MAT 534: HOMEWORK 10 DUE THU NOV 5

Throughout this assignment, R is a ring with 1 and all modules are left R-modules. Problems marked by asterisk (*) are optional.

- 1. (a) Let N be a submodule of M. Show that if both N and M/N are finitely generated, so is M.
 - (b) Let M be a finitely generated module over a Noetherian ring. Prove that M is Noetherian module, that is, every its submodule is finitely generated. (*Hint*: Prove it first for free modules using (a) and induction in rank).
- **2.** A module is called *irreducible* or *simple*, if it has no nonzero proper submodules.
 - (a) Prove that every irreducible module is cyclic with every nonzero element as its generator.
 - (b) Prove that every irreducible module is isomorphic to R/I, where I is a maximal left ideal.
 - (c) Describe all irreducible modules over $\mathbb{R}[x]$ and $\mathbb{C}[x]$.
- ***3.** Dummit and Foote, exercises 8 and 9 on p. 344.
- *4. Dummit and Foote, exercise 2 on p. 356.
- **5.** Let *R* be a P.I.D. and let *M* be an *R*-module annihilated by some nonzero $a \in R$, that is, am = 0 for any $m \in M$. Suppose that $a = a_1 \cdots a_n$, where a_i are pairwise relatively prime. Prove that

 $M = M_1 \oplus \cdots \oplus M_n$, where $M_i = \{m \in M : a_i M = 0\}.$

(*Hint*: First prove it for n = 2 and then use induction.)

- 6. Dummit and Foote, exercise 11 on p. 356.
- 7. Let M be irreducible module. Prove that $D = \operatorname{End}_R(M)$ is a division ring (also called a skew-field) a ring with $1 \neq 0$ such that every non-zero element has a multiplicative inverse. Show that M is a vector space over D.
- *8. (Wedderburn's Theorem). Let R be a ring and let M be an irreducible, faithful R-module. The latter means that if rm = 0 for $r \in R$ all $m \in M$, then r = 0. Let $D = \operatorname{End}_R(M)$ and suppose that M is finitely generated over D. Then $R = \operatorname{End}_D(M)$ a matrix algebra with elements in D.