MAT 534: HOMEWORK 6 DUE THU OCT 10

Problems marked by asterisk (*) are optional.

- *1. Let $a_1, \ldots, a_k \in \mathbb{Z}$ be such that $(a_1, \ldots, a_k) = 1$ (the gcd). Prove that there is $k \times k$ matrix M with integer coefficients and determinant 1 such that its first row is $a_1, \ldots, a_k \in \mathbb{Z}$.
- *2. Using previous problem, prove that every torsion-free finitely generated abelian group (i.e., the group without elements of finite order) is free. (Another proof of this result is in Lang's book, Theorem 8.4 on p. 46).
- *3. Prove that $\langle a, b | a^2 = 1, b^3 = 1, aba = b^2 \rangle = S_3$.
- *4. Let S be a finite set, |S| = n, and w_1, \ldots, w_k words from the alphabet $S \cup \overline{S}$. Prove that there is a group G with generators x_1, \ldots, x_n and relations $r_1 = \cdots = r_k = 1$, where r_j is obtained from w_j by replacing s_i by x_i and \overline{s}_i by x_i^{-1} , having the following universality property: for every group G' on n generators with these relations there is a surjective homomorphism $f: G \to G'$.