MAT 534: HOMEWORK 10
 DUE THU NOV 14

Throughout this assignment, R is a ring with 1 , all modules are left R modules and all vector spaces are over a field F. Problems marked by asterisk $\left({ }^{*}\right)$ are optional.

1. (a) Let N be a submodule of M. Show that if both N and M / N are finitely generated, so is M.
(b) Let M be a finitely generated module over a Noetherian ring. Prove that M is Noetherian module, that is, every its submodule is finitely generated. (Hint: Prove it first for free modules using (a) and induction in rank).
2. A module is called irreducible or simple, if it has no nonzero proper submodules.
(a) Prove that every irreducible module is cyclic with every nonzero element as its generator.
(b) Prove that every irreducible module is isomorphic to R / I, where I is a maximal left ideal.
(c) Describe all irreducible modules over $\mathbb{R}[x]$ and $\mathbb{C}[x]$.
3. Let T be a linear operator on a finite-dimensional space V. Suppose there is a linear operator U on V such that $T U=I$, where I is the identity operator. Prove that T is invertible, i.e. has both left and right inverse, and $U=T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let $T=D$ be the differentiation operator on the space of polynomials.)
4. Let V_{1} and V_{2} be subspaces of the vector space V. Verify that $V_{1} \cap V_{2}$ and $V_{1}+V_{2}$ are also subspaces and prove that

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}-\operatorname{dim}\left(V_{1} \cap V_{2}\right)
$$

5. Let $P: V \rightarrow V$ be a linear operator on a finite-dimensional space V such that $P^{2}=P$. Prove that

$$
V=V_{1} \oplus V_{2},
$$

where $\left.P\right|_{V_{1}}=$ id and $\left.P\right|_{V_{2}}=0$, so that P is a projection operator.
6. Let A and B be commuting linear operators on a finite-dimensional vector space V such that $A^{2}=A$ and $B^{2}=B$. Prove that then

$$
\operatorname{ker} A B=\operatorname{ker} A+\operatorname{ker} B .
$$

