MAT 535: HOMEWORK 4 DUE THU Feb 🗙 23

Problems marked by asterisk (*) are optional.

1. (a) Find 2×2 matrix *a* satisfying

$$a^2 = (a^*)^2 = 0$$
 and $aa^* + a^*a = I$,

where a^* is a Hermitian conjugate of a and I is the identity matrix.

(b) Find $2^n \times 2^n$ matrices a_1, \ldots, a_n satisfying

 $[a_i, a_j]_+ = [a_i^*, a_j^*]_+ = 0$ and $[a_i, a_j^*]_+ = \delta_{ij}I$

for all i, j = 1, ..., n, where a_i^* is a Hermitian conjugate of a_i and I is the identity matrix.

2. (a) Prove that vectors $v_1, \ldots, v_k \in V$ in a *F*-vector space *V* are linear independent if and only if

$$v_1 \wedge \cdots \wedge v_k \neq 0.$$

(b) Let W_1 and W_2 be a subspaces of V with bases u_1, \ldots, u_k and v_1, \ldots, v_k . Prove that

$$x_1 \wedge \dots \wedge x_k = cy_1 \wedge \dots \wedge y_k$$

with some non-zero $c \in F$ if and only if $W_1 = W_2$.

3. (Cartan's lemma) Suppose that $v_1, \ldots, v_k \in V$ are linear independent in a *F*-vector space *V* and $u_1, \ldots, u_k \in V$ are such that

$$u_1 \wedge v_1 + \dots + u_k \wedge v_k = 0.$$

Prove that there is a symmetric $k \times k$ matrix A such that

$$u_i = \sum_{j=1}^k a_{ij} v_j, \quad i = 1, \dots, k.$$

- *4. Prove Lemma 1 in the notes.
- ***5.** Prove Lemma 2 in the notes.
- *6. Prove that Koszul dual of $A = \text{Sym}^{\bullet}(V)$ is $A^{!} = \Lambda^{\bullet}V^{*}$ (see the notes).