MAT 534: HOMEWORK 7 DUE THU OCT 17

Problems marked by asterisk (*) are optional. Throughout this assignment, \mathbb{F} is an arbitrary field.

- 1. Which of the following rings are fields? integral domains? In each case, find all units (invertible elements).
 - (a) $R = \mathbb{F}[x]$.
 - (b) $R = \mathbb{Q}[\sqrt{d}]$, where $d \in \mathbb{Z}$ is square-free.
 - (c) $R = \mathbb{Z}[\sqrt{d}]$, where $d \in \mathbb{Z}$ is square-free.

(d)
$$R = \mathbb{R}[A] \subset M_2(\mathbb{R})$$
, where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- **2.** Let $\mathbb{F}[[x]]$ be the set of all formal power series in variable x with coefficients in \mathbb{F} . Prove that $\mathbb{F}[[x]]$ is a ring, and that $a_0 + a_1x + a_2x^2 + \cdots$ is a unit in this ring iff $a_0 \neq 0$.
- 3. Dummit and Foote, problems 11, 13 and 14 on p. 231.
- **4.** Let $p \in \mathbb{R}[x]$ be a quadratic polynomial which has no real roots. Define $R = \mathbb{R}[x]/(p)$. Show that $R \cong \mathbb{C}$.
- 5. Let I = (x y), J = (x + y) be ideals in $\mathbb{C}[x, y]$. (a) Describe explicitly the rings

 $\mathbb{C}[x,y]/I, \ \mathbb{C}[x,y]/J, \ \mathbb{C}[x,y]/(I+J), \ \mathbb{C}[x,y]/IJ.$

(Hint: you may make change of variables x' = x + y, y' = x - y). Describe each of these rings as polynomial functions on a certain subset in \mathbb{C}^2 .

(b) Which of the ideals I, J, I + J, IJ is maximal? prime?

- 6. Dummit and Foote, problems 7 and 8 on p. 256.
- *7. Dummit and Foote, problems 33 and 34 on p. 259.