CORRECTION

Correction to: Local index theorem for orbifold Riemann surfaces

Leon A. Takhtajan^{1,2} · Peter Zograf^{3,4}

© Springer Nature B.V. 2024

Correction to: Letters in Mathematical Physics (2019) 109:1119–1143 https://doi.org/10.1007/s11005-018-01144-w

The main result of [1], cf. Introduction and Theorem 2, Formula (3.13), should have the form

$$c_{1}(\lambda_{-k}, ||\cdot||_{-k}^{Q}) = \frac{6k^{2} + 6k + 1}{12\pi^{2}}\omega_{WP} - \frac{1}{9}\omega_{cusp} + \frac{1}{4\pi}\sum_{j=1}^{l} \left(2k\left(B_{1}\left(\left\{\frac{k}{m_{j}}\right\}\right) + \frac{1}{2m_{j}}\right) - m_{j}\left(B_{2}\left(\left\{\frac{k}{m_{j}}\right\}\right) - \frac{1}{6m_{j}^{2}}\right)\right)\omega_{j}^{ell},$$

where $B_1(x) = x - \frac{1}{2}$ and $B_2(x) = x^2 - x + \frac{1}{6}$ are Bernoulli polynomials, and $\{x\}$ denotes the fractional part of *x*.

Namely, in the proof of Theorem 2 in [1] the term with $B_1(x)$ was inadvertently omitted. This term appears after integration by parts of the integral I_4 in formula (3.17). Specifically, let $z_0 \in \mathbb{H}$ be an elliptic fixpoint of order *m* and for $z \in \mathbb{H}$ let

$$u = \frac{z - z_0}{z - \bar{z}_0}$$

be the variable in the unit disk. Then, as in the proof of Lemma 2 in [1], it is easy to get the following asymptotic as $u \rightarrow 0$:

The original article can be found online at https://doi.org/10.1007/s11005-018-01144-w.

☑ Peter Zograf zograf@pdmi.ras.ru

> Leon A. Takhtajan leontak@math.stonybrook.edu

- ¹ Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA
- ² Euler International Mathematical Institute, Pesochnaya Nab. 10, Saint Petersburg, Russia 197022
- ³ Steklov Mathematical Institute, Fontanka 27, Saint Petersburg, Russia 191023
- ⁴ Chebyshev Laboratory, Saint Petersburg State University, 14-th Line V.O. 29, Saint Petersburg, Russia 199178

$$\frac{\partial}{\partial \bar{z}} R_{-k}(z) \left(\frac{dz}{du}\right)^2 \left(\frac{dz}{du}\right) = -\frac{2km}{\pi} \left(B_1\left(\left\{\frac{k}{m}\right\}\right) + \frac{1}{2m}\right) \frac{1}{u} + O(1)$$

Finally, a simple computation, similar to that for the integral I_6 in [1], gives an extra contribution with the first Bernoulli polynomial.

We are grateful to Lee-Peng Teo, who kindly informed us about this issue.

Reference

1. Takhtajan, L., Zograf, P.: Local index theorem for orbifold Riemann surfaces. Lett. Math. Phys. **109**(5), 1119–1143 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.