MAT 535: HOMEWORK 1 DUE THU Feb ${ }^{\text {® }} 2$

1. (a) Find an orthonormal eigenbasis for the operator $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ in the standard basis of \mathbb{R}^{2}.
(b) Prove that the cyclic shift operator T in \mathbb{R}^{n}, defined in the standard basis by $T e_{k}=e_{k-1}, k=1, \ldots, n$ and $e_{0}=e_{n}$, is normal and find its orthonormal eigenbasis.
2. Let V be a fnite-dimensional \mathbb{R}-vector space with Euclidean inner product (,). Prove that then, for any symmetric operator A, the bilinear form $B_{A}(u, v)=(A u, v)$ is symmetric and that conversely, every symmetric bilinear form can be written in this form for some symmetric operator A.
3. Let A be the following tri-diagonal $n \times n$ matrix:

$$
A=\left(\begin{array}{ccccc}
b & c & & & \\
a & b & c & & \\
& a & \ddots & \ddots & \\
& & \ddots & \ddots & c \\
& & & a & b
\end{array}\right)
$$

Prove that A determines a normal operator in \mathbb{R}^{n} if and only if $a^{2}=c^{2}$. When $a=c$ diagonalize A for $n=2,3$.
4. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product \langle,$\rangle . Prove that ()=,\operatorname{Re}\langle$,$\rangle is a Euclidean inner product$ on $V_{\mathbb{R}}$ - the space V considered as an \mathbb{R}-vector space, and that the bilinear form $\omega(u, v)=\operatorname{Im}\langle u, v\rangle$ on $V_{\mathbb{R}}$ is alternating.
5. Let F be a field and let \mathcal{A} be an associative F-algebra with 1 . Let $S \subseteq A$ be such that $s t=t s$ for every $s, t \in S$. Let \mathcal{B} be the smallest F-subalgebra of \mathcal{A} which contains the subset S and 1 . Prove that \mathcal{B} is commutative. (Hint: Prove first that if $s t=t s$ then $s^{n} t^{m}=t^{m} s^{n}$ for all $m, n \in \mathbb{N}$).
6. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product and let A, B be commuting self-adjoint operators on V. Prove that A and B have a common orthonormal eigenbasis.
7. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product, and let A be an invertible, normal operator on V. Prove that there exists a unique factorization $A=U P=P U$, where U is unitary and P is positive, that is, $(P v, v)>0$ for all non-zero $v \in V$. (Hint: Relate P and $A^{*} A$ and prove that $U=A P^{-1}$ is unitary. Note that commutativity of U and P is equivalent to A being a normal operator).

