MAT 534: HOMEWORK 1

DUE THU, SEPT. 45

Problems marked by asterisk $\left(^{*}\right)$ are optional.
Notation:
\mathbb{Z} - integer numbers
$\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ - congruence classes modulo n (considered as a group with respect to addition)
For some problems might need the following basic result from number theory (we will prove it later): an integer k has a multiplicative inverse modulo n if and only if k, n are relatively prime.

1. Construct the isomorphism between the dihedral group D_{6} (all symmetries of equilateral triangle) and the symmetric group S_{3}
2. Let $D_{2 n}$ be the group of all symmetries of a regular n-gon. Let $r \in D_{2 n}$ be the counterclockwise rotation by $2 \pi / n$ and let $s \in D_{2 n}$ be a reflection around one of the lines of symmetry. Prove the following results:
(a) $r^{n}=e$ (where e is the group unit)
(b) $s^{2}=e$
(c) $r s=s r^{-1}$
(d) Any reflection $s^{\prime} \in D_{2 n}$ can be written in the form $s^{\prime}=r^{k} s r^{-k}$, for some $k \in \mathbb{Z}$ (in case n is
3. Construct a bijection between the coset space $S_{n} / S_{k} \times S_{n-k}$ and the set B of all odd). sequences of k zeroes and $n-k$ ones. (Hint: applying an element of S_{n} to the sequence 00...0111... 1 produces a new sequence).
4. Prove that any subgroup of index 2 is normal.
5. Describe all subgroups of symmetric group S_{3}. For each of them, say whether it is normal; if it is, describe the quotient.
6. Prove that any subgroup in \mathbb{Z} must be of the form $H=a \cdot \mathbb{Z}$ for some $a \in \mathbb{Z}$ (hint: choose the smallest positive number in H).
7. Let p be a prime number and \mathbb{Z}_{p}^{\times}- the group of all non-zero remainders modulo p (with respect to multiplication). Deduce from Lagrange theorem that for any integer a not divisible by p, we have $a^{p-1} \equiv 1 \bmod p$.
8. (a) Prove that an element $k \in \mathbb{Z}_{n}$ is a generator of \mathbb{Z}_{n} if and only if k is relatively prime with n.
(b) A complex number ζ is called a primitive root of unity of order n if $\zeta^{n}=1$, but for all $k=1,2, \ldots n-1$, we have $\zeta^{k} \neq 1$. How many primitive roots of unity of order 15 are there? Describe them all.
