MAT 536 SPRING 2021 HOMEWORK 5

More challenging problems are marked by *.

- 1. Problem 1 on p. 123 in Ahlfors. (*Hint*: In the last integral, make use of the equation $z\bar{z} = \rho^2$ and $|dz| = -i\rho dz/z$.)
- **2** . Let f be an entire function such that $|f(z)| \ge C|z|^N$ with C > 0 and |z| large enough (there is no typo!). Prove that f is a polynomial.
- **3.** Problem **4** on p. 130 in Ahlfors.
- 4. Let f be an entire function. In each case, prove or give a counterexample.
 - (a) If $\lim_{z\to\infty} f(z) = 0$, then f is a constant.
 - (b) If there is a sequence $\{z_n\}$ such that

$$\lim_{n \to \infty} z_n = \infty \quad \text{and} \quad \lim_{n \to \infty} f(z_n) = 0,$$

- then f is a constant.
- (c) If f has a removable singularity at $z = \infty$, then f is a constant.
- **5.** Let f be a holomorphic function on a punctured open unit disk $\mathbb{D}^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$. In each case, prove or give a counter-example.
 - (a) If f has a removable singularity at z = 0, so does e^{f} .
 - (b) If has a pole at z = 0, so does e^{f} .
 - (c) If f has an essential singularity at z = 0, so does e^{f} .
- **6*.** Let f be an entire function. Given $a, b \in \mathbb{C}$, let C be a circle of radius R > |a|, |b|. Evaluate the integral

$$\int_C \frac{f(z)}{(z-a)(z-b)} dz$$

and give another proof of the Liouville's theorem. (Cannot use the residue theorem, can only use results covered so far).

- 7*. Problem 5 on p. 123 in Ahlfors.
- **8*.** Suppose that f is holomorphic on a closed unit disk $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$, except for one singular point z_0 on the S^1 . Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be the power series for f on |z| < 1. Prove that if f has a pole at z_0 , then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = z_0.$$

9*. Problem 5 on p. 130 in Ahlfors.