MAT 534: HOMEWORK 5 DUE TU, Oct. 6

Problems marked by asterisk (*) are optional.

1. Let G be abelian group, which is generated by x, y, z with relations $x^3 = xy^2z^3 = 1$. Represent G as a product of cyclic groups.

Hint: You can write G additively and work out Smith normal form.

- **2.** Same question for the group \mathbb{Z}^3/L , where *L* is generated by $u_1 = (3, 2, 5), u_2 = (0, 1, 3), u_3 = (0, 1, 5).$
- **3.** Let A be $n \times n$ matrix with integer coefficients, and let $L \leq \mathbb{Z}^n$ be the subgroup generated by the rows of A. Prove that \mathbb{Z}^n/L is infinite if det A = 0 and if det $A \neq 0$, $|\mathbb{Z}^n/L| = |\det A|$. (You can use existence of Smith normal form).
- *4. From Dummit and Foote, problems 2 and 3 on p. 165.
- 5. From Dummit and Foote, problem 8 on p. 166.
- *6. From Dummit and Foote, problem 14 on p. 167.