows that 3.4 is pre-
served. Hence any constant multiple

3.6 Adp,andx’ (A%0)

is also preserved. This is the parameter promised by 3.3. Actually [4, 4.8],
whose proof is much easier than the direct attack on 3.4, very readily
shows that 3.6 gives the only hamiltonization.

Now when a constant 1 is introduced, the generating functions get
multiplied by the same factor [4, 2.4.1], so now we know what they would
be. Of course one can still add arbitrary constants. We adopt the following
conventional definition of mass.

Choose those particular “normalized” generating functions (in the
abstract notation of [4, Section 6]) hy, ..., hy for which h, = (Ai5; YD,
as we know is possible. (This settles the problem of the arbitrary con-
stants that could have been added.) Then shifting back to the Poincaré
group, let hy h,hyh, be those generating the space and time translations
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and define m = 0 by
37 m*=hi—hi—h3-h3.

How do we know that 3.51 really corresponds to this choice of the
additive constants? We test it by seeing if they satisfy the commutation
relations exactly, for this is obviously characteristic of the normalized
ones. Thus the mass for 3.51 is 1, and with 3.6, |A|.

We defined equivalence in Section 2. This prompts the question: can
two systems on T*(R3)° with different masses, be equivalent? This point
is not covered in [4, 4.8]. Mathematically this comes down to the follow-
ing question: is there a 1:1 mapping U of T*(R®)° onto itself which
commutes with the action of 2 and transforms Adp; A dx’ into udp; A dx'
with |A|#|u|? The answer is “no”. This whole problem becomes more
serious for the system involving 3.1 where there are indeed such com-
muting maps, and we shall prove there that the mass cannot be changed.
That discussion can easily be applied to the present case and we leave
it to the reader.

4. The Case M=T x L,

This is the case 3.1. First we explore it abstractly. According to [4, 4.7],
together with the table just preceding that theorem, the Poisson brackets
preserved by the standard action in M = T x L,, when M is regarded as
a coset space Z/E(1) x O(2), are those associated with (in the sense [4, 2]
of being the inverse of) the three-parameter family of 2-forms du where

41 p=—4Ap*+Bu'* + Cu*d).
Moreover, the determinant of du is essentially 4 B2,

4.2 Theorem. The standard action which preserves du (with pasin4.1)
is equivalent to another action which preserves du, where
421 po= —3(Ap*+Bp'?),
provided A 0.

Proof. Let 1, be the translation in the x* direction by an amount b.
The right-multiplication

' 0T,

commutes with the action of 2 in £ and also with its action in
Z/R x SO(2) because (as is easily shown) each self-equivalence of the
action in £/S is implemented by right-multiplication by such an element

! A dynamical definition of mass for one particle, based only on the action of 2 is of

course impossible. It is only after a Poisson bracket has been selected that a mass can be
defined.
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7 of Z which makes 1”15t = S, and conversely. We now show that for a
suitable b, 7, transforms u into u,; and this is more than enough to
prove 4.2.

The infinitesimal form of right-multiplication by 7, is the infinitesimal
left-invariant vector field P; on £. This changes any left-invariant
vector field X to [P;, X] = ad P5(X). What it does to the left-invariant
differential forms g/, ..., u*? is given by the transpose of the matrix of
ad P;. The multiplication table [4, 4.6] shows that

M,, 0 0 0\ /M,
adPy,| M| ={0 0 1)|M,,
P, 00 0 \P,

It also shows that ad P; preserves the linear subspace of g spanned by
M, M3 M, M,, P, P, P;. 1t follows that

,u 0 0 O ,u
(ad Py)* ,u ={0 0 O ,u
u# 0 1 o/ \p*
whence
ut? 1 00
(eadbP3)* #4 — 0 1 0
u* 0 b 1 u*+but?

whence expb P, sends Au*+ Bu'? + Cu*® into Au*+Bu? +(C+bA)u*3.
This proves 4.2.

One could proceed along these lines in greater detail to show that
an arbitrary self-equivalence could at most change the signs of A and B,
but this will also follow from another theorem (4.4 below) which is
needed for another purpose anyway. We want to establish the relation
of A to the mass, and of 4 and B together with the “spin”.

We use Definition 3.7. First we observe that h3 —h? —h% —h3 is
really constant, using [4, 6.2]. Accordingly we evaluate it at the identity
element. Again we use the fact that h;= (A, u*; Y;,> whence, at the
identity, h; has the value A;. The values at the identity, of the generating
functions, presented in an order corresponding to the following basis for
the Lie algebra

43 MMy My, My My, My 3Py Py P3P,
are
4.31 00B0000004.

Hence the mass is |A4].
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There is also a quartic polynomial [1,(6)] considered to be mass
times spin squared. It, too, is constant and 4.31 shows it to be A?B?.

Thus A2 and B? are related to quantities which do not change under
equivalence because generating functions transform covariantly with the
infinitesimal transformations to which they are related (see [4, 3.61]
keeping in mind that the X’s there are what we are calling Y’s here).
Also the property of being normalized (see above 3.7) is preserved. We
sum this up.

4.4 Theorem. (A| and |B| remain unchanged by every equivalence
transformation U.

It appears therefore that two completely hamiltonian one-particle
systems should be regarded as involving the same “kind” of elementary
particle if and only if there is such a map U between their two spaces of
states which transforms the one hamiltonian structure (or closed in-
variant 2-form, or Poisson bracket) into the other. Thus we can say the
following.

4.5 A kind of elementary particle is characterized by two numbers:
m, s, where m>0, s = 0. If s=0 the space of states is T*(R*°. If s>0
the space of states is*> T*(R*)° x §2.

4.5 is evident in view of the earlier parts of this paper.

Another word regarding “kind”. Two elementary particle systems
and an equivalence U give the diagram

Me—Y—M,
TI(R3)O TI(R3)0

with the requirement ocU(m;)= U(om,;). We did not require also
7, = ;o U. In other words, when shifting to a particle of the same kind,
7, may change. We take the position that an elementary particle system
M has to allow at least one action in T*(R®)° and one 7 as required by the
definition, but that these may be altered without changing the elementary
particle.

5. Details in Terms of Coordinates

In 3.6 we have presented the invariant closed 2-forms for the system
with zero spin. The generating functions are those of 3.51 multiplied by 4.
Just for the record, we shall do the same for the system with spin not
zero. The state space we take to be R®x S where in R® the cartesian

2 $? is the unit sphere in R This is in 1:1 correspondence with L.
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coordinates shall be called x',x?% x>, p;,p,,ps. In the 2-sphere S2,
functions will be described in terms of three functions w;, w,, w3 subject
to the condition wf + w3+ w3 =1. A basis for the three-dimensional
space of closed invariant 2-forms is given by a,,a,,a; described as
follows:

5.1 Table

a; =dp; ndx' + eV w,dw; Adwy,

a,=dp;ndf' where f"=x"+————(li>_<|_cz), h=(1+p-p?
and
. . . P
= . 4 h P = L. S — P
as;=dp;Andg" where ¢ =w R+ h) p;

For a = Aa, + pa, + va,, the determinant is (1 + p)® A, which establishes
the connection with 4.1. We use (u x v)’ to denote the i-th component of
the cross product.

To assemble the generating functions one takes the (4, u, v) linear
combinations of the respective functions a;-associated with the member
of 4.3 in question. We now present these ten associated functions in each
case, in order of 4.3. We now relabel this Lie algebra basis, in order, as
follows:

52 Ji, b, J5 — Ky, —K,, — K5, P, Py, Py, P, .
For a, the associated functions are (i =1, 2, 3)

5.21 —w;— (px x),, x'h— (Iij_a;l) . —Dis

For a, (for f* see above),

522 (f <) hf —pih.

For aj (for g' see above)

523 (@ x p)i, —hg',0,0.

The last 2-form is of course singular (cf. u*3).

However difficult it may have been to discover these formulae, the
assertions concerning them are rather easy to verify. It would be very
difficult to prove, using coordinates, that a,, ..., a; give a basis for all
such 2-forms. This is where we appeal to the abstract theory.

There is another long calculation whose results may be recorded here.
This is the relation of the unique action in R® x S* given by any non-
singular Aa, + pa, +va; with the action in T*(R)x S? obtained from
the identification of this with T x L,. These actions are equivalent. It is
the expression of this equivalence in coordinates that will be given.
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Just below 3.3 we introduced coordinates x, X into T*(R?)°. These
had better be called y, y. (We use a vector notation when we can.) For
describing the points of $? we denote the b’ of Section 2 by &', so 07 + 03
+ 62 =1. We recall f and g from 5.1.

An equivalence between these actions is given by

14

. p g

h h+p-o’

Relations 5.3 can be discovered as follows. In an action equivalent to
either one of these, there are two linear relations between the vector fields
representing the elements of 5.2. For example, in T*(R?)° x S* we have
the relation P, = —¥ - P. (The coefficients are not constant.) In R® x §?
we can derive a similar relation from the fact that h* =1+ p-p. Com-
parison of coefficients yields y = p/h. The other relation originates in the
constancy of spin. By comparing its coefficients in the two cases we
obtain y and 6.

Now =n(x, p; w) =(y, y) is an acceptable projection for the system
involved. It is perhaps surprising that 7, (x, p, w) = (x, y) will not do. The
reason it will not is that the vector field for — K; has x-components which
do not depend only on x and p. Hence the projection 7, does not define
a system of imprimitivity for the action of £.

Thus y, but not x, can be taken as a position observable.
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