MAT 534: HOMEWORK 8
 DUE THU OCT 24

Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
2. Determine the greatest common divisor in $\mathbb{Q}[x]$ of the polynomials $a(x)=x^{3}+4 x^{2}+x-6$ and $b(x)=x^{5}-6 x+5$ and write it as a linear combination of $a(x)$ and $b(x)$.
3. Let $p \in \mathbb{Z}$ be a prime number of the form $p=4 k+1$, and let $p=\pi \bar{\pi}$ be its factorization into primes in $\mathbb{Z}[\sqrt{-1}]$.
(a) Prove that $\mathbb{Z}[\sqrt{-1}] /(p)$ is a finite ring, with $|\mathbb{Z}[\sqrt{-1}] /(p)|=p^{2}$.
(b) Use Chinese Remainder Theorem to prove that $\mathbb{Z}[\sqrt{-1}] /(p) \simeq$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
4. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that elements $2,3,1 \pm \sqrt{-5}$ are irreducible in R.
(b) Show that R is not U.F.D. because

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5}) .
$$

(c) Define the ideals

$$
\begin{aligned}
I & =(2,1+\sqrt{-5}), \\
J & =(3,2+\sqrt{-5}), \\
J^{\prime} & =(3,2-\sqrt{-5}) .
\end{aligned}
$$

Prove that these ideals are prime (see hint in in Exercise 8, p. 293 in the book).
(d) Prove that $(2)=I^{2},(3)=J J^{\prime},(1-\sqrt{-5})=I J,(1+\sqrt{-5})=$ $I J^{\prime}$. Deduce from this that both factorizations $6=2 \cdot 3=$ $(1+\sqrt{-5})(1-\sqrt{-5})$ give the same presentation for (6) as a product of prime ideals: $(6)=I^{2} J J^{\prime}$.
5. Dummit and Foote, problems 10 and 13 on p. 257.
*6. Dummit and Foote, problem 5 on p. 267.
*7. Dummit and Foote, problems 10 and 11 on p. 269.

