MAT 536 SPRING 2021 HOMEWORK 8

More challenging problems are marked by *.

1. Let f(z) be a meromorphic function in a bounded domain D with finitely many poles, and suppose that it is continuous (outside the poles) up to the boundary ∂D of D. Prove that if $\operatorname{Im} f(z) \neq 0$ for all $z \in \partial D$, then the number of zeros of the function f(z) in D is equal to the number of its poles.

(*Hint*: Use the argument principle and observe that the image of each component of ∂D under the map w = f(z) lies either in a half-plane $\operatorname{Im} w > 0$ or in the half-plane $\operatorname{Im} w < 0$).

2. Let f(z) be a meromorphic function in a bounded domain D with finitely many poles, and suppose that it is continuous (outside the poles) up to the boundary ∂D of D. Let

$$M = \max_{z \in \partial D} |f(z)|.$$

Prove that for |a| > M the number of zeros of the function f(z) - a in D is equal to the number of its poles.

3. Let f(z) and g(z) be holomorphic functions in a bounded domain D, continuous up to the boundary ∂D of D. Prove that if $\operatorname{Im} \frac{f(z)}{g(z)} \neq 0$ for all $z \in \partial D$, then f(z) and g(z) have the same number of zeros in D.

4. Problem 1 on p. 154 in Ahlfors.

- 5. Problem 2 on p. 154 in Ahlfors.
- 6. Problem 3 on p. 154 in Ahlfors.
- 7. Prove that for $\lambda > 1$ the equation $ze^{\lambda z} = 1$ has only one root in the disk $|z| \le 1$ and it is real.
- 8*. Prove that the equation $z \sin z = 1$ has only real roots.

(*Hint*: Find the number of roots on the interval $\left[-(n+\frac{1}{2})\pi, (n+\frac{1}{2})\pi\right]$ and compare it with the number of roots in the disk $|z| < (n+\frac{1}{2})\pi$).

1