MAT 536 SPRING 2021 HOMEWORK 1

More challenging problems are marked by *.

1. (a) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that

$$
\left|z_{m}-z_{n}\right| \leq \frac{1}{1+|m-n|}
$$

for all m and n. Evaluate $\lim _{n \rightarrow \infty} z_{n}$. What more can you say about this sequence?
(b) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=0$ and let $\left\{w_{n}\right\}$ be a bounded sequence. Show that $\lim _{n \rightarrow \infty} w_{n} z_{n}=0$.
(c) Let $\left\{z_{n}\right\}$ be a sequence of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=A$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{z_{1}+\cdots+z_{n}}{n}=A .
$$

2. Verify the Cauchy-Riemann equations for the function $f(z)=z^{3}$ by splitting f into real and imaginary parts.
3. Let $x=r \cos \theta$ and $y=r \sin \theta$. Show that the Cauchy-Riemann equations for $f=u+i v$ in polar coordinates take form

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \text { and } \quad r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta} .
$$

4. a Put

$$
f(z)=\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, \quad z=x+i y
$$

for $z \neq 0$ and $f(0)=0$. Show that as $z \rightarrow 0$ along any straight line, then $f(z) / z$ tends to 0 , but as $z \rightarrow 0$ along a parabola $x=y^{2}$, then $f(z) / z$ tends to $\frac{1}{2}$, thus showing that $f^{\prime}(0)$ does not exist.
(b) Prove that a function

$$
f(z)= \begin{cases}\bar{z}^{2} / z, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

satisfies the Cauchy-Riemann equation but is not differentiable at the origin.
5. Determine the radius of convergence of the following infinite series:

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad \sum_{n=0}^{\infty} n!z^{n} .
$$

6. Prove that if $\left|a_{n}\right| \leq M$, then the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence $\rho \geq 1$.
7. Does there exist a holomorphic function f on \mathbb{C}, whose real part is
(a) $u(x, y)=e^{x}$
(b) $u(x, y)=e^{x}(x \cos y-y \sin y)$.

If the answer is 'yes', exhibit the function, if the answer is 'no', prove it.
8^{*}. Let $f=u+i v$, where $u(x, y)$ and $v(x, y)$ are real-valued differentiable functions, and put $\nabla u=\left(u_{x}, u_{y}\right), \nabla v=\left(v_{x}, v_{y}\right)$. Prove that the conditions

$$
(\nabla u, \nabla v)=0 \quad \text { and } \quad\|\nabla u\|=\|\nabla v\|
$$

where (,) is the standard Euclidean inner product on \mathbb{R}^{2} and $\|\cdot\|$ is the corresponding norm, are equivalent to

$$
\frac{\partial f}{\partial z} \frac{\partial f}{\partial \bar{z}}=0
$$

9*. Prove the fundamental theorem of algebra: every polynomial

$$
f(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}
$$

with complex coefficients of degree $n \geq 1$ has a root.
(Hint: first show that $|f(z)|$ attains a minimum on \mathbb{C} and some point z_{0}; by shifting $g(z)=f\left(z+z_{0}\right)$, one can always assume $z_{0}=0$. Next, $g(z)$ has a form $g(z)=$ $\alpha+\beta z^{m} \cdots+z^{n}$ with $\beta \neq 0$. Then assume that $\alpha \neq 0$ and show that there exists z such that

$$
|g(\omega z)|<|\alpha|
$$

where $\omega^{m}=-\alpha / \beta$.)
10*. Show that positive integers cannot be partition nontrivially into a finite set of arithmetic progressions with no common differences.
(Hint: you should make a good use of geometric series. Please do not check online for the solution!)

