MAT 534: HOMEWORK 12
 DUE TH DEC 5

Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. (a) Find an orthonormal eigenbasis for the operator $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ in the standard basis of \mathbb{R}^{2}.
(b) Prove that the cyclic shift operator T in \mathbb{R}^{n}, defined in the standard basis by $T e_{k}=e_{k-1}, k=1, \ldots, n$ and $e_{0}=e_{n}$, is normal and find its orthonormal eigenbasis.
2. Let V be a fnite-dimensional \mathbb{R}-vector space with Euclidean inner product (,). Prove that for any symmetric operator A, the bilinear form $B_{A}(u, v)=(A u, v)$ is symmetric and that conversely, every symmetric bilinear form can be written in this form for some symmetric operator A.
3. Let A be the following tridiagonal $n \times n$ matrix:

$$
A=\left(\begin{array}{ccccc}
b & c & & & \\
a & b & c & & \\
& a & \ddots & \ddots & \\
& & \ddots & \ddots & c \\
& & & a & b
\end{array}\right)
$$

Prove that A determines a normal operator in \mathbb{R}^{n} if and only if $a^{2}=c^{2}$. When $a=c$ diagonalize A for $n=2,3$.
4. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product \langle,$\rangle . Prove that (,)=\operatorname{Re}\langle$,$\rangle is a Euclidean inner product$ on $V_{\mathbb{R}}$ - the space V considered as an \mathbb{R}-vector space, and that the bilinear form $\omega(u, v)=\operatorname{Im}\langle u, v\rangle$ on $V_{\mathbb{R}}$ is alternating.
5. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product and let A, B be commuting self-adjoint operators on V. Prove that A and B have a common orthonormal eigenbasis.
6. Let V be a finite-dimensional \mathbb{R}-vector space. A complex structure on V is a linear operator $J: V \rightarrow V$ such that $J^{2}=-I$.
(a) Prove that a complex structure J on V turns V into a complex vector space V_{J}, where $i v \stackrel{\text { def }}{=} J v$ for all $v \in V$.
(b) Let ω be a non-degenerate alternating form on V which is compatible with the complex structure J, that is,

$$
\omega(J u, J v)=\omega(u, v) \quad \text { for all } \quad u, v \in V,
$$

and also suppose that $\omega(v, J v)>0$ for all non-zero $v \in V$. Prove that

$$
\langle u, v\rangle \stackrel{\text { def }}{=} \omega(u, J v)-i \omega(u, v)
$$

determines a Hermitian inner product on V_{J}.
(c) Let $V^{\mathbb{C}}=V \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of V. Prove that the operator J extends to $V^{\mathbb{C}}$, has eigenvalues $\pm i$ and

$$
V_{J} \cong V^{1,0},
$$

where $V^{1,0} \subset V^{\mathbb{C}}$ is the eigenspace of J with eigenvalue i.
7. Let A be a normal operator such that $A^{2}=A$. Prove that A is self-adjoint.
8*. Let V be a finite-dimensional \mathbb{C}-vector space. Prove that the

$$
(A, B)=\operatorname{Tr} A B^{*}
$$

defines a Hermitian inner product in End V.
9*. Let V be a finite-dimensional \mathbb{C}-vector space with Hermitian inner product, and let A be an invertible, normal operator on V. Prove that there exists a unique factorization $A=U P=P U$, where U is unitary and P is positive, that is, $(P v, v)>0$ for all non-zero $v \in V$. (Hint: Relate P and $A^{*} A$ and prove that $U=A P^{-1}$ is unitary. Note that commutativity of U and P is equivalent to A being a normal operator).

