MAT 534: HOMEWORK 12 DUE TU NOV 24

Problems marked by asterisk (*) are optional.

Throughout this assignment, all vector spaces are over a field F.

- 1. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that TU = I. Prove that T is invertible, i.e. has both left and right inverse, and $U = T^{-1}$. Show that this is false when V is not finite-dimensional. (*Hint*: Let T = D be the differentiation operator on the space of polynomials.)
- **2.** Let V_1 and V_2 be subspaces of the vector space V. Verify that $V_1 \cap V_2$ and $V_1 + V_2$ are also subspaces.
 - (a) Prove that $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2)$.
 - (b) If V is finite-dimensional, prove that it is possible to choose a basis $\{v_i\}_{i \in I}$ in V and two subsets $I_1, I_2 \subseteq I$ such that $\{v_i\}_{i \in I_1}$ is a basis of V_1 , $\{v_i\}_{i \in I_2}$ is a basis of V_2 , and $\{v_i\}_{i \in I_1 \cup I_2}$ is a basis of $V_1 + V_2$.
- **3.** Let $P: V \to V$ be a linear operator on a finite-dimensional space V such that $P^2 = P$. Prove that $V = V_1 \oplus V_2$, where $P|_{V_1} = \text{id}$ and $P|_{V_2} = 0$, so that P is a projection operator.
- **4.** Let A, B be commuting linear operators on V such that $A^2 = A$, $B^2 = B$. Prove that then $\ker(AB) = \ker(A) + \ker(B)$.
- *5. Prove the formula for Cauchy and Vandermonde determinants.
- **6.** Compute det A, where A is the following $n \times n$ matrix

$\binom{2}{2}$	-1	0	0		0 \
-1	2	-1	0		0
0	-1	2	-1		0
0				2	-1
0	0		0	-1	$_2$]

(2 on the diagonal, -1 immediately below and above the diagonal and zeros elsewhere).

7. Let $A: V \to V$ be a linear operator on a finite-dimensional space V. Define e^A by the standard power series

$$e^{A} = \sum_{n=0}^{\infty} \frac{A^{n}}{n!} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots,$$

which is convergent in the natural topology on $\operatorname{End}(V)$.

- (a) Prove that if $P \in \text{End}(V)$ is invertible, then $Pe^AP^{-1} = e^{PAP^{-1}}$.
- (b) Prove that if A and B commute, then $e^{A+B} = e^A e^B$.
- (c) Prove that if A is antisymmetric, $A = -A^t$, then $O = e^A$ is orthogonal, i.e., $OO^t = I$.