MAT 535: HOMEWORK 2
 DUE THU Feb 】9

Problems marked by asterisk $(*)$ are optional.
*1. By an orthogonal transformation transform the quadratic form $x_{1} x_{2}+$ $x_{2} x_{3}+\cdots+x_{n-1} x_{n}$ to the canonical form.
2. Let $f\left(x_{1}, \ldots, x_{n}\right)=X^{t} A X$ be a positive-definite quadratic form with symmetric matrix $A=\left\{a_{i j}\right\}_{i, j=1}^{n}$, and let $D_{f}=\operatorname{det} A$ be the discriminant of f.
(a) Prove that the discriminant of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)+\left(b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{2}
$$

is greater than D_{f}.
(b) Put $\varphi\left(x_{2}, \ldots, x_{n}\right)=f\left(0, x_{2}, \ldots, x_{n}\right)$. Prove that

$$
D_{f} \leq a_{11} D_{\varphi}
$$

*3. Let $f\left(x_{1}, \ldots, x_{n}\right)=X^{t} A X$ and $g\left(x_{1}, \ldots, x_{n}\right)=X^{t} B X$ be positivedefinite quadratic forms with the matrices $A=\left\{a_{i j}\right\}_{i, j=1}^{n}$ and $B=$ $\left\{b_{i j}\right\}_{i, j=1}^{n}$. Prove that the quadratic form (f, g) with the matrix $C=\left\{a_{i j} b_{i j}\right\}_{i, j=1}^{n}$ (no summation) is also positive-definite.
4. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ be skew-symmetric. Prove that its Cayley transform $O=(I-A)(I+A)^{-1}$ is well-defined and is orthogonal.
5. Consider the complex vector space $V=\operatorname{Mat}_{n \times n}(\mathbb{C})$ and let Tr be the matrix trace. Prove that $(A, B)=\operatorname{Tr} A B^{*}$ defines a Hermitian inner product in V.
*6. Let A be a normal operator such that $A^{2}=A$. Prove that A is self-adjoint.
7. Let V be a real vector space. A complex structure on V is a linear operator $J: V \rightarrow V$ such that $J^{2}=-I$.
(a) Prove that a complex structure J on V turns V into a complex vector space V_{J}, where $i v \stackrel{\text { def }}{=} J v$ for all $v \in V$.
(b) Let ω be a non-degenerate alternating form on V which is compatible with the complex structure J, that is,

$$
\omega(J u, J v)=\omega(u, v) \quad \text { for all } \quad u, v \in V
$$

and also suppose that $\omega(v, J v)>0$ for all non-zero $v \in V$. Prove that

$$
\langle u, v\rangle \stackrel{\text { def }}{=} \omega(u, J v)-i \omega(u, v)
$$

determines a Hermitian inner product on V_{J}.
(c) Let $V^{\mathbb{C}}=V \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of V. Prove that the operator J extends to $V^{\mathbb{C}}$, has eigenvalues $\pm i$ and

$$
V_{J} \cong V^{1,0}
$$

where $V^{1,0} \subset V^{\mathbb{C}}$ is the eigenspace of J with eigenvalue i.

