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1. We emphasize that the insertion of χµ saturates the zero modes in the path integral
side of eq. (2.9) and makes it non-zero, while the insertion of local operators χ̂µ
saturates the fermion number operator (−1)F in the spectral side of eq. (2.9). It is
important to observe that the operators χ̂µ are not naive quantization of the zero
modes, since the latter are generically non-local in time and have no counterpart in the
Hamiltonian formalism. The local operators χ̂µ are just ψ̂µ(0), where fermion operators
are normalized to satisfy eq. (2.8).

2. The identification in section 2.2 between the product of fermionic zero modes has a
missing overall numerical factors to be consistent with ((−1)F )2 = 1, and therefore
the correct equality is (−1)F = cn2n/2ψ̂1 · · · ψ̂n with cn = ±in(n−1)/2. Two choices of
cn simply reflects the Z2 ambiguity in the definition of the total fermion parity. The
choice of cn is reflected in the overall sign factor in the fermionic path integral measure.

3. In section 4, it is more natural to use the Cartan-Weyl basis (see appendix A) for the
description of the fermion number operator (−1)F . And this will identify the correct
fermionic measures in the path integrals. The following is to replace from the beginning
of section 4.2 to the end of page 19.

Namely, we have
ψ(0) = ψa(0)Ta =

∑
j

ψj · iHj +
∑
α∈R

ψαEα, (1)
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where i =
√
−1 and ψ̄j = ψj , ψ̄α = −ψ−α. Corresponding fermion operators satisfy

anti-commutation relations

[ψ̂i, ψ̂j ] = δij , [ψ̂α, ψ̂β ] = −δα,−β ,

where ψ̂†
i = ψ̂i and ψ̂†

α = −ψ̂−α. Introduce Hermitian fermion operators χ̂j = ψ̂j and
χ̂α, χ̂−α by the following formulas

χ̂α = 1√
2

(ψ̂α − ψ̂−α), χ̂−α = 1
i
√

2
(ψ̂α + ψ̂−α), where α ∈ R+.

The operators {χ̂j , χ̂α, χ̂−α} satisfy canonical relations (2.8). For each two-dimensional
fermion Hilbert subspace generated by ψ̂α and ψ̂−α, we have a natural fermion num-
ber operator

(−1)Fα = 2iχ̂αχ̂−α, α ∈ R+.

Thus the fermion number naturally associated with the Cartan-Weyl basis is

cnψ̂
1 . . . ψ̂n = crχ̂1 . . . χ̂r

∏
α∈R+

iχ̂αχ̂−α = 2−n/2(−1)F , (2)

where the phase cr is such that {(−1)F }2 = Î holds. So according to (4.22), bosonic
and fermionic degrees of freedom are totally decoupled and

Str
(
crχ̂1 . . . χ̂r

∏
α∈R+

iχ̂αχ̂−αe
−βĤ

)
= e−

1
12βR Tr e−

1
2β∆.

Since ∆ commutes with left and right translations, one can also express the heat kernel
on G as a supertrace. Namely, we recall that the heat kernel is a fundamental solution
Kτ (g1, g2) of the heat equation on G

∂K

∂τ
= −1

2∆K

with respect to g1, satisfying

lim
τ→0

Kτ (g1, g2) = δG(g1g
−1
2 ),

where δG is the Dirac delta-function on G with respect to the Cartan-Killing volume
form. Fix a Cartan subgroup T in G and corresponding Cartan subalgebra t in g,
dim t = r, the rank of g. It follows from the bi-invariance of the heat kernel that it only
depends on g1g

−1
2 ∈ T , and we will denote it by kt(eh), where h ∈ t and eh ∈ T . Using

Dirac notation,
kτ (eh) = Kτ (eh, 1) = ⟨eh|e−

1
2 τ∆|1⟩,

where 1 is the identity element in G.

Correspondingly, Tr e−
1
2β∆ = VGkβ(1), where VG is the volume of G, and more generally

Tr e−
1
2β∆+i(h,r̂) = VGkβ(eh),
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where r̂ = r̂aTa. The extra term i(h, r̂) in the exponent can be thought as a (imaginary)
‘chemical potential’ added to the Hamiltonian Ĥ . Since the operators r̂a commute with
Q̂, we have

Str

crχ̂1 . . . χ̂r
∏
α∈R+

iχ̂αχ̂−αe
−βĤ+i(h,r̂)

 = VGe
− 1

12βRkβ(eh). (3)

Here the supertrace is given by the following path integral∫
ΠTLG

χ1 . . . χr
∏
α∈R+

iχαχ−α e
−Sh

E DgDψ , (4)

with the Euclidean action

ShE = 1
2

∫ β

0

(
(J, J) + (ψ, ψ̇)

)
dτ + 1

β

∫ β

0
(Adg−1h, J)dτ + 1

2β (h, h) (5)

and G-invariant ‘measure’ Dg. The fermion ‘measure’ Dψ is determined from
the condition

1 = TrHF

crχ̂1 . . . χ̂r
∏
α∈R+

iχ̂αχ̂−α (−1)F


=
∫

ΠTLG

χ1 . . . χr
∏
α∈R+

iχαχ−α e
− 1

2

∫ β

0 (ψ,ψ̇)dτ Dψ,

(6)

which follows from (2).

Indeed, using the Cartan-Weyl basis we have,

ψ(τ) =
∞∑

n=−∞

r∑
j=1

ψj,n · iHje
iωnτ +

∞∑
n=−∞

∑
α∈R

ψα,nEαe
iωnτ , (7)

where ψj,n = ψj,−n, ψα,n = −ψ−α,−n, so

−1
2

∫ β

0
(ψ, ψ̇)dτ =

∞∑
n=1

r∑
j=1

iβωnψj,nψj,n +
∞∑

n=−∞

∑
α∈R+

iβωnψα,nψα,n

Now if the fermion measure is chosen to be

Dψ=(−1)r(r−1)/2

 r∏
j=1

dψj,0

 r∏
j=1

∞∏
n=1

idψj,ndψj,n

 ∏
α∈R+

∏
n∈Z

idψα,ndψα,n

, (8)

then it follows from (7) then the only terms in χ1 . . . χr
∏
α∈R+ iχαχ−α that give non-

zero contribution to the path integral come from ψj,0 and ψα,0 so using the rules of the
fermion integration and the formula

∞∏
n=1

(2πn) = 1, i
∞∏
n=1

(−2πn) = 1,

– 3 –
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where the 2nd identity comes from
∞∏
n=1

z = eζ(0) log z = 1/
√
z, −π < arg z ≤ π, (9)

we get (6).

Now let us return to the full path integral (4). Because of the additional term (Adg−1h, J)
in the action, it is easy to verify that ShE is invariant under the modified supersymmetry
transformation δh, which in the Euclidean time for fixed h ∈ t has the form

δhg = gψ,

δhψ = −Jh − ψψ,

δhJ
h = (∂τ + adJh)ψ,

where Jh = J + 1
β

Adg−1h.

4. As a consquence, eq. 4.33 and 4.34 also has to be modified as follows∫
ΠTLG

χ1 . . . χr
∏
α∈R+

iχαχ−αe
−Sh

EDgDψ

=
∫

ΠTLG

χ1 . . . χr
∏
α∈R+

iχαχ−αe
−Sh

E−sδhV DgDψ. (10)

∫
ΠTLG

χ1 . . . χr
∏
α∈R+

iχαχ−αe
−Sh

E−sδhV DgDψ

= VG

( ∏
α∈R+

i

) ∫
ΠTΩG

e−S
h
E−sδhV D ′gD ′ψ, (11)

5. Finally, the computation of the Pfaffians in page 34 should be changed as

Pf(−∂3
τ − ad(h+γ)/β∂

2
τ )

det
(
−∂2

τ − ad(h+γ)/β∂τ
)

=
( ∞∏
n=1

ω3
n

)r∏
α∈R+

∞∏
n ̸=0

(
ω3
n + i

⟨h+ γ, α⟩
β

ω2
n

)/( ∞∏
n=1

ω4
n

)r∏
α∈R+

∞∏
n ̸=0

(
ω2
n + i

⟨h+ γ, α⟩
β

ωn

)2

=
( ∞∏
n=1

ωn

)−r ∏
α∈R+

∏
n ̸=0

(
ωn + i

⟨h+ γ, α⟩
β

)−1

= β−
n
2
∏
α∈R+

1
2⟨α, h+ γ⟩

i sinh 1
2⟨α, h+ γ⟩

,

where factors of i’s comes from (9).

Finally, together with the additional factor of i’s in r.h.s. of (11) from the zero modes
integrals, the final result for the Eskin trace formula is unchanged.
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