## MAT 536 SPRING 2021 HOMEWORK 13

More challenging problems are marked by *.

1. Suppose $f(z)$ is a complex-valued harmonic function on domain $D$. Prove that if $|f(z)|$ is constant in $D$, then $f(z)$ is constant in $D$.
2. Suppose that both $f(z)$ and $z f(z)$ are complex-valued harmonic functions on $D$. Prove that $f(z)$ is holomorphic.
3. Prove that if a sequence of positive harmonic functions on $D$ converges pointwise, then it converges uniformly on compact subsets of $D$.
4. Problem 4 on p. 171 in Ahlfors.
5. Problem 5 on p. 171 in Ahlfors.
6. Problem 6 on p. 171 in Ahlfors.

7*. Problem 5 on p. 174 in Ahlfors

