MAT 545 FALL 2025 HOMEWORK 3 SOLUTIONS

- **1.** (Leray's covering) Let $\underline{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be an open cover of a complex manifold X such that $H_{\bar{\partial}}^{0,1}(U_{\alpha}) = 0$ for every ${\alpha} \in A$, and let ${\mathcal O}$ be the structure sheaf of X.
 - (a) Let ρ_{α} be a partition of unity subordinated to \underline{U} and let $\sigma = \{\sigma_{\alpha\beta}\} \in Z^1(\underline{U}, \mathcal{O})$ be a 1-cocycle. Show that

$$\varphi_{\alpha} = \sum_{\beta} \rho_{\beta} \sigma_{\alpha\beta} \in C^{\infty}(U_{\alpha})$$

satisfies $\delta \varphi = \sigma$ and that $\theta_{\alpha} = \bar{\partial} \varphi_{\alpha}$ are restrictions to U_{α} of a $\bar{\partial}$ -closed (0, 1)-form θ on X.

- (b) Prove that the mapping $\sigma \mapsto \alpha(\sigma) = \theta$ defines a linear map $\alpha: H^1(\underline{U}, \mathcal{O}) \to H^{0,1}_{\bar{\partial}}(X)$ from Čech cohomology to Dolbeault cohomology.
- c) Prove that the map α establishes the isomorphism

$$H^1(\underline{U}, \mathcal{O}) \simeq H^{0,1}_{\bar{\partial}}(X).$$

2. Let X be a complex manifold and let $L \to X$ be a holomorphic line bundle. Prove that L is a trivial bundle if and only if it has a nowhere vanishing global holomorphic section.

Problems 1-2 are standard; solution of Problem 5 is a careful computation using defining equations of corresponding hypersurfaces.

3. Let X be a complex manifold, dim X = n, and let \mathcal{T}_X be the holomorphic tangent bundle over X. The first Chern class $c_1(X)$ of the complex manifold X is the first Chern class of line bundle $\Lambda^n \mathcal{T}_X$. Let Ω_X be the holomorphic cotangent bundle and $\mathcal{K}_X = \Lambda^n \Omega_X$ be the so-called canonical line bundle over X. Prove that $c_1(X) = -c_1(\mathcal{K}_X)$.

Solution. Since Ω_X is the dual vector bundle to \mathcal{T}_X , line bundle \mathcal{K}_X is dual to $\Lambda^n \mathcal{T}_X$. Hermitian metric in the dual line bundle L^* is the inverse of the metric in the line bundle L, so the curvature form of the Chern connection in L^* is negative of the curvature form of the Chern connection in L.

4. Let X be a complex manifold and let V be a smooth divisor on X (a complex submanifold of codimension 1). The *normal bundle* \mathcal{N}_V to V is the holomorphic line bundle

$$\mathcal{N}_V = \left. \mathcal{T}_X \right|_V / \mathcal{T}_V,$$

the quotient of $\mathcal{T}_X|_V$, restriction to V of the holomorphic tangent bundle \mathcal{T}_X of X, over the holomorphic tangent bundle \mathcal{T}_V of V. Prove the following adjunction formulas

- (a) $N_V \simeq [-V]|_V$
- (b) $\mathcal{K}_V \simeq (\mathcal{K}_X \otimes [V])|_V$.

Solution. There is a **typo in part (a)**, it should read $N_V \simeq [V]|_V!$ For solution, see Griffiths-Harris, pp. 146-147, or Huybrechts, Proposition 2.2.17 and Proposition 2.4.7.

- **5.** Prove that the following complex submanifolds in \mathbb{P}^n have vanishing first Chern class by showing that they admit a nowhere vanishing top degree holomorphic differential form (so they are Calabi-Yau manifolds).
 - (a) X is a Fermat cubic in \mathbb{P}^2 , defined by the equation

$$F(z_0, z_1, z_2) = z_0^3 + z_1^3 + z_2^3 = 0$$

(actually, X is an elliptic curve). Let ω be a (1,0)-form on X, which in the coordinate chart $X \cap U_0$ is defined by

$$\omega_0 = \frac{du_1}{u_2^2}$$
, where $u_1 = \frac{z_1}{z_0}$, $u_2 = \frac{z_2}{z_0}$.

Show that ω is a nowhere vanishing holomorphic (1,0)-form on X.

Hint: Prove that on $X \cap U_0$ one has $du_1/(\partial f/\partial u_2) = -du_2/(\partial f/\partial u_1)$.

(b) X is Fermat quartic in \mathbb{P}^3 , defined by the equation

$$F(z_0, z_1, z_2, z_3) = z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0$$

(actually, X is a K3 surface). Let ω be a (2,0)-form on X, which in the coordinate chart $X \cap U_0$ is defined by

$$\omega_0 = \frac{du_1 \wedge du_2}{u_3^3}$$
, where $u_1 = \frac{z_1}{z_0}$, $u_2 = \frac{z_2}{z_0}$, $u_3 = \frac{z_3}{z_0}$.

Show that ω is a nowhere vanishing holomorphic (2,0)-form on X.

(c) X is a Fermat quintic in \mathbb{P}^4 , defined by the equation

$$F(z_0, z_1, z_2, z_3, z_4) = z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$$

(actually, X is a Calabi-Yau threefold). Let ω be a (3,0)-form on X, which in the coordinate chart $X\cap U_0$ is defined by

$$\omega_0 = \frac{du_1 \wedge du_2 \wedge du_3}{u_4^4}, \quad \text{where} \quad u_1 = \frac{z_1}{z_0}, \ u_2 = \frac{z_2}{z_0}, \ u_3 = \frac{z_3}{z_0}, \ u_4 = \frac{z_4}{z_0}.$$

Show that ω is a nowhere vanishing holomorphic (3,0)-form on X.