MAT 536 SPRING 2021 HOMEWORK 8

More challenging problems are marked by *.

1. Let $f(z)$ be a meromorphic function in a bounded domain D with finitely many poles, and suppose that it is continuous (outside the poles) up to the boundary ∂D of D. Prove that if $\operatorname{Im} f(z) \neq 0$ for all $z \in \partial D$, then the number of zeros of the function $f(z)$ in D is equal to the number of its poles.
(Hint: Use the argument principle and observe that the image of each component of ∂D under the map $w=f(z)$ lies either in a half-plane $\operatorname{Im} w>0$ or in the half-plane $\operatorname{Im} w<0)$.
2. Let $f(z)$ be a meromorphic function in a bounded domain D with finitely many poles, and suppose that it is continuous (outside the poles) up to the boundary ∂D of D. Let

$$
M=\max _{z \in \partial D}|f(z)|
$$

Prove that for $|a|>M$ the number of zeros of the function $f(z)-a$ in D is equal to the number of its poles.
3. Let $f(z)$ and $g(z)$ be holomorphic functions in a bounded domain D, continuous up to the boundary ∂D of D. Prove that if $\operatorname{Im} \frac{f(z)}{g(z)} \neq 0$ for all $z \in \partial D$, then $f(z)$ and $g(z)$ have the same number of zeros in D.
4. Problem 1 on p. 154 in Ahlfors.
5. Problem 2 on p. 154 in Ahlfors.
6. Problem 3 on p. 154 in Ahlfors.
7. Prove that for $\lambda>1$ the equation $z e^{\lambda-z}=1$ has only one root in the disk $|z| \leq 1$ and it is real.
8*. Prove that the equation $z \sin z=1$ has only real roots.
(Hint: Find the number of roots on the interval $\left[-\left(n+\frac{1}{2}\right) \pi,\left(n+\frac{1}{2}\right) \pi\right]$ and compare it with the number of roots in the disk $\left.|z|<\left(n+\frac{1}{2}\right) \pi\right)$.

