MAT 535: HOMEWORK 4
 DUE THU Feb X 23

Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. (a) Find 2×2 matrix a satisfying

$$
a^{2}=\left(a^{*}\right)^{2}=0 \quad \text { and } \quad a a^{*}+a^{*} a=I,
$$

where a^{*} is a Hermitian conjugate of a and I is the identity matrix.
(b) Find $2^{n} \times 2^{n}$ matrices a_{1}, \ldots, a_{n} satisfying

$$
\left[a_{i}, a_{j}\right]_{+}=\left[a_{i}^{*}, a_{j}^{*}\right]_{+}=0 \quad \text { and } \quad\left[a_{i}, a_{j}^{*}\right]_{+}=\delta_{i j} I
$$

for all $i, j=1, \ldots, n$, where a_{i}^{*} is a Hermitian conjugate of a_{i} and I is the identity matrix.
2. (a) Prove that vectors $v_{1}, \ldots, v_{k} \in V$ in a F-vector space V are linear independent if and only if

$$
v_{1} \wedge \cdots \wedge v_{k} \neq 0
$$

(b) Let W_{1} and W_{2} be a subspaces of V with bases u_{1}, \ldots, u_{k} and $v_{1}, c \ldots, v_{k}$. Prove that

$$
x_{1} \wedge \cdots \wedge x_{k}=c y_{1} \wedge \cdots \wedge y_{k}
$$

with some non-zero $c \in F$ if and only if $W_{1}=W_{2}$.
3. (Cartan's lemma) Suppose that $v_{1}, \ldots, v_{k} \in V$ are linear independent in a F-vector space V and $u_{1}, \ldots, u_{k} \in V$ are such that

$$
u_{1} \wedge v_{1}+\cdots+u_{k} \wedge v_{k}=0
$$

Prove that there is a symmetric $k \times k$ matrix A such that

$$
u_{i}=\sum_{j=1}^{k} a_{i j} v_{j}, \quad i=1, \ldots, k
$$

*4. Prove Lemma 1 in the notes.
*5. Prove Lemma 2 in the notes.
6. Prove that Koszul dual of $A=\operatorname{Sym}^{\bullet}(V)$ is $A^{!}=\Lambda^{\bullet} V^{}$ (see the notes).

