MAT 536 SPRING 2021 HOMEWORK 3

1. Suppose that the function $f(z)$ is holomorphic in a domain D and satisfies $\left|f(z)^{2}-1\right|<1$ for all $z \in D$. Prove that either $\operatorname{Re} f(z)>0$ or $\operatorname{Re} f(z)<0$ throughout D. Does one need a condition that $f(z)$ is holomorphic?
2. (a) Prove that the action of the Möbius group on $\mathbb{C P}^{1}$ is threetransitive, i.e. for any two triples $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ of distinct points of $\mathbb{C P}^{1}$, there is a Möbius transformation T such that $T z_{k}=w_{k}, k=1,2,3$.
(b) Prove that for two quadruples $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ of distinct points of $\mathbb{C P}^{1}$ there is a Möbius transformation T such that $T z_{k}=w_{k}, k=1,2,3,4$, if and only if their crossratios are equal.
3. Prove that four distinct points $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$ lie on a circle if and only if

$$
\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|=\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right|\left|z_{1}-z_{4}\right|
$$

and interpret it geometrically (Ptolemy's theorem).
4. (a) Express cross-rations corresponding to all 24 permutations of four distinct points $z_{1}, z_{2}, z_{3}, z_{4}$ in terms of the cross-ratio $\lambda=$ $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
(b) Consider the so-called anharmonic group - a subgroup of the Möbius group, generated by the transformations $z \rightarrow 1 / z$ and $z \rightarrow 1-z$. Show that its action on $1,0, \infty$ gives an isomorphism with S_{3}, symmetric group on 3 elements. Explain relation with the previous problem and with the isomorphism $S_{4} / V \simeq S_{3}$, where V is Klein four-group.
5. Map the domain between two circles $|z|=1$ and $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ conformally onto upper half-plane.
6. Map conformally the complement of the arc $|z|=1, \operatorname{Im} z \geq 0$ on the outside of the unit disk such that ∞ goes to ∞.
7* Suppose that a Möbius transformation carries one pair of concentric circles into another pair of concentric circles. Prove that the ratios of corresponding radii are the same.

