## MAT 534: HOMEWORK 9 <br> DUE THU OCT 31

Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. Dummit and Foot, problems 1 and 2 on p. 311.
2. Let $f(x)=x^{3}-2 x^{2}+3 x-6 \in \mathbb{Q}[x]$.
(a) Prove that $\mathbb{Q}[x] /(f)$ is a direct product of two fields and find these fields.
(b) Find the inverse of $x+1$ in $\mathbb{Q}[x] /(f)$.
3. Let $\mathbb{F}$ be a field. Define the derivative $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by the usual rule, $D\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=\sum_{k=1}^{n} k a_{k} x^{k-1}$.
(a) Prove that $D(f g)=D(f) \cdot g+f \cdot D(g)$.
(b) Prove that $a$ is a multiple root of $f \in \mathbb{F}[x]$ iff $a$ is a root and $D(f)(a)=0$. In particular, if a multiplicity $k$ of the root $a$ is relatively prime with the characteristic $p$ of the field $\mathbb{F}$, then $a$ is a root of $D(f)$ of multiplicity $k-1$.
(c) Prove that $f \in \mathbb{C}[x]$ has no multiple roots iff $\operatorname{gcd}(f, D(f))=1$.
4. Let $f(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}, g(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \in$ $\mathbb{F}[x]$ be two monic polynomials of degrees $m$ and $n$.
(a) Prove that the following conditions are equivalent.
(i) $f$ and $g$ are relatively prime.
(ii) $\operatorname{deg}(\operatorname{lcm}(f, g))=m+n$.
(iii) The following $m+n$ polynomials $x^{i} f(x), i=0, \ldots, n-1$, and $x^{j} g(x), j=0, \ldots, m-1$, are linear independent over F.
(b) Prove that there is $R \in \mathbb{F}\left[a_{0}, \ldots, a_{m-1}, b_{0}, \ldots, b_{n-1}\right]$ such that $f$ and $g$ are relatively prime if and only if $R \neq 0$. (Such polynomial $R$ in variables $a_{i}, b_{j}$ is called the resultant of two polynomials $f$ and $g$ ).
Hint: Collection of $k$ vectors $v_{1}, \ldots, v_{k}$ is a $k$-dimensional vector space is linearly independent if and only if the determinant of the corresponding $k \times k$ matrix is non-zero.
5. Combine two previous problem to prove that if a field $\mathbb{F}$ is algebraically closed, then $f \in \mathbb{F}[x]$ has no multiple roots if and only if the discriminant $D=R(f, D(f))$ is non-zero. Compute $D$ for $f(x)=x^{2}+p x+q$ and $f(x)=x^{3}+b x+c$.
6. Let $I \subset \mathbb{C}[x, y]$ be the ideal generated by three monomials $x^{3}, y^{3}$ and $x y$. Prove that $I$ cannot be generated by two elements in $\mathbb{C}[x, y]$ (not necessarily monomials).
Hint: Show that $I / \mathfrak{m} I$ is a three-dimensional complex vector space, where $\mathfrak{m} \subset \mathbb{C}[x, y]$ is the maximal ideal generated by $x$ and $y$.
*7. Prove that for any $n$ there is an ideal in $\mathbb{C}[x, y]$ which cannot be generated by fewer than $n$ elements.
