MAT 536 SPRING 2021 HOMEWORK 2

More challenging problems are marked by *.

1. Assume that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic. Let $f=u+i v$ be its decomposition into real and imaginary parts. Show that if $u=v^{2}$ everywhere, then f is constant.
2. Let $\left\{y_{n}\right\}$ be an increasing sequence of real numbers such that $y_{n} \rightarrow$ ∞. Prove that (Stolz theorem)

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}
$$

if the limit in the right-hand side exists (or equal $\pm \infty$). Show that Problem 1(c) in the HW 1 (due to Cauchy), immediately follows from Stolz theorem.
3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be positive sequences.
(a) Show that

$$
\overline{\lim } a_{n} b_{n} \leq \varlimsup a_{n} \overline{\lim } b_{n},
$$

provided the right-hand side is not of the indeterminate form $0 \times \infty$. Give an example when strict inequality holds.
(b) If $\lim _{n \rightarrow \infty} a_{n}$ exists, show that

$$
\varlimsup a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} \varlimsup b_{n}
$$

if the right-hand side is not of the indeterminate form.
4. Let $\left\{a_{n}\right\}$ be a real sequence. Show that

$$
\varlimsup{ }^{\lim } a_{n}=\sup \left\{\alpha: \alpha=\lim _{n \rightarrow \infty} b_{n}\right\},
$$

where $\left\{b_{n}\right\}$ is a convergent subsequence of $\left\{a_{n}\right\}$, and

$$
\underline{\lim } a_{n}=\inf \left\{\alpha: \alpha=\lim _{n \rightarrow \infty} b_{n}\right\},
$$

where $\left\{b_{n}\right\}$ is as above. ${ }^{1}$
5. Let $\left\{a_{n}\right\}$ be a positive sequence such that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}$ exists. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ also exists and

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

6. Give an example of a power series whose radius of convergence is 1 , and such that the corresponding holomorphic function is continuous on the closed unit disk $\overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}$.

[^0]7. Suppose that the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$ both have radius of convergence $R>0$. Then we have holomorphic functions
$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$
in the disk $\mathbb{D}_{R}=\{z \in \mathbb{C}:|z|<R\}$. Define the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ by
$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
$$

Show that the series $\sum_{n=0} c_{n} z^{n}$ converges in \mathbb{D}_{R} and therefore determines a holomorphic function $h(z)$. Prove that $h(z)=f(z) g(z)$ in \mathbb{D}_{R}. Can $\sum_{n=0}^{\infty} c_{n} z^{n}$ have a larger radius of convergence?
8. Define the Bernoulli numbers B_{n} by the power series

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

Prove that

$$
\frac{B_{0}}{n!0!}+\frac{B_{1}}{(n-1)!1!}+\cdots+\frac{B_{n-1}}{1!(n-1)!}= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

$\mathbf{9}^{*}$. Find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

(Hint: The n-th coefficient of this series is not $(-1)^{n} / n$.)
10*. By definition, a complex hall of the set $\left\{z_{1}, \ldots, z_{k}\right\} \subset \mathbb{C}$ consists of all points $z=\sum_{j=1}^{k} \lambda_{j} z_{j} \in \mathbb{C}$, where all $0 \leq \lambda_{j} \leq 1$ and $\sum_{j=1}^{k} \lambda_{j}=1$. Prove that (Gauss-Lucas theorem) if P is a complex polynomial, then the roots of the derivative P^{\prime} belong to the convex hull of the roots of P.
(Hint: Use the representation in the proof of Theorem 1 in Ch. 1, $\S 1.3$, and obtain a formula for a root of P^{\prime} which is not a root of P. Do not use online resources!)

[^0]: ${ }^{1}$ In this exercise, sequences with limits $\pm \infty$ are considered as convergent.

