MAT 534: HOMEWORK 9 DUE THU OCT 29

Problems marked by asterisk (*) are optional.

- 1. Dummit and Foot, problems 1 and 2 on p. 311.
- **2.** Prove that for prime p the polynomial $\frac{x^{\hat{p}}-1}{x-1}$ is irreducible over \mathbb{Q} .
- **3.** Let $p(x) = x^3 2x^2 + 3x 6 \in \mathbb{Q}[x]$.
 - (a) Prove that $\mathbb{Q}[x]/(p)$ is a direct product of two fields and find these fields.
 - (b) Find the inverse of x + 1 in $\mathbb{Q}[x]/(p)$.
- **4.** Let \mathbb{F} be a field. Define the derivative $D : \mathbb{F}[x] \to \mathbb{F}[x]$ by the usual rule, $D\left(\sum_{k=0}^{n} a_k x^k\right) = \sum_{k=1}^{n} k a_k x^{k-1}$.
 - (a) Prove that $D(fg) = D(f) \cdot g + f \cdot D(g)$.
 - (b) Prove that a is a multiple root of $f \in \mathbb{F}[x]$ iff a is a root and D(f)(a) = 0. In particular, if a multiplicity k of the root a is relatively prime with the characteristic p of the field \mathbb{F} , then a is a root of D(f) of multiplicity k 1.

(c) Prove that $f \in \mathbb{C}[x]$ has no multiple roots iff gcd(f, D(f)) = 1. 5. Let $f(x) = x^m + a_{m-1}x^{m-1} + \dots + a_0$, $g(x) = x^n + b_{n-1}x^{n-1} + \dots + b_0 \in \mathbb{F}[x]$ be two monic polynomials of degrees m and n.

- (a) Prove that the following conditions are equivalent.
 - (i) f and g are relatively prime.
 - (ii) $\deg(\operatorname{lcm}(f,g)) = m + n$.
 - (iii) The following m + n polynomials $x^i f(x)$, i = 0, ..., n-1, and $x^j g(x)$, j = 0, ..., m-1, are linear independent over \mathbb{F} .
- (b) Prove that is $R \in \mathbb{F}[a_0, \ldots, a_{m-1}, b_0, \ldots, b_{n-1}]$ such that f and g are relatively prime if and only if $R \neq 0$. (Such polynomial R in variables a_i, b_j is called the *resultant* of two polynomials f and g).

Hint: Collection of k vectors v_1, \ldots, v_k is a k-dimensional vector space is linearly independent if and only if the determinant of the corresponding $k \times k$ matrix is non-zero.

- 6. Combine two previous problem to prove that if a field \mathbb{F} is algebraically closed, then $f \in \mathbb{F}[x]$ has no multiple roots if and only if the discriminant D = R(f, D(f)) is non-zero. Compute D for $f(x) = x^2 + px + q$ and $f(x) = x^3 + bx + c$.
- 7 Let $I \subset \mathbb{C}[x, y]$ be the ideal generated by three monomials x^3 , y^3 and xy. Prove that I cannot be generated by two elements in $\mathbb{C}[x, y]$ (not necessarily monomials).
- *8. Prove that for any n there is an ideal in $\mathbb{C}[x, y]$ which cannot be generated by fewer than n elements.