MAT 536 SPRING 2021 HOMEWORK 3

- 1. Suppose that the function f(z) is holomorphic in a domain D and satisfies $|f(z)^2 1| < 1$ for all $z \in D$. Prove that either $\operatorname{Re} f(z) > 0$ or $\operatorname{Re} f(z) < 0$ throughout D. Does one need a condition that f(z) is holomorphic?
- 2. (a) Prove that the action of the Möbius group on \mathbb{CP}^1 is threetransitive, i.e. for any two triples $\{z_1, z_2, z_3\}$ and $\{w_1, w_2, w_3\}$ of distinct points of \mathbb{CP}^1 , there is a Möbius transformation T such that $Tz_k = w_k, k = 1, 2, 3$.
 - (b) Prove that for two quadruples $\{z_1, z_2, z_3, z_4\}$ and $\{w_1, w_2, w_3, w_4\}$ of distinct points of \mathbb{CP}^1 there is a Möbius transformation T such that $Tz_k = w_k, \ k = 1, 2, 3, 4$, if and only if their cross-ratios are equal.
- **3.** Prove that four distinct points $z_1, z_2, z_3, z_4 \in \mathbb{C}$ lie on a circle if and only if

$$|z_1 - z_3||z_2 - z_4| = |z_1 - z_2||z_3 - z_4| + |z_2 - z_3||z_1 - z_4|$$

and interpret it geometrically (Ptolemy's theorem).

- 4. (a) Express cross-rations corresponding to all 24 permutations of four distinct points z_1, z_2, z_3, z_4 in terms of the cross-ratio $\lambda = (z_1, z_2, z_3, z_4)$.
 - (b) Consider the so-called anharmonic group a subgroup of the Möbius group, generated by the transformations $z \to 1/z$ and $z \to 1-z$. Show that its action on $1, 0, \infty$ gives an isomorphism with S_3 , symmetric group on 3 elements. Explain relation with the previous problem and with the isomorphism $S_4/V \simeq S_3$, where V is Klein four-group.
- 5. Map the domain between two circles |z| = 1 and $|z \frac{1}{2}| = \frac{1}{2}$ conformally onto upper half-plane.
- 6. Map conformally the complement of the arc |z| = 1, Im $z \ge 0$ on the outside of the unit disk such that ∞ goes to ∞ .
- 7* Suppose that a Möbius transformation carries one pair of concentric circles into another pair of concentric circles. Prove that the ratios of corresponding radii are the same.