MAT 538 RIEMANN SURFACES HOMEWORK 1

1. Let X be a topological manifold, \mathscr{F} be a presheaf of abelian groups over X and $\tilde{\mathscr{F}}$ is the corresponding étalé space with the projection $p: \tilde{\mathscr{F}} \rightarrow X$. Prove the following statements.
(a) For open $U \subseteq X$ let $\overline{\mathscr{F}}(U)$ be the space of all sections of $\tilde{\mathscr{F}}$ over U - continuous maps

$$
f: U \rightarrow \tilde{\mathscr{F}}
$$

such that $p \circ f=\operatorname{id}_{U}$. Prove that $\overline{\mathscr{F}}$ with natural inclusion maps is a sheaf.
(b) There is a natural isomorphism of the stalks

$$
\mathscr{F}_{x} \xrightarrow{\sim} \tilde{\mathscr{F}}_{x} \quad \text { for all } \quad x \in X .
$$

(c) If \mathscr{F} is a sheaf, then the natural mapping

$$
\mathscr{F}(U) \ni \sigma \rightarrow \tilde{\sigma}=\left\{\sigma_{x}\right\}_{x \in U} \in \tilde{\mathscr{F}}(U)
$$

defines an isomorphism of sheaves

$$
\mathscr{F} \simeq \tilde{\mathscr{F}} .
$$

2. Let X be a complex manifold. Prove that

$$
\mathscr{F}(U)=\mathcal{O}(U) / \exp \mathcal{O}(U),
$$

where $\exp f=e^{2 \pi \sqrt{-1} f}$ is a presheaf but not a sheaf.
3. (Leray) Let X be a topological space with a sheaf \mathscr{F} of abelian groups and open covering $\mathfrak{U}=\left\{U_{\alpha}\right\}_{\alpha \in A}$ such that $H^{i}\left(U_{\alpha}, \mathscr{F}\right)=0$ for all $\alpha \in A$. Prove that

$$
H^{i}(X, \mathscr{F}) \simeq H^{i}(\mathfrak{U}, \mathscr{F}) .
$$

4. Let

$$
0 \rightarrow \mathscr{E} \rightarrow \mathscr{F} \rightarrow \mathscr{G} \rightarrow 0
$$

be an exact sequence of sheaves over the topological space X. Describe the connecting homomorphism (Bockstein homomorphism)

$$
\delta^{*}: H^{i}(X, \mathscr{G}) \rightarrow H^{i+1}(X, \mathscr{E})
$$

in the corresponding long exact sequence of the sheaf cohomology groups.
5. Let $X=\mathbb{C}^{n}$ with complex coordinates $z_{i}=x_{i}+\sqrt{-1} y_{i}$ and with the Hermitian metric

$$
h=\sum_{i=1}^{n} d z_{i} \otimes d \bar{z}_{i} .
$$

The corresponding Riemannian metric

$$
g:=\operatorname{Re} h=\sum_{i=1}^{n}\left(d x_{i}^{2}+d y_{i}^{2}\right)
$$

and the associated (1,1)-form

$$
\omega:=-\operatorname{Im} h=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

determine the volume form on \mathbb{C}^{n},

$$
\mathrm{dVol}=\frac{\omega^{n}}{n!}=d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}
$$

Let $*$ be the Hodge star operator on differential forms on \mathbb{C}^{n} associated with the Riemannian metric g, and let A, B and M be pairwise disjoint ordered subsets of $\{1,2, \ldots, n\}$ of cardinalities a, b and m. For $A=\left\{i_{1}, \ldots, i_{a}\right\}, B=\left\{j_{1}, \ldots, j_{b}\right\}$ and $M=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ put
$d z_{A}=d z_{i_{1}} \wedge d z_{i_{2}} \wedge \cdots \wedge d z_{i_{a}}, \quad d \bar{z}_{B}=d \bar{z}_{j_{1}} \wedge d \bar{z}_{j_{2}} \wedge \cdots \wedge d \bar{z}_{j_{b}}$
and

$$
\omega_{M}=d z_{\mu_{1}} \wedge d \bar{z}_{\mu_{1}} \wedge \cdots \wedge d z_{\mu_{m}} \wedge d \bar{z}_{\mu_{m}}
$$

Prove the following result (A. Weil).

$$
*\left(d z_{A} \wedge d \bar{z}_{B} \wedge \omega_{M}\right)=\gamma(a, b, m) d z_{A} \wedge d \bar{z}_{B} \wedge \omega_{M^{\prime}}
$$

where $M^{\prime}=\{1,2, \ldots, n\} \backslash(A \cup B \cup M)$ and

$$
\gamma(a, b, m)=i^{b-a}(-2 i)^{p-n}(-1)^{\frac{p(p+1)}{2}}, \quad p=a+b+2 m .
$$

6. Prove that Hodge theorem $\mathbb{I}=P+\Delta G$ implies the following decompositions into the direct orthogonal sum:

$$
\mathcal{A}^{p}(X)=\mathscr{H}^{p}(X) \oplus d \mathcal{A}^{p-1}(X) \oplus d^{*} \mathcal{A}^{p+1}(X)
$$

for smooth compact manifolds, and

$$
\mathcal{A}^{p, q}(X)=\mathscr{H}^{p, q}(X) \oplus \bar{\partial} \mathcal{A}^{p, q-1}(X) \oplus \bar{\partial}^{*} \mathcal{A}^{p, q+1}(X)
$$

for complex compact manifolds.
7. Let $L \rightarrow X$ be a holomorphic line bundle over a complex manifold X. Prove the 'twisted' Dollbeault isomorphism

$$
H^{q}\left(X, \mathcal{O}^{p}(L)\right)=H_{\bar{\partial}}^{p, q}(X, L)
$$

where $\mathcal{O}^{p}(L)$ is the sheaf of germs of holomorphic L-valued p-forms on X ('twisted by L differential forms'), and $H_{\bar{\partial}}^{p, q}(X, L)$ is the Dollbeault cohomology group of L-valued (p, q)-forms on X.

