MAT 534: HOMEWORK 12 DUE TH DEC 5

Problems marked by asterisk (*) are optional.

1. (a) Find an orthonormal eigenbasis for the operator $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

in the standard basis of \mathbb{R}^2 .

- (b) Prove that the cyclic shift operator T in \mathbb{R}^n , defined in the standard basis by $Te_k = e_{k-1}$, $k = 1, \ldots, n$ and $e_0 = e_n$, is normal and find its orthonormal eigenbasis.
- 2. Let V be a fnite-dimensional \mathbb{R} -vector space with Euclidean inner product (,). Prove that for any symmetric operator A, the bilinear form $B_A(u, v) = (Au, v)$ is symmetric and that conversely, every symmetric bilinear form can be written in this form for some symmetric operator A.
- **3.** Let A be the following tridiagonal $n \times n$ matrix:

$$A = \begin{pmatrix} b & c & & & \\ a & b & c & & \\ & a & \ddots & \ddots & \\ & & \ddots & \ddots & c \\ & & & a & b \end{pmatrix}.$$

Prove that A determines a normal operator in \mathbb{R}^n if and only if $a^2 = c^2$. When a = c diagonalize A for n = 2, 3.

- 4. Let V be a finite-dimensional \mathbb{C} -vector space with Hermitian inner product \langle , \rangle . Prove that $(,) = \operatorname{Re}\langle , \rangle$ is a Euclidean inner product on $V_{\mathbb{R}}$ the space V considered as an \mathbb{R} -vector space, and that the bilinear form $\omega(u, v) = \operatorname{Im}\langle u, v \rangle$ on $V_{\mathbb{R}}$ is alternating.
- 5. Let V be a finite-dimensional \mathbb{C} -vector space with Hermitian inner product and let A, B be commuting self-adjoint operators on V. Prove that A and B have a common orthonormal eigenbasis.
- **6.** Let V be a finite-dimensional \mathbb{R} -vector space. A complex structure on V is a linear operator $J: V \to V$ such that $J^2 = -I$.
 - (a) Prove that a complex structure J on V turns V into a complex vector space V_J , where $iv \stackrel{\text{def}}{=} Jv$ for all $v \in V$.
 - (b) Let ω be a non-degenerate alternating form on V which is *compatible with the complex structure J*, that is,

 $\omega(Ju, Jv) = \omega(u, v) \quad \text{for all} \quad u, v \in V,$

and also suppose that $\omega(v, Jv) > 0$ for all non-zero $v \in V$. Prove that

$$\langle u, v \rangle \stackrel{\text{def}}{=} \omega(u, Jv) - i\omega(u, v)$$

determines a Hermitian inner product on V_J .

(c) Let $V^{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of V. Prove that the operator J extends to $V^{\mathbb{C}}$, has eigenvalues $\pm i$ and

$$V_J \cong V^{1,0}$$

where $V^{1,0} \subset V^{\mathbb{C}}$ is the eigenspace of J with eigenvalue i.

- 7. Let A be a normal operator such that $A^2 = A$. Prove that A is self-adjoint.
- 8*. Let V be a finite-dimensional C-vector space. Prove that the

 $(A, B) = \operatorname{Tr} AB^*$

defines a Hermitian inner product in $\operatorname{End} V$.

9*. Let V be a finite-dimensional \mathbb{C} -vector space with Hermitian inner product, and let A be an invertible, normal operator on V. Prove that there exists a unique factorization A = UP = PU, where U is unitary and P is positive, that is, (Pv, v) > 0 for all non-zero $v \in V$. (*Hint:* Relate P and A^*A and prove that $U = AP^{-1}$ is unitary. Note that commutativity of U and P is equivalent to A being a normal operator).