MAT 536 SPRING 2021 HOMEWORK 9

More challenging problems are marked by *.

1. Evaluate

(a)
$$\operatorname{Res}_{z=\infty} z^n e^{a/z}$$
, (b) $\operatorname{Res}_{z=\infty} \frac{e^{z^2}}{z^{2n}+1}$.

2. Let f(z) be an entire function. Prove that

$$\operatorname{Res}_{z=\infty} \left\{ f(z) \log \frac{z-b}{z-a} \right\} = \int_a^b f(z) dz,$$

where for $\log \frac{z-b}{z-a}$ we take any branch that is regular at $z=\infty$. 3. Evaluate the following integral

$$\int_{|z|=2} \frac{dz}{z^3(z^{10}-2)}.$$

4. Evaluate the following integral

$$\int_{-\infty}^{\infty} \frac{e^{iax}}{\cosh x} dx, \quad a \in \mathbb{R}.$$

- 5. Problem 4(h) on p. 161 in Ahlfors.
- 6. Problem 4(i) on p. 161 in Ahlfors.

7. Prove that

$$\int_0^\infty \frac{x^{2m} dx}{1 + x^{2n}} = \frac{\pi}{2n} \frac{1}{\sin \frac{2m+1}{2n} \pi},$$

where m and n are non-negative integers, m < n.

8*. Let F(z) be entire function satisfying $|f(x+iy)| \le Ce^{a|y|}$ for C>0 and some $-\pi < a < \pi$. Prove that

$$\frac{F(z)}{\sin \pi z} = \lim_{N \to \infty} \sum_{n=-N}^{N} (-1)^n \frac{F(n)}{z-n}.$$

9*. Prove that for real a,

$$\int_0^\infty \frac{\sin ax}{e^{2\pi x} - 1} dx = \frac{1}{4} \frac{e^a + 1}{e^a - 1} - \frac{1}{2a}.$$
 (Legendre.)

(Hint: Integrate $e^{\pm aiz}/(e^{2\pi z}-1)$ over a contour formed by the rectangle with vertices 0, R, R+i, i (the rectangle being indented at 0 and i) and let $R\to\infty$).