MAT 536 SPRING 2021 HOMEWORK 7

More challenging problems are marked by *.

1. Let f be holomorphic on a disk |z| < R and suppose that |f(z)| < M for all |z| < R. Prove that if $f(z_0) = 0$, then

$$|f(z)| \le M \frac{R|z - z_0|}{|R^2 - z\bar{z}_0|} \ (|z| < R) \text{ and } |f'(z_0)| \le \frac{MR}{R^2 - |z_0|^2}.$$

2. Let f be holomorphic on the unit disk and suppose that |f(z)| < 1 for all |z| < 1. Prove that if $f(z_k) = 0, k = 1, \ldots, n$, then

$$|f(z)| \le \frac{|z - z_1| \cdots |z - z_n|}{|1 - z\bar{z}_1| \cdots |1 - z\bar{z}_n|}, \quad |z| < 1.$$

3. Let f be holomorphic on the strip $|\text{Re } z| < \pi/4$ and suppose that |f(z)| < 1 and f(0) = 0. Prove that in the strip

$$|f(z)| \le |\tan z|.$$

4. Let f be holomorphic on the right half-plane Re z > 0 and suppose that |f(z)| < 1. Prove that if $f(z_k) = 0, k = 1, \ldots, n$, then

$$|f(z)| \le \frac{|z-z_1|\cdots|z-z_n|}{|z+\overline{z}_1|\cdots|z+\overline{z}_n|}.$$

- **5.** Is there a holomorphic function f which maps the unit disk onto itself and satisfies $f(\frac{1}{2}) = \frac{3}{4}$ and $f'(\frac{1}{2}) = \frac{2}{3}$?
- **6.** Let w = f(z) be a holomorphic map of the unit disk into the right half-plane $\operatorname{Re} w \geq 0$. Prove that if f(0) = 1, then $\operatorname{Re} f(z) > 0$ and

$$\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}$$
 for all $|z| < 1$.

(*Hint*: Prove that if Re f(z) > 0 for all |z| < 1, the function 1/f(z) also maps the unit disk into the right half-plane.)

- 7* (a) Let f be holomorphic on the disk |z| < R and let $M(r) = \max_{|z|=r} |f(z)|$, $0 \le r < R$. Prove that M(r) is continuous non-decreasing function, which is strictly increasing if f is not a constant.
 - (b) Let f be a polynomial of degree n. Prove that

$$\frac{M(r_1)}{r_1^n} \ge \frac{M(r_2)}{r_2^n}$$

for $0 < r_1 < r_2$, and the equality for one pair of $r_1 < r_2$ holds only for $f(z) = az^n$.

8*. Let f be a conformal automorphism of the square $-3 \le x, y \le 3, z = x + iy$, and suppose that f(0) = 2 + 2i. Prove that

$$\frac{1}{9\sqrt{2}} < |f'(0)| < \frac{10}{9\sqrt{2}}.$$

(Stony Brook comprehensive exam, January 1998).