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Abstract
We prove a generalization of Kawai theorem for the case of orbifold Riemann surface.
The computation is based on a formula for the differential of a holomorphic map from
the cotangent bundle of the Teichmüller space to the PSL(2,C)-character variety,
which allows to evaluate explicitly the pullback of Goldman symplectic form in the
spirit of Riemann bilinear relations. As a corollary, we obtain a generalization of
Goldman’s theorem that the pullback of Goldman symplectic form on the PSL(2,R)-
character variety is a symplectic form of theWeil–Peterssonmetric on the Teichmüller
space.

1 Introduction

The deformation space of complex projective structures on a closed oriented genus
g ≥ 2 surface is a holomorphic affine bundle over the corresponding Teichmüller
space. The choice of a Bers section identifies the deformation space with the holomor-
phic cotangent bundle of the Teichmüller space, a complex manifold with a complex
symplectic form. Kawai’s theorem [16] asserts that symplectic form on the cotangent
bundle is a pulback under the monodromy map of Goldman’s complex symplectic
form on the corresponding PSL(2,C)-character variety.

However, Kawai’s proof is not very insightful. In fact, he does not use Goldman
symplectic form as defined in [6], but rather uses a symplectic form on the moduli
space of special rank 2 vector bundles on a Riemann surface associated with projective
structures, as it is defined in [8]. The computation is highly technical and algebraic
topology nature of the result gets obscured. Recently a shorter proof, relying on theo-
rems of other authors, was given in [18]. Also in paper [4] it is proved, using special
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924 L. A. Takhtajan

homological coordinates, that canonical Poisson structure on the cotangent bundle of
the Teichmüller space induces the Goldman bracket on the character variety.

Here we prove a generalization of Kawai theorem for the case of orbifold Riemann
surface. The computation is based on a formula for the differential of a holomorphic
map from the cotangent bundle to the PSL(2,C)-character variety, which allows to
evaluate explicitly the pullback of Goldman symplectic form in the spirit of Riemann
bilinear relations. As a corollary, we obtain a generalization of Goldman’s theorem
that the pullback of Goldman symplectic from on PSL(2,R)-character variety is a
symplectic form of the Weil–Petersson metric on the Teichmüller space.

The paper is organized as follows. In Sect. 2.1 we recall basic facts from the
complex-analytic theory of Teichmüller space T = T (�), where � is a Fuchsian
group of the first kind, and in Sect. 2.2 we define the holomorphic symplectic form ω

on the cotangent bundleM = T ∗T . In Sect. 2.3we introduce the PSL(2,C)-character
variety K associated with the Fuchsian group �, and its holomorphic tangent space
at [ρ] ∈ K , the parabolic Eichler cohomology group H1

par(�, gAdρ). The Goldman
symplectic form ωG on K is introduced in Sect. 2.4, and the holomorphic mapping
Q : M → K , as well as the map F : T → KR, are defined in Sect. 2.5. In Sect. 3
we explicitly compute the differential of the map Q in the fiber over the origin in T .
Lemma 1 neatly summarizes variational theory of the developing map in terms of the
so-called �-operator, the classical third-order linear differential operator

�q = d3

dz3
+ 2q(z)

d

dz
+ q ′(z),

associated with the second-order differential equation

d2ψ

dz2
+ 1

2
q(z)ψ = 0,

where q is a cusp form of weight 4 for �. Its properties are presented in �1–�5 (see
also, B1–B3).

The main result, Theorem 1,

ω = −√−1Q∗(ωG),

is proved in Sect. 4. The proof uses Proposition 1 and explicit description of a canonical
fundamental domain for � in Sect. 4.1. From here we obtain (see, Corollary 3)

ωWP = F∗(ωG),

which is a generalization of Goldman theorem for orbifold Riemann surfaces.
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On Kawai theorem for orbifold Riemann surfaces 925

2 The basic facts

2.1 Teichmüller space of a Fuchsian group

Here we recall the necessary basic facts from the complex-analytic theory of Teich-
müller spaces (see, classic paper [1] and book [2], and also [19,23]).

2.1.1. Let � be, in classical terminology, a Fuchsian group of the first kind with
signature (g; n, e1, . . . , em), satisfying

2g − 2 + n +
m∑

i=1

(
1 − 1

ei

)
> 0.

By definition, � is a finitely generated cofinite discrete subgroup of PSL(2,R), acting
on the Lobachevsky (hyperbolic) plane, the upper half-plane

H = {z = x + √−1y : y > 0}.

The group� has a standard presentation with 2g hyperbolic generators a1, b1, . . . , ag,
bg , m elliptic generators c1, . . . , cm of orders e1, . . . , em , and n parabolic generators
cm+1, . . . , cm+n satisfying the relation

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g c1 · · · cm+n = 1.

The group � can be thought of as a fundamental group of the corresponding orbifold
Riemann surface X � �\H.

2.1.2. LetA−1,1(H, �) be the space ofBeltrami differentials for�—acomplexBanach
space of μ ∈ L∞(H) satisfying

μ(γ z)
γ ′(z)
γ ′(z)

= μ(z) for all γ ∈ �,

with the norm

‖μ‖∞ = sup
z∈H

|μ(z)|.

For a Beltrami coefficient for �, μ ∈ A−1,1(H, �) with ‖μ‖∞ < 1, denote by wμ the
solution of the Beltrami equation

w
μ
z̄ = μwμ

z , z ∈ H,

w
μ
z̄ = 0, z ∈ C\H,
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926 L. A. Takhtajan

that fixes 0, 1,∞, and put Hμ = wμ(H), �μ = wμ ◦ � ◦ (wμ)−1. The Teichmüller
space T (�) of a Fuchsian group � is defined by

T (�) = {μ ∈ A−1,1(H, �) : ‖μ‖∞ < 1}/ ∼,

where μ ∼ ν if and only if wμ|R = wν |R. Equivalently, μ ∼ ν if and only if
wμ

∣∣
R

= wν |R, where wμ is a q.c. homeomorphism of H satisfying the Beltrami
equation

(wμ)z̄ = μ(wμ)z, z ∈ H.

We denote by [μ] the equivalence class of a Beltrami coefficient μ.
Teichmüller space T (�) is a complex manifold of complex dimension

d = 3g − 3 + m + n.

The holomorphic tangent and cotangent spaces T0T (�) and T ∗
0 T (�) at the base point,

the origin [0] ∈ T (�), are identified, respectively, with 	−1,1(H, �)—the vector
space of harmonic Beltrami differentials for �, and with 	2(H, �)—the vector space
of cusp forms of weight 4 for �. The corresponding pairing T ∗

0 T (�) ⊗ T0T (�) → C

is given by the absolutely convergent integral

∫∫

F
μ(z)q(z)dxdy,

where F is a fundamental domain for �. There is a complex anti-linear isomorphism
	2(H, �)

∼−→ 	−1,1(H, �) given by q(z) �→ μ(z) = y2q(z). Together with the
pairing, it defines the Petersson inner product in T0T (�),

(μ1, μ2)WP =
∫∫

F
μ1(z)μ2(z)y

−2dxdy.

There is a natural isomorphism between the Teichmüller spaces T (�) and T (�μ),
where �μ = wμ ◦ � ◦ w−1

μ is a Fuchsian group. For every [μ] ∈ T (�) it allows us to
identify T[μ]T (�) with 	−1,1(H, �μ) and T ∗[μ]T (�) with 	2(H, �μ). The conformal
mapping

hμ = wμ ◦ (wμ)−1 : Hμ → H,

establishes natural isomorphisms

	−1,1(H, �μ)
∼−→ 	−1,1(Hμ, �μ) and 	2(H, �μ)

∼−→ 	2(Hμ, �μ).

According to the isomorphism T (�) � T (�μ), the choice of a base point is inessential
and we will use the notation T for T (�).

The Petersson inner product in the tangent spaces determines the Weil–Petersson
Kähler metric on T . Its Kähler (1, 1)-form is a symplectic form ωWP on T ,
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On Kawai theorem for orbifold Riemann surfaces 927

ωWP(μ1, μ̄2) =
√−1

2

∫∫

F

(
μ1(z)μ2(z) − μ1(z)μ2(z)

)
y−2dxdy, (1)

where μ1, μ2 ∈ T0T .

2.1.3. Explicitly the complex structure on T is described as follows. Let μ1, . . . , μd

be a basis of 	−1,1(H, �). Bers’ coordinates (ε1, . . . , εd) in the neighborhood U of
the origin in T are defined by ‖μ‖∞ < 1, where μ = ε1μ1 + · · · + εdμd . For the
corresponding vector fields we have

∂

∂εi

∣∣∣∣
μ

= P−1,1

((
μi

1 − |μ|2
w

μ
z

w
μ
z

)
◦ (wμ)−1

)
∈ 	−1,1(Hμ, �μ),

where P−1,1 is a projection on the subspace of harmonic Beltrami differentials. Let
p1, . . . , pd be the basis in	2(H, �), dual to the basisμ1, . . . , μd for	−1,1(H, �). For

the holomorphic 1-forms dεi , dual to the vector fields
∂

∂εi
onU , we have dεi |μ = pμ

i ,

where the basis pμ
1 , . . . , pμ

d in 	2(Hμ, �μ) has the property

P2

(
pμ
i ◦ wμ (wμ

z )2
)

= pi ,

with P2 being a projection on 	2(H, �).

2.2 Holomorphic symplectic form

Let M = T ∗T be the holomorphic cotangent bundle of T with the canonical
projection π : M → T . It is a complex symplectic manifold with canonical (2, 0)-
holomorphic symplectic form ω = dϑ , where ϑ is the Liouville 1-form (also called a
tautological 1-form). At a point (q, [μ]) ∈ M it is defined as follows (e.g., see, [3])

ϑ(v) = q(π∗v), v ∈ T(q,[μ])M .

For the points in the fiber π−1(0) the symplectic form ω is given explicitly by

ω((q1, μ1), (q2, μ2)) =
∫∫

F
(q1(z)μ2(z) − q2(z)μ1(z))dxdy, (2)

where (q1, μ1), (q2, μ2) ∈ T(q,0)M � T ∗
0 T ⊕ T0T .

2.2.1. Let θ(t) be a smooth curve in M starting at (q, 0) ∈ M and lying in T ∗U ,
whereU is a Bers neighborhood of the origin in T . Correspondingly, μ(t) = π(θ(t))
is a smooth curve in U satisfying μ(0) = 0, and without changing the tangent vector
to θ(t) at t = 0 we can assume that μ(t) = tμ for some μ ∈ 	−1,1(H, �). We have

θ(t) =
d∑

i=1

ui (t) dεi |tμ ,
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928 L. A. Takhtajan

for small t and

θ(0) =
d∑

i=1

ui (0)pi = q ∈ 	2(H, �).

The tangent vector to θ(t) at t = 0 is (θ̇ , μ) ∈ T(q,0)M , where

θ̇ =
d∑

i=1

u̇i (0)pi .

Here and in what follows the ‘over-dot’ denotes the derivative with respect to t at
t = 0.

Equivalently, the curve θ(t) is given by the smooth family qt ∈ 	2(Htμ, �tμ) with
q0 = q, and so

ui (t) =
(
qt ,

∂

∂εi

∣∣∣∣
tμ

)
=

∫∫

F
q(t)μi dxdy,

where
q(t) = qt ◦ wtμ (wtμ

z )2, (3)

is a pull-back of the cusp form qt on Htμ to H by the map wtμ. It is a smooth family
of forms of weight 4 for � and

u̇i (0) =
∫∫

F
q̇μi dxdy, i = 1, . . . , d,

so that

θ̇ = P2(q̇).

2.2.2. To summarize, the value of the symplectic form (2) on tangent vectors (θ̇1, μ1)

and (θ̇2, μ2) to the curves θ1(t) and θ2(t) at t = 0, is given by the following expression

ω((θ̇1, μ1), (θ̇2, μ2)) =
∫∫

F
(q̇1μ2 − q̇2μ1)dxdy. (4)

Remark 1 Though q̇ is a non-holomorphic form of weight 4 for �, it decays exponen-
tially at the cusps. Indeed, by conjugation it is sufficient to consider the cusp∞. Since
wtμ(z + 1) = wtμ(z) + c(t), we have qt (z + c(t)) = qt (z) and

q(t)(z) =
∞∑

n=1

an(t)e
2π

√−1nwtμ(z)/c(t)wtμ
z (z)2,
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On Kawai theorem for orbifold Riemann surfaces 929

where an(t) are corresponding Fourier coefficients of qt (z). Therefore

q̇(z) =
∞∑

n=1

ȧne
2π

√−1nz + 2q(z)ẇμ
z + q ′(z)(ẇμ(z) − ċ),

where prime always denotes the derivative with respect to z. Since q(z) and q ′(z)
decay exponentially as y → ∞, we obtain

q̇(z) = O(e−π y) as y → ∞.

2.3 The character variety

Here we recall necessary basic facts on the PSL(2,C)-character variety for the fun-
damental group of the orbifold Riemann surface X � �\H.

2.3.1. Let G be a Lie group PSL(2,C) and g = sl(2,C) be its Lie algebra. As in

[6, §2.3], we identify g with the Lie algebra of vector fields P(z)
∂

∂z
on H, where

P(z) ∈ P2 is a quadratic polynomial. Explicitly,

g �
(
a b
c −a

)
�→ (cz2 − 2az − b)

∂

∂z
∈ P2

∂

∂z
.

Let 〈 , 〉 denote a 1/4 of the Killing form1 of g. In terms of the standard basis {1, z, z2}
of P2 the Killing form 〈 , 〉 is given by the matrix

C =
⎛

⎝
0 0 −1
0 1/2 0

−1 0 0

⎞

⎠ ,

where Ci j = 〈zi−1, z j−1〉, i, j = 1, 2, 3. In general, for P1, P2 ∈ P2

〈P1, P2〉 = −1

2
B0[P1, P2](z), (5)

where for arbitrary smooth functions F and G,

B0[F,G] = FzzG + FGzz − FzGz . (6)

Note that the right hand side of (5) does not depend on z.

2.3.2. As in [6,7], let K be the G-character variety of an orbifold Riemann surface
X ,

K = Hom0(�, G)/G,

1 Representing g by 2 × 2 traceless matrices over C gives 〈x, y〉 = tr xy.
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930 L. A. Takhtajan

which consists of irreducible homomorphisms ρ : � → G, modulo conjugation,
that preserve traces of parabolic and elliptic generators of �. The character variety
K is a complex manifold of complex dimension 2d = 6g − 6 + 2m + 2n, and the
holomorphic tangent space T[ρ]K at [ρ] is naturally identified with the parabolic
Eichler cohomology group

H1
par(�, gAdρ) = Z1

par(�, gAdρ)/B1(�, gAdρ).

Here g is understood as a left�-module with respect to the actionAdρ, and a 1-cocycle
χ ∈ Z1(�, gAdρ) is a map χ : � → P2 satisfying

χ(γ1γ2) = χ(γ1) + ρ(γ1) · χ(γ2), γ1, γ2 ∈ �, (7)

where dot stands for the adjoint action of G on g � P2
∂

∂z
,

(g · P)(z) = P(g−1(z))

(g−1)′(z)
, g ∈ G, P ∈ P2. (8)

The parabolic condition, introduced in [21], means that the restriction of a 1-cocycle
χ ∈ Z1(�, gAdρ) to a parabolic subgroup �α of �—the stabilizer of a cusp α for
�—is a coboundary: there is some Pα(z) ∈ P2 such that

χ(γ ) = ρ(γ ) · Pα − Pα, γ ∈ �α.

We denote by [χ ] the cohomology class of a 1-cocycle χ .

Remark 2 It iswell-known (see, [21]) that the restriction ofχ to a finite cyclic subgroup
of � is a coboundary. Indeed, if γ n = 1, then it follows from (7) that

0 = χ(γ n) = (1 + ρ(γ ) + · · · + ρ(γ n−1)) · χ(γ ). (9)

Using the unit disk model of the Lobachevsky plane, we can assume that γ (u) = ζu,
where ζ n = 1 and |u| < 1. It follows from (8) and (9) that

χ(γ )(u) = au2 + b,

and there is P ∈ P2 with the property

χ(γ )(u) = ζ P(u/ζ ) − P(u).

2.4 The Goldman symplectic form

2.4.1. In case X � �\H is a compact Riemann surface (the case m = n = 0),
Goldman [6] introduced a complex symplectic form on the character varietyK . At a
point [ρ] ∈ K it is defined as
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On Kawai theorem for orbifold Riemann surfaces 931

ωG([χ1], [χ2]) = 〈[χ1] ∪ [χ2]〉([X ]), where [χ1], [χ2] ∈ T[ρ]K . (10)

Here [X ] is the fundamental class of X under the isomorphism H2(X ,Z) � H2(�,Z),
and 〈[χ1] ∪ [χ2]〉 ∈ H2(�,R) is a composition of the cup product in cohomology and
of the Killing form. At a cocycle level it is given explicitly by

〈χ1 ∪ χ2〉(γ1, γ2) = 〈χ1(γ1),Adρ(γ1) · χ(γ2)〉, γ1, γ2 ∈ �.

Since the right-hand side in (10) does not depend on the choice of representatives
χ1, χ2 ∈ Z1(�, gAdρ) of the cohomology classes [χ1], [χ2] ∈ H1(�, gAdρ), we will
use the notation ωG(χ1, χ2).

According to [6, Proposition 3.9],2 the fundamental class [X ] in terms of the group
homology is realized by the following 2-cycle

c =
g∑

k=1

{(
∂R

∂ak
, ak

)
+

(
∂R

∂bk
, bk

)}
∈ H2(�,Z), (11)

where R = Rg ,

Rk =
k∏

i=1

aibia
−1
i b−1

i , k = 1, . . . , g,

and by the Fox free differential calculus

∂R

∂ak
= Rk−1 − Rkbk,

∂R

∂bk
= Rk−1ak − Rk . (12)

In these notations (10) takes the form

ωG(χ1, χ2) = −
g∑

k=1

〈
χ1

(
#

∂R

∂ak

)
, χ2(ak)

〉
+

〈
χ1

(
#

∂R

∂bk

)
, χ2(bk)

〉
, (13)

where a cocycle χ extends from a map on � to a linear map defined on the integral
group ring Z[�], and # denotes the natural anti-involution on Z[�],

#
(∑

n jγ j

)
=

∑
n jγ

−1
j .

Remark 3 We have

#
∂R

∂ak
= R−1

k−1(1 − αk) and #
∂R

∂bk
= R−1

k (1 − βk),

2 See also, exercises 4(b) and 4(c) on p. 46 in [5].
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932 L. A. Takhtajan

where αk = Rkb
−1
k R−1

k and βk = Rka
−1
k R−1

k−1, are dual generators of the group �

(see, Sect. 4.1.1), and expression (13) takes the form

ωG(χ1, χ2) = −
g∑

k=1

〈χ1(αk), ρ(Rk−1)·χ2(ak)〉 + 〈χ1(βk), ρ(Rk)·χ2(bk)〉 .

2.4.2. In case m + n > 0, we define Rk , k = 1, . . . , g, as before and put

Rg+i = Rgc1 · · · ci , i = 1, . . . ,m + n; R = Rg+m+n .

According to [10,11,14,17], the Goldman symplectic formωG on the character variety
K associated with the fundamental group of an orbifold Riemann surface is defined
as follows

ωG(χ1, χ2) = −
g∑

k=1

〈
χ1

(
#

∂R

∂ak

)
, χ2(ak)

〉
+

〈
χ1

(
#

∂R

∂bk

)
, χ2(bk)

〉

−
m+n∑

i=1

〈
χ1

(
#
∂R

∂ci

)
, χ2(ci )

〉
−

m+n∑

i=1

〈χ1(c
−1
i ), P2i 〉, (14)

where
∂R

∂ci
= Rg+i−1, (15)

and P2i ∈ P2 are given by

χ2(γ ) = ρ(γ ) · P2i − P2i , γ ∈ �i = 〈ci 〉, i = 1, . . . ,m + n.

As in the previous case, the right-hand side of (14) depends only on cohomology
classes [χ1], [χ2] ∈ H1

par(�, gAdρ). For details and the proof that it defines a symplectic
form on K we refer to [10,11,14,17].

2.5 The holomorphic mapQ : M → K

The holomorphic mapQ : M → K is defined as follows. Let (q, [μ]) ∈ M , where
q ∈ 	2(Hμ, �μ). On H

μ = wμ(H) consider the Schwarz equation

S ( f ) = q,

where S stands for the Schwarzian derivative,

S ( f ) = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.
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On Kawai theorem for orbifold Riemann surfaces 933

Its solution, the developing map f : Hμ → P
1 = C ∪ {∞}, satisfies

f ◦ γ μ = ρ(γ ) ◦ f for all γ μ = wμ ◦ γ ◦ (wμ)−1 ∈ �μ,

and determines [ρ] ∈ Hom0(�, G)/G.
Indeed, f can be obtained as a ratio of two linearly independent solutions of the

differential equation

ψ ′′ + 1

2
q(z)ψ = 0. (16)

Since q is a cusp form ofweight 4 for�μ, a simple application of the Frobeniusmethod
(e.g., see, [15]) to (16) at cusps and elliptic fixed points shows that ρ preserves traces
of parabolic and elliptic generators of �. Namely, the substitution ζ = e2π

√−1z sends
the cusp ∞ to ζ = 0 and transforms (16) to a second order linear differential equation
with regular singular point at ζ = 0. The characteristic equation has a double root
r = 0, which corresponds to a parabolic monodromy, and similar analysis applies to
elliptic fixed points.

Since the representation ρ is irreducible [9,20], we have [ρ] ∈ K , which allows
us to define the holomorphic map Q by

M � (q, [μ]) �→ Q(q, [μ]) = [ρ] ∈ K .

Remark 4 Besides the holomorphic embedding T ↪→ M given by the zero section,
there is a smooth non-holomorphic embedding ı : T → M , given by

T � [μ] �→ (S (hμ), [μ]) ∈ M ,

where hμ = wμ ◦ (wμ)−1 (see, Sect. 2.1.2). The image of the smooth curve {[tμ]} on
T under the map F = Q ◦ ı—the curve {�tμ} onK —lies in the real subvarietyKR

of K , the character variety for GR = PSL(2,R).

3 Differential of themapQ
3.1 The set-up

Consider a smooth curve θ(t)onM , defined inSect. 2.2.1. Its imageunder themapQ is
a smooth curve onK , given by the family {[ρt ]}, where [ρ0] = [ρ] = Q(q, 0) ∈ K .
According to Sect. 2.5,

ρt (γ ) = f t ◦ γ tμ ◦ ( f t )−1 for all γ tμ ∈ �tμ.

The maps f t : Htμ → P
1 are defined by

S ( f t ) = qt , (17)
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934 L. A. Takhtajan

where f 0 = f : H → P
1 satisfies

S ( f ) = q

and

f ◦ γ = ρ(γ ) ◦ f for all γ ∈ �.

Put gt = f t ◦ wtμ : H → P
1. It follows from (17) that

S (gt ) = S ( f t ) ◦ wtμ(wtμ
z )2 + S (wtμ) = q(t) + S (wtμ), (18)

where q(t) is a non-holomorphic form of weight 4 for �, given by (3). Differentiating
with respect to t at t = 0 the equation

gt ◦ γ = ρt (γ ) ◦ gt ,

we get

ġ ◦ γ = ρ̇(γ ) ◦ f + ρ(γ )′ ◦ f ġ,

and using the equation

ρ(γ )′ ◦ f f ′ = f ′ ◦ γ γ ′,

we obtain

1

γ ′
ġ

f ′ ◦ γ = ġ

f ′ + 1

f ′
ρ̇(γ )

ρ(γ )′
◦ f .

For the corresponding cocycle χ , representing a tangent vector to the curve [ρt ] at
t = 0, we have

χ(γ ) = ρ̇(γ ) ◦ ρ(γ )−1 = − ρ̇(γ −1)

(ρ(γ )−1)′
,

so that
1

f ′ χ(γ −1) ◦ f = ġ

f ′ − 1

γ ′
ġ

f ′ ◦ γ. (19)

Indeed, it immediately follows from (19) that χ ∈ Z1(�, gAdρ). To show that χ

is a parabolic cocycle, it is sufficient to check it for the subgroup �∞ generated by
τ = (

1 1
0 1

)
, which corresponds to the cusp at ∞. We can assume that the maps f t fix

∞, so that the maps gt = f t ◦ wtμ also have this property,

gt (z + 1) = gt (z) + c(t).
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On Kawai theorem for orbifold Riemann surfaces 935

Thus ġ(z + 1) = ġ(z) + ċ and χ(τ) = ċ. Whence there is P ∈ P2 such that
χ(τ) = P ◦ τ − P .

3.2 Differential equation and the3-operator

From (18) it is easy to obtain a differential equation for ġ. Namely, differentiate
equation (18) with respect to t at t = 0. Using g0 = f and ẇ

μ
zzz = 0 for μ ∈

	−1,1(H, �), which follows from classic Ahlfors’ formula in [1], we get

q̇ = d

dt

∣∣∣∣
t=0

S (gt ) = ġzzz
f ′ − 3

f ′′

f ′2 ġzz +
(
3
f ′′2

f ′3 − f ′′′

f ′2

)
ġz .

Since q = S ( f ), a simple computation shows that this equation can be written neatly
as follows

�q

(
ġ

f ′

)
= q̇, (20)

where �q is the following linear differential operator of the third order,

�q(F)(z) = Fzzz + 2q(z)Fz + q ′(z)F .

In case q = 0 the operator �0 is just a third derivative operator. The �-operator
is classical and goes back to Appell (see, [22, Example 10 in Sect. 14.7]). Its basic
properties are summarized below.

�1. If ψ1 and ψ2 are solutions of the ordinary differential Eq. (16), then

�q(ψ1ψ2) = 0.

Since for q = S ( f ) one can always choose ψ1 = 1√
f ′ and ψ2 = f√

f ′ ,

�q

(
P ◦ f

f ′

)
= 0

for every P ∈ P2.
�2. If a function h satisfies �0(h) = p and f is holomorphic and locally schlicht,

then H = h ◦ f

f ′ satisfies

�q(H) = P,

where q = S ( f ) and P = p ◦ f ( f ′)2.
�3. If q ◦ γ (γ ′)2 = q for some γ ∈ G, then

�q

(
F ◦ γ

γ ′

)
= �q(F) ◦ γ (γ ′)2.
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936 L. A. Takhtajan

�4. The general solution of the equation

�q(G) = Q,

where q = S ( f ) and Q is holomorphic on H, is given by

G(z) = 1

2

∫ z

z0

( f (z) − f (u))2

f ′(z) f ′(u)
Q(u)du + 1

f ′(z)
(a f (z)2 + b f (z) + c),

where a, b, c are arbitrary anti-holomorphic functions of z.
�5.

�q(F)G + F�q(G) = (Bq [F,G])z,

where the bilinear form Bq is given by

Bq [F,G] = FzzG + FGzz − FzGz + 2q(z)FG.

All these properties are well-known and can be verified by direct computation. In
particular, property �4, according to �2, follows from case q = 0, when the equation
�0(G) = Q is readily solved by

G(z) = 1

2

∫ z

z0
(z − u)2Q(u)du + az2 + bz + c.

Bilinear form Bq , introduced in �5, will play an important role in our approach. It
has the following properties.

B1. We have

Bq

[
F ◦ f

f ′ ,
G ◦ f

f ′

]
= B0[F,G] ◦ f ,

where q = S ( f ). In general,

(
BS ( f1)[F,G]) ◦ f2 = BS ( f1◦ f2)

[
F ◦ f2

f ′
2

,
G ◦ f2

f ′
2

]
.

B2. If q ◦ γ (γ ′)2 = q for some γ ∈ G, then

Bq [F,G] ◦ γ = Bq

[
F ◦ γ

γ ′ ,
G ◦ γ

γ ′

]
.

B3. If (F ◦ γ )
γ ′
γ ′ = F for some γ ∈ G, then

Bq [F,G] − Bq [F,G] ◦ γ γ ′ = Bq [F, H ], where H = G − G ◦ γ

γ ′ .
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On Kawai theorem for orbifold Riemann surfaces 937

3.3 The differential

We summarize the obtained results in the following statement.

Lemma 1 Let (θ̇ , μ) ∈ T(q,0)M , where θ̇ = P2(q̇), be a tangent vector corresponding
to a curve {qt }. For a representative χ of the cohomology class

[χ ] = dQ|(q,0) (θ̇ , μ) ∈ H1
par(�, gAdρ),

we have

1

f ′ χ(γ −1) ◦ f = ġ

f ′ − 1

γ ′
ġ

f ′ ◦ γ,

where
ġ

f ′ satisfies

�q

(
ġ

f ′

)
= q̇,

∂

∂ z̄

(
ġ

f ′

)
= μ.

Proof It remains only to check the last equation. Since gt = f t ◦wtμ, it follows from
the Beltrami equation for wtμ that on H the function gt satisfies

gtz̄ = tμ gtz,

and therefore

ġz̄ = μ f ′,

i.e.,
∂

∂ z̄

(
ġ

f ′

)
= μ. (21)

��
Remark 5 We have

�q(μ) = q̇z̄,

which is a compatibility condition of Eqs. (20) and (21). It can be also verified directly
by differentiating the equation

(
∂

∂ z̄
− tμ

∂

∂z
− 2tμz

)
q(t) = 0

at t = 0,

q̇z̄ = 2qμz + q ′μ = �q(μ).
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938 L. A. Takhtajan

Corollary 1 The function
ġ

f ′ is given by the following formula

ġ(z)

f ′(z)
= ẇ(z) + 1

2

∫ z

z0

( f (z) − f (u))2

f ′(z) f ′(u)
q̃(u)du + P( f (z))

f ′(z)
,

where P ∈ P2 and q̃ = q̇ − �q(ẇ) = q̇ − 2qẇz − q ′ẇ.

Proof It follows from properties �1 and �4, since the holomorphic function
ġ

f ′ − ẇ

satisfies

�q

(
ġ

f ′ − ẇ

)
= q̃.

��

Remark 6 Similarly to Wolpert’s formulas [24] for Bers and Eichler–Shimura cocy-
cles, from Corollary 1 one can obtain an explicit formula for the parabolic cocycle
χ ∈ Z1

par(�, gAdρ).

Corollary 2 For every cusp α for � there is Pα ∈ P2 such that

ġ(z)

f ′(z)
= Pα( f (z))

f ′(z)
+ O(e−cα Im σαz) as Im σαz → ∞,

where σα ∈ PSL(2,R) is such that σα(α) = ∞ and cα > 0.

Proof It follows from Remark 1 and Lemma 1 (or from Corollary 1). ��

Remark 7 For the family qt = S (htμ), introduced in Remark 4, we have gt = wtμ

and q̇ = ġzzz . It follows from classic Ahlfors’ formula in [1] that

q̇ = −1

2
q, where μ = y2q̄.

Thus

dı |0 (μ) = (− 1
2q, μ) ∈ T0M ,

and it follows from (1) that

ı∗(ω) = √−1ωWP.
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On Kawai theorem for orbifold Riemann surfaces 939

4 Computation of the symplectic form

4.1 The fundamental domain

Here we recall the definition of a canonical fundamental domain for the Fuchsian
group � (see, [13] and references therein).

4.1.1. In casem = n = 0 choose z0 ∈ H and standard generators ak, bk , k = 1, . . . , g.
The oriented canonical fundamental domain F with the base point z0 is a topological
4g-gon whose ordered vertices are given by the consecutive quadruples

(Rkz0, Rkak+1z0, Rkak+1bk+1z0, Rkak+1bk+1a
−1
k+1z0), k = 0, . . . , g − 1.

Corresponding A and B edges of F are analytic arcs Ak = (Rk−1z0, Rk−1akz0)
and Bk = (Rkz0, Rkbkz0), k = 1, . . . , g, and corresponding dual edges are A′

k =
(Rkbkz0, Rkbkakz0) and B ′

k = (Rk−1akz0, Rkbkakz0) (see, Fig. 1 for a typical funda-
mental domain for a group � of genus 2).
We have

∂F =
g∑

k=1

(Ak − Bk − A′
k + B ′

k).

Here

Ak = αk(A
′
k) and Bk = βk(B

′
k),

where αk = Rk−1b
−1
k R−1

k and βk = Rka
−1
k R−1

k−1. They satisfy

[αk, βk] = Rk−1R
−1
k ,

z0

B2

a1z0

A1F

a1b1z0

B1

a1b1a
−1
1 z0

A1

R1z0
B1

R1a2z0

A2

R1a2b2z0

B2

A2

R1a2b2a
−1
2 z0

Fig. 1 Fundamental domain for a group � of genus 2
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so that

Rk =
k∏

i=1

[αi , βi ] = R−1
k and

g∏

k=1

αkβkα
−1
k β−1

k = 1.

The generators αk, βk , k = 1, . . . , g, are dual generators of �, introduced by A.
Weil [21] (see also, [12]), and

a−1
k = RkβkR−1

k−1, b−1
k = Rk−1αkR−1

k .

We have Ak = (R−1
k−1z0, β

−1
k R−1

k z0), Bk = (R−1
k z0, α

−1
k R−1

k−1z0) and

∂F =
2g∑

i=1

(Sl − λi (Si )),

where Sk = Ak , Sk+g = −Bk and λk = α−1
k , λk+g = β−1

k , k = 1, . . . , g.

Remark 8 The ordering of vertices of F for the dual generators corresponds to the
opposite orientation, so that (cf. (11))

c = −
g∑

k=1

{(
∂R
∂αk

, αk

)
+

(
∂R
∂βk

, βk

)}
.

4.1.2. In general case m + n > 0, oriented canonical fundamental domain F with
the base point z0 is a (4g + 2m + 2n)-gon whose ordered vertices are given by the
consecutive quadruples

(Rkz0, Rkak+1z0, Rkak+1bk+1z0, Rkak+1bk+1a
−1
k+1z0), k = 0, . . . , g − 1,

followed by the consecutive triples (Rg+i−1z0, zi , Rg+i z0), i = 1, . . . ,m + n. Here
zi ∈ H, i = 1, . . . ,m, are fixed points of the elliptic elements

γi = Rg+i−1c
−1
i R−1

g+i−1,

and zm+ j ∈ R, j = 1, . . . , n, are fixed points of the parabolic elements

γm+ j = Rg+m+ j−1c
−1
m+ j R

−1
g+m+ j−1

(see, Fig. 2 for a typical fundamental domain of group � of signature (1; 1, 6), where
z1 is elliptic fixed point of order 6 and z2 is a cusp).
We have

∂F =
g∑

k=1

(Ak − Bk − A′
k + B ′

k) +
m+n∑

i=1

(Ci − C ′
i ),
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z2

z0

C2

a1z0

A1

a1b1z0

B1

R1b1z0
A1

R1z0
B1

z1 F

C1

R1c1z0

C1

C2

Fig. 2 Fundamental domain for a group � of signature (1;1,6)

where

Ci = (Rg+i−1z0, zi ), C ′
i = (Rg+i z0, zi ), Ci = γi (C

′
i ), i = 1, . . . ,m + n.

The generators αk, βk , k = 1, . . . , g, and γi , i = 1, . . . ,m + n, are dual generators
of � satisfying

Rgγ1 · · · γm+n = 1.

We have Ci = (R−1
g+i−1z0, zi ) and

∂F =
N∑

k=1

(Sk − λk(Sk)), N = 2g + m + n, (22)

where S2g+i = Ci , λ2g+i = γ −1
i , i = 1, . . . ,m + n.

4.2 Themain formula

Here we obtain another representation for the symplectic form ω. Put FY = {z ∈
F : Im(σ−1

j ) ≤ Y , j = 1, . . . , n}, where σ−1
j (x j ) = ∞, and denote by Hj (Y )

corresponding horocycles in F . We have

ω((θ̇1, μ1), (θ̇2, μ2)) =
√−1

2
lim

Y→∞

∫

FY
(q̇1μ2 − q̇2μ1)dz ∧ dz̄.

Lemma 2 The symplectic form ω, evaluated on two tangent vectors (θ̇1, μ1) and
(θ̇2, μ2) corresponding to the curves θ1(t) and θ2(t), is given by
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942 L. A. Takhtajan

ω((θ̇1, μ1), (θ̇2, μ2))

=
√−1

4

∫

∂F

{(
q̇2

ġ1
f ′ − q̇1

ġ2
f ′

)
dz +

(
Bq

[
μ2,

ġ1
f ′

]
− Bq

[
μ1,

ġ2
f ′

])
dz̄

}
.

Proof Denote the 1-form under the integral by ϑ . We have, using Lemma 1,

dϑ =
(
q̇2 z̄

ġ1
f ′ + q̇2

(
ġ1
f ′

)

z̄
− q̇1 z̄

ġ2
f ′ − q̇1

(
ġ2
f ′

)

z̄

)
dz̄ ∧ dz

+
(

�q(μ2)
ġ1
f ′ + μ2�q

(
ġ1
f ′

)
− �q(μ1)

ġ2
f ′ − μ1�q

(
ġ2
f ′

))
dz ∧ dz̄

=
(
q̇2 z̄

ġ1
f ′ + q̇2μ1 − q̇1 z̄

ġ2
f ′ − q̇1μ2

)
dz̄ ∧ dz

+
(
q̇2 z̄

ġ1
f ′ + μ2q̇1 − q̇1 z̄

ġ2
f ′ − μ1q̇2

)
dz ∧ dz̄

= 2(q̇1μ2 − q̇2μ1)dz ∧ dz̄.

Since due to exponential decay of q̇1, q̇2 and μ1, μ2 at the cusps the integrals over
horocycles Hj (Y ) tend to 0 as Y → ∞, by Stokes’ theorem we get (4). ��

The line integral over ∂F in Lemma 2 can be evaluated explicitly.

Proposition 1 We have

ω((θ̇1, μ1), (θ̇2, μ2))

=
√−1

4

N∑

i=1

(
Bq

[
ġ2
f ′ ,

1

f ′ χ1(λ
−1
i ) ◦ f

]
− Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i ) ◦ f

])∣∣∣∣
∂Si (1)

∂Si (0)
.

Proof Using Lemma 2, formula (22), Lemma 1 and property B3, we get

4√−1
ω((θ̇1, μ1), (θ̇2, μ2))

=
N∑

i=1

(∫

Si
−

∫

λi (Si )

){(
q̇2

ġ1
f ′ − q̇1

ġ2
f ′

)
dz +

(
Bq

[
μ2,

ġ1
f ′

]
− Bq

[
μ1,

ġ2
f ′

])
dz̄

}

=
N∑

i=1

∫

Si

{(
q̇2

1

f ′ χ1(λ
−1
i ) ◦ f − q̇1

1

f ′ χ2(λ
−1
i ) ◦ f

)
dz

+
(
Bq

[
μ2,

1

f ′ χ1(λ
−1
i ) ◦ f

]
− Bq

[
μ1,

1

f ′ χ2(λ
−1
i ) ◦ f

])
dz̄

}
.

Using Lemma 1 and properties �1 and �5, we obtain

Bq

[
μ,

1

f ′ χ(λ−1
i ) ◦ f

]
= ∂

∂ z̄
Bq

[
ġ

f ′ ,
1

f ′ χ(λ−1
i ) ◦ f

]
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On Kawai theorem for orbifold Riemann surfaces 943

and

∂

∂z
Bq

[
ġ

f ′ ,
1

f ′ χ(λ−1
i ) ◦ f

]
= �q

(
ġ

f ′

)
1

f ′ χ(λ−1
i ) ◦ f = q̇

1

f ′ χ(λ−1
i ) ◦ f .

Since

�z̄d z̄ = d� − �zdz,

we finally get (note how the signs match)

4√−1
ω((θ̇1, μ1), (θ̇2, μ2))

=
N∑

i=1

∫

Si

(
dBq

[
ġ2
f ′ ,

1

f ′ χ1(λ
−1
i ) ◦ f

]
− dBq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i ) ◦ f

])

=
N∑

i=1

(
Bq

[
ġ2
f ′ ,

1

f ′ χ1(λ
−1
i ) ◦ f

]
− Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i ) ◦ f

])∣∣∣∣
∂Si (1)

∂Si (0)
.

According to Corollary 2, Bq

[
ġ

f ′ ,
1

f ′ χ(λ−1
i ) ◦ f

]
(z) has a limit as z approaches the

cusps for �. ��

4.3 Main result

Theorem 1 The pull-back of the Goldman symplectic form on K by the map Q is√−1 times canonical symplectic form onM ,

ω = −√−1Q∗(ωG).

Proof Since the choice of a base point for T is inessential (see, Sect. 2.1.2), it is
sufficient to compute the pullback only for the points inQ(q, 0). For the convenience
of the reader, consider first the case m = n = 0, when N = 2g. Using property B2
and Eqs. (7)–(8), we have for arbitrary α, β ∈ �,

Bq

[
ġ1
f ′ ,

1

f ′ χ2(α) ◦ f

]
(βz0) = Bq

[
1

β ′

(
ġ1
f ′

)
◦ β,

1

β ′

(
1

f ′ χ2(α) ◦ f

)
◦ β

]
(z0)

= Bq

[
ġ1
f ′ − 1

f ′ χ1(β
−1) ◦ f ,

1

f ′ χ2(β
−1α) ◦ f − 1

f ′ χ2(β
−1) ◦ f

]
(z0)

= Bq

[
ġ1
f ′ ,

1

f ′ (χ2(β
−1α) − χ2(β

−1)) ◦ f

]
(z0)

+B0[χ1(β
−1), χ2(β

−1) − χ2(β
−1α)](z0).
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944 L. A. Takhtajan

Using (5), (7) and Adρ invariance of the Killing form, we obtain

B0[χ1(β
−1), χ2(β

−1) − χ2(β
−1α)](z0) = 2〈χ1(β

−1), ρ(β−1)χ2(α)〉
= −2〈χ1(β), χ2(α)〉,

so that

Bq

[
ġ1
f ′ ,

1

f ′ χ2(α) ◦ f

]
(βz0)

= Bq

[
ġ1
f ′ ,

1

f ′ (χ2(β
−1α) − χ2(β

−1)) ◦ f

]
(z0) − 2〈χ1(β), χ2(α)〉. (23)

Now for i = k using (23) for α = αk , β = β−1
k R−1

k and α = αk , β = R−1
k−1, we

obtain

Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
k ) ◦ f

]∣∣∣∣
∂Sk (1)

∂Sk (0)

= Bq

[
ġ1
f ′ ,

1

f ′ (χ2(Rkβkαk) − χ2(Rkβk) − χ2(Rk−1αk) + χ2(Rk−1)) ◦ f

]
(z0)

−2〈χ1(β
−1
k R−1

k ) − χ1(R−1
k−1), χ2(αk)〉. (24)

For i = k + g we use α = βk , β = R−1
k and α = βk , β = α−1

k R−1
k−1 to compute

Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i+k) ◦ f

]∣∣∣∣
∂Si+k (1)

∂Si+k (0)

= Bq

[
ġ1
f ′ ,

1

f ′ (χ2(Rkβk) − χ2(Rk) − χ2(Rk−1αkβk) + χ2(Rk−1αk)) ◦ f

]
(z0)

−2〈χ1(R−1
k ) − χ1(α

−1
k R−1

k−1), χ2(βk)〉. (25)

Since Rk−1αkβk = Rkβkαk and Rg = 1, we see that the sum over k of terms in the
second lines in Eqs. (24)–(25) vanishes. Using (12)–(13) and Remark 8, we get

2g∑

i=1

Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i ) ◦ f

]∣∣∣∣
∂Si (1)

∂Si (0)

= 2
g∑

k=1

(
〈χ1(R−1

k−1) − χ1(β
−1
k R−1

k ), χ2(αk)〉 + 〈χ1(α−1
k R−1

k−1) − χ1(R−1
k ), χ2(βk)〉

)

= 2ωG(χ1, χ2).
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On Kawai theorem for orbifold Riemann surfaces 945

Similarly,

2g∑

i=1

Bq

[
ġ2
f ′ ,

1

f ′ χ1(λ
−1
i ) ◦ f

]∣∣∣∣
∂Si (1)

∂Si (0)

= −2ωG(χ2, χ1)

and we finally obtain

ω((θ̇1, μ1), (θ̇2, μ2)) = −√−1ωG(χ1, χ2).

In general, assume that m + n > 0. In this case

2g∑

i=1

Bq

[
ġ1
f ′ ,

1

f ′ χ2(λ
−1
i ) ◦ f

]∣∣∣∣
∂Si (1)

∂Si (0)
= −Bq

[
ġ1
f ′ ,

1

f ′ χ2(Rg) ◦ f

]
(z0)

+2
g∑

k=1

(
〈χ1(R−1

k−1) − χ1(β
−1
k R−1

k ), χ2(αk)〉 + 〈χ1(α−1
k R−1

k−1) − χ1(R−1
k ), χ2(βk)〉

)
,

(26)

and we need to compute

m+n∑

i=1

Bq

[
ġ1
f ′ ,

1

f ′ χ2(γi ) ◦ f

]∣∣∣∣
zi

R−1
g+i−1z0

.

Using (23) with α = γi and β = R−1
g+i−1, we get

Bq

[
ġ1
f ′ ,

1

f ′ χ2(γi ) ◦ f

]
(R−1

g+i−1z0)

= Bq

[
ġ1
f ′ ,

1

f ′
(
χ2(Rg+i ) − χ2(Rg+i−1)

) ◦ f

]
(z0) + 2〈χ1(R−1

g+i−1), χ2(γi )〉.

Since restriction of χ2 to the stabilizer �i = 〈γi 〉 of a fixed point zi is a coboundary,
there is P2i ∈ P2 such that

χ2(γi ) = ρ(γi )P2i − P2i .

Using property B2, γi zi = zi and (5), we get

Bq

[
ġ1
f ′ ,

1

f ′ χ2(γi ) ◦ f

]
(zi ) = Bq

[
ġ1
f ′ ,

1

(γ −1
i )′

(
1

f ′ P2i ◦ f

)
◦ γ −1

i − 1

f ′ P2i ◦ f

]
(zi )

= Bq

[
1

γ ′
i

ġ1
f ′ ◦ γi − ġ1

f ′ ,
1

f ′ P2i ◦ f

]
(zi )

= −B0[χ1(γ −1
i ), P2i ](zi ) = 2〈χ1(γ −1

i ), P2i 〉.
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Thus using Rg+m+n = 1 we obtain

m+n∑

i=1

Bq

[
ġ1
f ′ ,

1

f ′ χ2(γi ) ◦ f

]∣∣∣∣
zi

R−1
g+i−1z0

= Bq

[
ġ1
f ′ ,

1

f ′ χ2(Rg) ◦ f

]
(z0) + 2

m+n∑

i=1

(
〈χ1(R−1

g+i−1), χ2(γi )〉 + 〈χ1(γ −1
i ), P2i 〉

)
.

(27)

Putting together formulas (26)–(27) and using (14)–(15), we finally obtain

ω((θ̇1, μ1), (θ̇2, μ2)) = −√−1ωG(χ1, χ2).

��
Remark 9 The above computation is a non-abelian analog of Riemann bilinear rela-
tions, which arise from the isomorphism

H1(X ,C)/H1(X ,Z)
∼−→ Kab,

where H1(X ,C) is the complex vector space of harmonic 1-forms on X and Kab =
(C∗)2g is the complex torus—a character variety for the abelian group G = C

∗.

CombingTheorem1 andRemark 7,we get a a generalization ofGoldman’s theorem
[6, Sect. 2.5] for the case of orbifold Riemann surfaces.

Corollary 3 The pullback of the Goldman symplectic form on the character variety
KR by the map F is a symplectic form of the Weil–Petersson metric on T ,

ωWP = F∗(ωG).

Acknowledgements I am grateful to Indranil Biswas for drawing my attention to Kawai theorem and its
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