
ar
X

iv
:0

70
8.

38
67

v1
  [

m
at

h.
C

A
] 

 2
8 

A
ug

 2
00

7

NORMAL MATRIX MODELS, ∂̄-PROBLEM, AND

ORTHOGONAL POLYNOMIALS ON THE COMPLEX

PLANE

ALEXANDER R. ITS AND LEON A. TAKHTAJAN

Abstract. We introduce a ∂̄-formulation of the orthogonal polynomi-
als on the complex plane, and hence of the related normal matrix model,
which is expected to play the same role as the Riemann-Hilbert for-
malism in the theory of orthogonal polynomials on the line and for the
related Hermitian model. We propose an analog of Deift-Kriecherbauer-
McLaughlin-Venakides-Zhou asymptotic method for the analysis of the
relevant ∂̄-problem, and indicate how familiar steps for the Hermitian
model, e.g. the g-function “undressing”, might look like in the case of
the normal model. We use the particular model considered recently by
P. Elbau and G. Felder as a case study.

1. Introduction

In these notes we attempt to develop for the normal matrix model a
formalism analogous to the Riemann-Hilbert method in the theory of Her-
mitian matrix model. As in the latter case, the starting point is proper
analytical characterization of the relevant orthogonal polynomials. Unlike
the Hermitian matrix model, the orthogonality condition for the polynomials
associated with the normal model is formulated with respect to a measure
on the plane. This, as we will see below, leads to the replacement of the
Riemann-Hilbert problem of [4] by a certain ∂̄-problem. We shall present
in detail the setting of the ∂̄-problem for the case of what we will call in
these notes the Elbau-Felder model. This model arises as a natural regu-
larization of the normal matrix model of P. Wiegmann and A. Zabrodin
in [7, 8] by restricting the matrix integral of the latter to normal matrices
whose eigenvalues lie in a compact domain D of the complex plane. Using
the Elbau-Felder model as a case study, we shall also outline a possible ∂̄-
version of the Deift-Kriecherbauer-McLaughlin-Venakides-Zhou (DKMVZ)
asymptotic model. The DKMVZ method proved to be very efficient in the
asymptotic analysis of the oscillatory Riemann-Hilbert problems appearing
in Hermitian matrix model. We have not yet succeeded in providing com-
plete generalization of the DKMVZ scheme for the orthogonal polynomials
on the plane; in fact, we rather highlighted the challenging difficulties to
be overcome. We hope, however, that these notes might stimulate further
development of the analog DKMVZ asymptotic method for the orthogonal
polynomials on the plane and related normal matrix models.
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2. Preliminaries

2.1. Normal matrix models and orthogonal polynomials. Let D be
a bounded domain on the complex plane C containing the origin, and let
V (z) be a real-valued smooth function on C. Following P. Elbau and G.
Felder [3], we shall study the normal matrtix model characterized by the
partition function ZN defined by the following N -fold integral,

ZN =

∫

· · ·

∫

DN

∏

i6=j

|zi − zj |
2e−N

PN
k=1 V (zk)d2z1 · · · d

2zN .

Let χD be the characteristic function of the domain D.

Definition 1. Orthogonal polynomials on C with respect to the measure
e−NV (z)χD(z)d2z are polynomials Pn(z) = zn + an−1nzn−1 + · · · + a0n, sat-
isfying

(2.1)

∫∫

D

Pn(z)Pm(z)e−NV (z)d2z = hnδmn for all m,n = 0, 1, 2 . . . .

The following lemma is standard.

Lemma 2.

ZN = N !

N−1
∏

n=0

hn.

The proof is exactly the same as in the case of the Hermitian model
(see e.g. [1]). As in the case of the Hermitian model, Lemma 2 reduces
the question of the asymptotic analysis of the partition function ZN as
N → ∞ to the asymptotic analysis of the orthogonal polynomials Pn(z) as
n,N → ∞.

3. Matrix ∂̄-problem

Using the orthogonal polynomials on the line as an analogy (see [4], [1]),
we set

(3.1) Yn(z) =







Pn(z) 1
π

∫∫

D

Pn(z′)
z′−z

e−NV (z′)d2z′

− π
hn−1

Pn−1(z) − 1
hn−1

∫∫

D

Pn−1(z′)
z′−z

e−NV (z′)d2z′






.

It follows from the formula

∂

∂z̄

1

z − z′
= πδ(z − z′),

understood in the distributional sense, that

(3.2)
∂

∂z̄
Yn(z) = Yn(z)(I − G(z)),
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where I is 2 × 2 identity matrix and

(3.3) G(z) =

(

1 e−NV (z)χD(z)
0 1

)

The following proposition is central (cf. the case of the orthogonal polyno-
mials on the line).

Proposition 3. The matrix Yn(z) is the unique solution of the ∂̄-problem

(3.2)–(3.3) with the normalization

(3.4) Yn(z) =

(

I + O

(

1

z

))(

zn 0
0 z−n

)

≡

(

I + O

(

1

z

))

znσ3 ,

as |z| → ∞, where σ3 = ( 1 0
0 −1 ).

Proof. It follows from the geometric series expansion

1

z − z′
=

1

z

∞
∑

k=0

(

z′

z

)k

as |z| → ∞, and the property (2.1), rewritten as

(3.5)

∫∫

D

Pn(z)z̄me−NV (z)d2z = hnδmn,

that the matrices (3.1) satisfy normalization (3.4).
Conversely, suppose that the matrix Y (z) solves the ∂̄-problem (3.2) with

the asymptotics (3.4). It follows from the special form (3.3) of the matrix
G(z) that (Yn)11(z) = Pn(z) and (Yn)21(z) = Qn−1(z) — polynomials of
orders n and n − 1 respectively, and

∂

∂z̄
(Yn)12(z) = −Pn(z)e−NV (z)χD(z),

∂

∂z̄
(Yn)22(z) = −Qn−1(z)e−NV (z)χD(z).

Now it follows from normalization (3.4) that the leading coefficient of poly-
nomial Pn(z) is 1 and

(Yn)12(z) =
1

π

∫∫

D

Pn(z′)

z′ − z
e−NV (z′)d2z′,

(Yn)22(z) =
1

π

∫∫

D

Qn−1(z′)

z′ − z
e−NV (z′)d2z′.
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Using geometric series and normalization (3.4) once again, we obtain that
polynomials Pn and Qn−1 satisfy

∫∫

D

Pn(z)z̄me−NV (z)d2z = 0 for m < n,

−

∫∫

D

Qn−1(z)z̄m−1e−NV (z)d2z = πδmn for m ≤ n.

From here it follows that
∫∫

D

Pn(z)Pm(z)e−NV (z)d2z = 0 for all m < n,

which is sufficient to conclude that Pn(z) are orthogonal polynomials on C

with the weight e−NV (z)χD(z). Finally, polynomials Qn(z) satisfy
∫∫

D

Qn−1(z)Pm−1(z)e−NV (z)d2z = −πδmn for all m ≤ n,

so that Qn(z) = −
π

hn
Pn(z). �

Similar to the case of the usual orthogonal polynomials, Proposition 3
reduces the asymptotic analysis of the orthogonal polynomials (2.1) to the
asymptotic analysis of the solution of the ∂̄-problem (3.2)-(3.4).

4. Elbau-Felder potential. Towards a normal matrix version

of the DKMVZ asymptotic approach.

We will consider the matrix model with the weight e−NV (z)χD(z), where
V (z) is the Elbau-Felder [3] potential

(4.1) V (z) =
1

t0

(

|z|2 − 2Re

n+1
∑

k=1

tkz
k

)

,

where t1 = 0, |t2| < 1/2 and t0V (z) is positive on D \ {0}. Using again the
Hermitian matrix model analogy, we shall expect that a fundamental role
in the asymptotic analysis of the ∂̄-problem (3.2)-(3.4) will be played by the
equilibrium measure.

Definition 4. An equilibrium measure for V on D is a Borel probability
measure µ on D without point masses so that

I(µ) = inf I(ν), ν ⊂ M(D),

where M(D) is the set of all Borel probability measures µ on D without
point masses, and the functional I(ν) is defined by the equation,

I(ν) :=

∫

V (z)dν(z) +

∫ ∫

z 6=ζ

log |z − ζ|−1dν(z)dν(ζ).
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Theorem 5 (Elbau-Felder [3]). There is δ > 0 such that for all 0 < t0 < δ
the unique equilibrium measure dµ exists and is given by

dµ(z) =
1

πt0
χD+(z)d2z,

where the domain D+ ⊂ D contains the origin and has the property that

t0 =
1

π

∫∫

D+

d2z,

tk = −
1

πk

∫∫

C\D+

z−kd2z =
1

2πik

∮

∂D+

z̄z−kdz, k = 1, . . . , n + 1,

tk = 0, j > n + 1.

These relations determines D+ uniquely. In fact, the boundary Γ of D+ is

a polynomial curve of degree n, i.e. Γ is a smooth simple closed curve in the

complex plane with a parametrization h : S1 ⊂ C → C of the form,

h(w) = rw + a0 + a1w
−1 + ... + anw−n, |w| = 1,

with r > 0 and an 6= 0. The equilibrium measure has the following properties.

Set

E(z) = V (z) + 2

∫∫

log |z − ζ|−1dµ(ζ).

1. E(z) = E0 — a constant — for z ∈ D+.

2. E(z) ≥ E0 — for z ∈ D \ D+.

4.1. A naive DKMVZ scheme. Suppose that there is an analytic func-
tion g(z) with the following properties.

1. g(z) = log z + O
(

1
z

)

as |z| → ∞.

2. V (z) − g(z) − g(z) = E0 on D+.

3. V (z) − g(z) − g(z) > E0 on C \ D+.

Such function g(z) could be used to study the asymptotics of the matrix
Yn(z) in the limit,

(4.2) n,N → ∞,
n

N
= γ, γ is fixed,

in exactly the same manner is it is done in the case of the orthogonal poly-
nomials in the line (see [2] and [1]). Namely, set

Vγ(z) =
1

γ
V (z)

and consider corresponding equilibrium measure dµγ (assuming that 0 <
γt0 < δ) with the domain D+(γ) and the corresponding function gγ(z)
satisfying properties 1–3 (with D+ and E0 replaced by D+(γ) and E0(γ)).
Then we can “undress” the ∂̄-problem (3.2)–(3.3) with the normalization
(3.4) by setting

Yn(z) = e−
nE0(γ)

2
σ3Ψn(z)engγ(z)σ3+

nE0(γ)
2

σ3 .
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The resulting matirx Ψn(z) satisfies the simplified ∂̄-problem

(4.3)
∂

∂z̄
Ψn(z) = Ψn(z)

(

0 −e−n(Vγ(z)−gγ(z)−gγ(z)−E0(γ))

0 0

)

with the standard normalization

(4.4) Ψn(z) = I + O

(

1

z

)

as |z| → ∞,

which follows from property 1 of the function gγ(z).
It is easy to pass to limit (4.2) in the ∂̄-problem (4.3)–(4.4). Indeed, it

follows from properties 2-3 of the function gγ(z) that

lim
n,N→∞

Ψn(z) = Ψ0(z),

where the matrix Ψ0(z) satisfies the following model ∂̄-problem.

(4.5)
∂

∂z̄
Ψ0(z) = Ψ0(z)

{

( 0 −1
0 0 ) z ∈ D+(γ)

0 z /∈ D+(γ)

with the standard normalization

(4.6) Ψ0(z) = I + O

(

1

z

)

as |z| → ∞.

This model ∂̄-problem is easily solved explicitly,

Ψ0(z) =





1 1
π

∫∫

D+(γ)

1
ζ−z

d2ζ

0 1



 .

4.2. Function g(z). Of course, the main assumption that there is an an-
alytic function function g(z) satisfying the properties 1-3 is not correct.
Firstly, it follows from the property 1 that g(z) in the neighborhood of in-
finity is defined up to an integer multiple of 2πi, which is not a drawback
since eng(z)σ3 si well-defined for integer n. Secondly, the property 2 implies
that the function V (z) is harmonic in D+, which clearly contradicts (4.1).
Adding to the confusion is the formal manipulation

log |z − ζ|2 = log(z − ζ) + log(z̄ − ζ̄),

which suggests that

(4.7) g(z) =

∫∫

log(z − ζ)dµ(ζ) =
1

πt0

∫∫

D+

log(z − ζ)d2ζ

satisfies properties 1-3. However, this is not so since we need to treat
carefully the branches of log in order to define the integral in (4.7) and
investigate its analytic properties.
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For this aim, consider the logarithmic potential given by the uniform
distribution of charges in the domain D,

V0(z) =

∫∫

D

log |z − w|2d2w.

Let Γ = ∂D with fixed point ζ0 ∈ Γ. For z ∈ D denote by Dε(z) domain
obtained by removing the disk of radius ε around z, so that

∂Dε(z) = Γ ∪−Cε(z),

where Cε(z) is the circle |w − z| = ε oriented counter-closkwise, and the
minus sign denotes negative orientation. Since

log |w − z|2dw ∧ dw̄ = −d(log |w − z|2w̄dw) −
w̄

w̄ − z̄
dw ∧ dw̄,

by Stokes’ theorem, we have

V0(z) =
i

2

∫∫

D

log |z − w|2dw ∧ dw̄

=
i

2
lim
ε→0

∫∫

Dε(z)

(

−d(log |w − z|2w̄dw) −
w̄

w̄ − z̄
dw ∧ dw̄

)

=
1

2i
lim
ε→0

∫∫

Dε(z)

d

(

log |w − z|2w̄dw +
w̄

w̄ − z̄
wdw̄

)

=
1

2i
lim
ε→0

∮

∂Dε(z)

(

log |ζ − z|2ζ̄dζ +
ζ̄

ζ̄ − z̄
ζdζ̄

)

.

Now

lim
ε→0

∫

Cε(z)

log |ζ − z|2ζ̄dζ = 0, lim
ε→0

∫

Cε(z)

ζ̄

ζ̄ − z̄
ζdζ̄ = −2πi|z|2,

so that

V0(z) = π|z|2 +
1

2i

∮

Γ

(

log |ζ − z|2ζ̄dζ +
ζ̄

ζ̄ − z̄
ζdζ̄

)

.

Set ω = w̄dw and define a function Ω on Γ \ {ζ0} by

Ω(ζ) =

ζ
∫

ζ0

ω,

where the integration is along the oriented path in Γ connecting points ζ0

and ζ. We have Ω−(ζ0) = 0 for a path consisting of a single point ζ0, and

Ω+(ζ0) =

∮

Γ

w̄dw =

∫∫

D

dw̄ ∧ dw = 2iA(D),
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for the loop Γ starting and ending at ζ0, where A(D) is the area of D. Thus
∮

Γ

log |ζ − z|2ζdζ =

∮

Γ

log |ζ − z|2dΩ(ζ) = ∆(log |z − ζ|2Ω(ζ))
∣

∣

ζ0

ζ0

−

∮

Γ

Ω(ζ)

(

dζ

ζ − z
+

dζ̄

ζ̄ − z̄

)

= 2iA(D) log |z − ζ0|
2 −

∮

Γ

Ω(ζ)

(

dζ

ζ − z
+

dζ̄

ζ̄ − z̄

)

,

so that

V0(z) = π|z|2+A(D) log |z−ζ0|
2+

i

2

∮

Γ

(

Ω(ζ)

ζ − z
dζ +

Ω(ζ)

ζ̄ − z̄
dζ̄ −

ζ̄

ζ̄ − z̄
ζdζ̄

)

.

Since the potential V0 is real-valued, we have

V0(z) = π|z|2 + A(D) log |z − ζ0|
2 +

i

4

∮

Γ

(

Ω(ζ)

ζ − z
dζ −

Ω(ζ)

ζ̄ − z̄
dζ̄

−
Ω(ζ)

ζ − z
dζ +

Ω(ζ)

ζ̄ − z̄
dζ̄ +

ζ

ζ − z
ζ̄dζ −

ζ̄

ζ̄ − z̄
ζdζ̄

)

= π|z|2 + A(D) log |z − ζ0|
2 +

i

4

∮

Γ

(

Ω(ζ) − Ω(ζ) + |ζ|2

ζ − z
dζ

−
Ω(ζ) − Ω(ζ) + |ζ|2

ζ̄ − z̄
dζ̄

)

.

Finally, observing that ω + ω̄ = d|w|2, we get

Ω(ζ) + Ω(ζ) =

ζ
∫

ζ0

d|w|2 = |ζ|2 − |ζ0|
2,

so that

Ω(ζ) − Ω(ζ) + |ζ|2 = 2Ω(ζ) + |ζ0|
2,

and we obtain
(4.8)

V0(z) = π(|z|2 − |ζ0|
2) + A(D) log |z − ζ0|

2 +
i

2

∮

Γ

(

Ω(ζ)

ζ − z
dζ −

Ω(ζ)

ζ̄ − z̄
dζ̄

)

,

where z ∈ D. This is a desired representation of the area potential V0(z) as
the real part of the first derivative of a single layer potential.
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The same computation for z ∈ C \ D̄ gives

(4.9) V0(z) = A(D) log |z − ζ0|
2 +

i

2

∮

Γ

(

Ω(ζ)

ζ − z
dζ −

Ω(ζ)

ζ̄ − z̄
dζ̄

)

,

Returning to Elbau-Felder potential V (z) and setting D = D+, Γ = ∂D+,

we get E(z) = V (z) −
1

πt0
V0(z), so that

(4.10)

V (z)−
1

t0
(|z|2 − |ζ0|

2)− log |z − ζ0|
2 −

i

2πt0

∮

Γ

(

Ω(ζ)

ζ − z
dζ −

Ω(ζ)

ζ̄ − z̄
dζ̄

)

= E0

when z ∈ D+, and

(4.11) V (z) − log |z − ζ0|
2 −

i

2πt0

∮

Γ

(

Ω(ζ)

ζ − z
dζ −

Ω(ζ)

ζ̄ − z̄
dζ̄

)

= E(z)

when z ∈ D−.

Remark 6. We note that equation (4.10), i.e. the statement that the l.h.s.
of (4.10) is constant when z ∈ D+, is equivalent to the moment equations
of Theorem 5 which determine the contour Γ (cf.[3], p.12, Lemma 6.3).

Now we are ready to introduce the function g(z). Namely, set

(4.12) g(z) = log(z − ζ0) +
i

2πt0

∮

Γ

Ω(ζ)

ζ − z
dζ.

The function g(z) is holomorphic in C\Γ, is multi-valued with periods 2πiZ
(singe-valued on the plane with the outside cut starting from ζ0) and has
the asymptotics

g(z) = log z + O(z−1) as z → ∞.

The function eng(z) is single-valued for n ∈ Z. The function g(z) is discon-
tinuous on Γ (by Sokhotski-Plemelj formula).

We summarize this as the following statement.

Proposition 7. The Elbau-Felder potential V (z) has the following repre-

sentations

(i) For z ∈ D+,

V (z) − g(z) − g(z) = E0 +
1

t0
(|z|2 − |ζ0|

2).

(ii) For z ∈ D−,

V (z) − g(z) − g(z) = E(z).

(iii) For z ∈ D \ D+,

(4.13) V (z) − g(z) − g(z) = E(z) > E0.
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4.3. A first possible version of the DKMVZ scheme. The correct
strategy is now the following. Let gγ(z), D+(γ), E0(γ), etc. denote the
respective objects associated with the potential Vγ(z). We set

(4.14) Yn(z) = e
−

nE0(γ)
2

σ3+
n|ζ0|

2

2γt0
σ3Ψn(z)e

ngγ (z)σ3+
nE0(γ)

2
σ3−

n|ζ0|
2

2γt0
σ3 .

The resulting matirx Ψn(z) satisfies the ∂̄-problem (the correct version of
(4.3))

∂

∂z̄
Ψn(z) = Ψn(z)

(

0 −e
−n|z|2

γt0

0 0

)

, z ∈ D+,

(4.15)

∂

∂z̄
Ψn(z) = Ψn(z)



0 −e
−n

„

E(z)−E0(γ)+
|ζ0|

2

γt0

«

χD+(z)
0 0



 , z ∈ C \ D+,

Ψn+(z) = Ψn−(z)e
n

γt0
Ω(z)σ3 , z ∈ Γ ≡ Γ(γ),

with the standard normalization

(4.16) Ψn(z) = I + O

(

1

z

)

as |z| → ∞.

By virtue of condition (4.13), we expect that the limiting function Ψ0
n(z)

satisfies the model problem

(4.17)
∂

∂z̄
Ψ0

n(z) = Ψ0
n(z)



























0 −e
−n|z|2

γt0

0 0



 z ∈ D+(γ)

0 z /∈ D+(γ)

Ψ0
n+(z) = Ψ0

n−(z)e
n

γt0
Ω(z)σ3 , z ∈ Γ,

with the standard normalization

(4.18) Ψ0(z) = I + O

(

1

z

)

as |z| → ∞.

The open questions are now the following.

(1) How to solve this model problem? The “unfortunate” thing is the
presence of complex conjugation in (4.17). Indeed, if we neglect the
jump across the contour Γ, the ∂̄-problem alone can be of course
solved explicitly,

(4.19) Ψ0(z) =







1 1
π

∫∫

D+(γ)

e
−

n|ζ|2

γt0

ζ−z
d2ζ

0 1






,

and the solution won’t have any jumps. If not for the complex
conjugation, the function Ψ0(z) could be used to undress in the
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usual way problem (4.17) and reduce it to a pure Riemann-Hilbert
problem.

(2) The arguments that led us to the model problem (4.17) and which
are based on inequality (4.13), even on the formal level, are not
very convincing: the real part of Ω(z) is |z|2 − |ζ0|

2 6= 0 so that the
diagonal jump matrix on Γ is not pure oscillatory.

4.4. A second possible version of the DKMVZ scheme. The above
deficiency of the proposed analog of the DKMVZ scheme can be partially
overcome by performing the following modification. Let us replace the func-
tion Ω(ζ) by the function,

Ω0(ζ) =
1

2

∫ ζ

ζ0

(w̄dw − wdw̄).

The function Ω0(ζ) is pure imaginary on Γ and it is related to the function
Ω(ζ) by the equation,

Ω0(ζ) = Ω(ζ) −
|ζ|2 − |ζ0|

2

2
.

By using again Stokes’ theorem, we observe that

i

4πt0

∮

Γ

(|ζ|2 − |ζ0|
2)

(

dζ

ζ − z
−

dζ̄

ζ̄ − z̄

)

= −
1

2πt0

∫∫

D+

(

ζ

ζ − z
+

ζ̄

ζ̄ − z̄

)

d2ζ −
1

t0
(|z|2 − |ζ0|

2).

This allows to re-write equations (4.10) and (4.11) in the form,

V (z) − log |z − ζ0|
2 −

i

2πt0

∮

Γ

(

Ω0(ζ)

ζ − z
dζ −

Ω0(ζ)

ζ̄ − z̄
dζ̄

)

(4.20) +
1

2πt0

∫∫

D+

(

ζ

ζ − z
+

ζ̄

ζ̄ − z̄

)

d2ζ = E0

when z ∈ D+, and

V (z) − log |z − ζ0|
2 −

i

2πt0

∮

Γ

(

Ω0(ζ)

ζ − z
dζ −

Ω0(ζ)

ζ̄ − z̄
dζ̄

)

(4.21) +
1

2πt0

∫∫

D+

(

ζ

ζ − z
+

ζ̄

ζ̄ − z̄

)

d2ζ = E(z)

when z ∈ D−. These formulae in turn yield the following modification of
the definition (4.12) of the g-function

(4.22) g(z) = log(z − ζ0) +
i

2πt0

∮

Γ

Ω0(ζ)

ζ − z
dζ −

1

2πt0

∫∫

D+

ζ

ζ − z
d2ζ.
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Note that the function g(z) is not holomorphic in C \ Γ anymore! In fact1,

(4.23)
∂

∂z̄
g(z) =

z

2t0
χD+(z).

A slight modification is also needed in the definition of the function Ψn(z);
indeed, we should put,

(4.24) Yn(z) = e−
nE0(γ)

2
σ3Ψn(z)engγ(z)σ3+

nE0(γ)
2

σ3 .

Taking into account (4.23), the ∂̄-problem for the matrix Ψ now reads,

(4.25)
∂

∂z̄
Ψn(z) + n

z

2γt0
Ψn(z)σ3 = Ψn(z)

(

0 −1
0 0

)

, z ∈ D+,

(4.26)
∂

∂z̄
Ψn(z) = Ψn(z)

(

0 −e−n(E(z)−E0(γ))χD+(z)
0 0

)

, z ∈ C \ D+,

Ψn+(z) = Ψn−(z)e
n

γt0
Ω0(z)σ3 , z ∈ Γ ≡ Γ(γ),

with the standard normalization

(4.27) Ψn(z) = I + O

(

1

z

)

as |z| → ∞.

The function Ω0(z) is now purely imaginary. Therefore, the arguments
based on inequality (4.13) seem to be more sound than in the previous
approach, and they lead us to the following new model ∂̄-problem

(4.28)
∂

∂z̄
Ψ0

n(z) + n
z

2γt0
Ψ0

n(z)σ3 = Ψ0
n(z)

(

0 −1
0 0

)

, z ∈ D+,

(4.29)
∂

∂z̄
Ψ0

n(z) = 0, z ∈ C \ D+,

Ψ0
n+(z) = Ψ0

n−(z)e
n

γt0
Ω0(z)σ3 , z ∈ Γ ≡ Γ(γ),

with the standard normalization

(4.30) Ψ0
n(z) = I + O

(

1

z

)

as |z| → ∞.

Remark 8. Due to the presence of the large parameter n in the left hand
side of equation (4.25), the transition to the model problem (4.28)-(4.30) is
still not quite satisfactory even on the formal level.

1Probably this property of the function g(z) reflects a major difference between the
Riemann-Hilbert problem and the ∂̄-problem.
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4.5. An important concluding remark. In context of the theory of or-
thogonal polynomials, a matrix ∂̄-problem has also appeared in the recent
work of K. McLaughlin and P. Miller [6] devoted to orthogonal polynomials
on the unite circle with the non-analytic weights. However, unlike the prob-
lem (3.2)-(3.4), the ∂̄-problem of [6] is not the starting point of the analysis;
indeed, the staring point of [6] is still the usual matrix Riemann-Hilbert
problem and the ∂̄-problem of McLaughlin and Miller is introduced out of
the necessity to modify the “openning lenses” step of the usual DKMVZ
scheme. Even more important difference between the ∂̄-problem considered
here and the ∂̄-problem in [6] is the absence of the complex conjugation in
the basic ∂̄-relation. In one hand, this fact simplifies the implementation of
the “undressing procedures” — the very important technical element of all
integrable asymptotic schemes. On the other hand, as we have shown, the
presence of the complex conjugation in the right hand side of (3.2) is truly
essential for the incorporation into the asymptotic analysis of the concepts
of equilibrium measure and g-function.

In spite of these differences we believe that using methods of [6] will help
allow to overcome the indicated above obstacles in the asymptotic analysis
of the ∂̄-problem (3.2)-(3.4). Specifically, we we think that one needs to
develop and then apply to the model problems (4.17)-(4.18) or (4.28)-(4.30)
of the the ∂̄-version of the “openning lenses” step in the DKMVZ method.

In conclusion, we want to point out at the ∂̄-method in the theory of
integrable systems, introduced long ago by A.S. Fokas and M.J. Ablowitz
in [5], as yet another source of tools for the analysis of the ∂̄-problem (3.2)-
(3.4).
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