MAT 535: HOMEWORK 3
 DUE THU Feb Х16

Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. Exercises 1,2 and 13 on pp. $454-455$ in D\&F.
2. Let V be a finite-dimensional vector space over a field F. Define the F-linear map $\operatorname{Tr}: \operatorname{End}_{F}(V) \rightarrow F$, the trace map, by

$$
\operatorname{End}_{F} V=V^{*} \otimes_{F} V \ni v^{*} \otimes w \mapsto v^{*}(w) \in F
$$

Prove that for $A, B \in \operatorname{End}_{F} V$

$$
\operatorname{Tr}(A \otimes B)=\operatorname{Tr} A \operatorname{Tr} B
$$

3. Let V be a finite-dimensional vector space over a field F and u_{1}, \ldots, u_{p}, $v_{1}, \ldots, v_{p} \in V$ be such that

$$
u_{1} \wedge \cdots \wedge u_{p}=c v_{1} \wedge \cdots \wedge v_{p} \neq 0, \quad c \in F
$$

Prove that u_{1}, \ldots, u_{p} and v_{1}, \ldots, v_{p} generate the same subspace in V.
*4. Let R be a commutative ring with 1 and let M be a free R-module ${ }^{1}$.
(a) Let M be finitely generated. Prove the following R-algebra isomorphism

$$
T\left(\operatorname{End}_{R}(M)\right) \cong \bigoplus_{k=0}^{\infty} \operatorname{End}_{R}\left(T^{k}(M)\right)
$$

(b) Let $M=M^{\prime} \oplus M^{\prime \prime}$ be the direct sum of free R-modules. Prove the following graded R-algebra isomorphism

$$
\operatorname{Sym}(M) \cong \operatorname{Sym}\left(M^{\prime}\right) \otimes_{R} \operatorname{Sym}\left(M^{\prime \prime}\right)
$$

5. Let V be a finite-dimensional vector space over a field $F, \operatorname{dim}_{F} V=n$ and let $p_{A}(t)$ be the characteristic polynomial of $A \in \operatorname{End}_{F}(V)$. Define $\alpha_{k}(A)=\operatorname{Tr}\left(\wedge^{k} A\right) \in F, k=0, \ldots, n$. Prove that

$$
p_{A}(-t)=\sum_{k=0}^{n} \alpha_{k}(A) t^{n-k}
$$

*6. Let V be a finite-dimensional vector space over a field $F, \operatorname{dim}_{F} V=n$ and let $A \in \operatorname{End}_{F}(V)$.Using that $\wedge^{n} A$ acts by multiplication by $\operatorname{det} A$ in $\wedge^{n} V$, prove the Laplace formula (expression for the determinant in terms of cofactors). Prove Laplace expansion by complementary minors.
7. Let A be skew-symmetric $2 n \times 2 n$ matrix and let

$$
\omega(A)=\frac{1}{2} \sum_{i, j=1}^{2 n} a_{i j} e_{i} \wedge e_{j},
$$

[^0]where $e_{1}, \ldots, e_{2 n}$ is the standard basis of $\mathbb{R}^{2 n}$. Prove that
$$
\wedge^{n} \omega(A)=n!\operatorname{Pf}(A) e_{1} \wedge \cdots \wedge e_{2 n}
$$
where $\operatorname{Pf}(A)$ is the Pfaffian defined in class. Deduce from here that (a) $\operatorname{Pf}\left(B^{t} A B\right)=\operatorname{Pf}(A) \operatorname{det} B$ for any $2 n \times 2 n$ matrix B.
(b) $\operatorname{Pf}(A)^{2}=\operatorname{det} A$.
*8. Let R be a commutative ring with 1 . Recall that if A is an R-algebra with a multiplication $m: A \otimes_{R} A \rightarrow A$, where $m(a \otimes b) \stackrel{\text { def }}{=} a \cdot b$, then $A \otimes_{R} A$ is also an R-algebra with the multiplication $m \otimes m$. In other words, $(a \otimes b) \cdot(c \otimes d) \stackrel{\text { def }}{=}(m \otimes m)(a \otimes b \otimes c \otimes d)=a c \otimes b d$ (see Proposition 21 in $\S 10.4$ of D\&F).

A Hopf algebra over R is an R-algebra A with additional operations $\Delta: A \rightarrow A \otimes_{R} A$, called a comultiplication or coproduct, $\varepsilon: A \rightarrow R$, called a counit and $S: A \rightarrow A$, called an antipode, satisfying the following properties.
(i) $\Delta: A \rightarrow A \otimes_{R} A$ is an R-algebra homomorphism satisfying

- the coassociativity.
(ii) $\varepsilon: A \rightarrow R$ is a ring homomorphism satisfying

(iii) $S: A \rightarrow A$ is an R-algebra anti-homomorphism $(S(a b)=$ $S(b) S(a)$ for all $a, b \in A)$ satisfying

where $i: R \rightarrow A$ is a natural inclusion map (maps $1 \in R$ to $\mathbf{1} \in A$). The same property should also hold for id $\otimes S$.
Prove that the following algebras are the Hopf algebras.
(a) Tensor algebra $T(M)$ of an R-module M, where for $m \in M$ the coproduct, the antipode and counit are given by $\Delta(m)=$ $m \otimes 1+1 \otimes m, S(m)=-m, \varepsilon(m)=0, \varepsilon(1)=1$. They are extended to $T(M)$ as a homomorphism of R-algebras (for Δ), an R-algebra anti-isomorphism (for S), and a ring homomorphism (for ε).
(b) The group ring $R[G]$ of a group G (see $\S 7.2$ in $\mathrm{D} \& \mathrm{~F}$), where for $g \in G$ we have $\Delta(g)=g \otimes g, S(g)=g^{-1}$ and $\varepsilon(g)=1$.
(c) The R-algebra $\operatorname{Fun}_{R}(G)$ of all maps $f: G \rightarrow R$ such that $f(g)=$ 0 for all but finitely many $g \in G$ with the pointwise product. Here $\Delta(f)\left(g_{1}, g_{2}\right)=f\left(g_{1} g_{2}\right), S(f)(g)=f\left(g^{-1}\right)$ and $\varepsilon(f)(g)=$ $f(e)$, where e is the identity in G.

[^0]: ${ }^{1}$ For part (a) it is sufficient to assume that M is finitely generated projective module.

