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ABsTRACT. Based on the notion of the resolvent and on the Hilbert identities,
this paper presents a number of classical results in the theory of differential
operators and some of their applications to the theory of automorphic func-
tions and number theory from a unified point of view. For instance, for the
Sturm-Liouville operator there is a derivation of the Gelfand-Levitan trace for-
mula, and for the one-dimensional Schrédinger operator a derivation of Fad-
deev’s formula for the characteristic determinant and the Zakharov-Faddeev
trace identities. Recent results on the spectral theory of a certain functional-
difference operator arising in conformal field theory are then presented. The
last section of the survey is devoted to the Laplace operator on a fundamen-
tal domain of a Fuchsian group of the first kind on the Lobachevsky plane.
An algebraic scheme is given for proving analytic continuation of the integral
kernel of the resolvent of the Laplace operator and the Eisenstein-Maass se-
ries. In conclusion, there is a discussion of the relation between the values of
the Eisenstein-Maass series at Heegner points and Dedekind zeta-functions of
imaginary quadratic fields, and it is explained why pseudo-cuspforms for the
case of the modular group do not provide any information about the zeros of
the Riemann zeta-function.
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1. INTRODUCTION

This survey is an extended and revised version of my talk at the meeting of the
Moscow Mathematical Society on April 1, 2014. The reader is presented with a col-
lage of classical results in the theory of differential operators, written from a single
viewpoint, together with some applications to automorphic functions and number
theory. The relationship between these topics reflects the unity of mathematics,
and their choice reflects the tastes and interests of the author, influenced by the
traditions of the Leningrad-St. Petersburg mathematical school. The survey is in-
tended for a broad readership, from specialists in operator theory and functional
analysis to algebraic geometers and theoretical physicists. To convey to a mod-
ern reader the elegance and beauty of the results, the achievements of the Soviet
mathematical school, we chose a neoclassical style of presentation.

Let us describe the contents of this survey in more detail. In §2 we recall the no-
tion of the resolvent, which plays a main role in the theory of self-adjoint operators
in a Hilbert space. In §2.2 we present the Hilbert identities for the resolvent of a
self-adjoint operator A, and in §2.3 we give the definition of the regularized deter-
minant det A. Section 3 is devoted to the classical Sturm-Liouville theory. Thus, in
§3.1 we briefly recall well-known facts, and in §3.2 we derive the celebrated Gelfand-
Levitan trace formula. Section 4 is devoted to the presentation of main results for
the one-dimensional Schrédinger operator H. In particular, in §4.1 we introduce
the Jost solutions and recall the formula for the resolvent of the operator H, in §4.2
we derive Faddeev’s formula for the regularized determinant det(H — AI), and in
§4.3 we present the derivation of the Zakharov-Faddeev trace identities.

Section 5 is based on [43] and is devoted to the spectral analysis of a certain
functional-difference operator, a special pseudodifferential operator H of infinite
order which arises in conformal field theory and in the representation theory of
quantum groups. Thus, in §5.1 we introduce the self-adjoint Weyl operators U and
V in the definition of the operator H = U + U~! + V, and in §5.2 we consider
the ‘unperturbed’ operator Hy = U + U~'. In §5.3 we define a solution to the
scattering problem and the Jost functions, and we give an explicit formula for the
resolvent of the self-adjoint operator H in the Hilbert space L?(R) together with the
eigenfunction expansion theorem. Finally, in §5.4 we describe functional-difference
operators for mirror curves.

The last section, §6, is devoted to the spectral theory of the Laplace operator A on
a fundamental domain of a Fuchsian group of the first kind I" on the Lobachevsky
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plane H. Of particular interest here is the case of a non-compact fundamental
domain, when A has a continuous spectrum (considered in Faddeev’s classical paper
[14]). Thus, in §6.1 we follow [14] and give an algebraic scheme for proving a
fundamental result on meromorphic continuation with respect to the variable s of
the integral kernel of the resolvent (A — s(1 — s)I)~! of the operator A and of the
Eisenstein-Maass series E(z,s), to the domain 0 < Res < 1. Moreover, in the
half-plane Re s > %, the resolvent kernel can have only simple poles and only poles
on the line Res = % and the interval [%, 1], while the Eisenstein-Maass series can
have only poles on the interval [%, 1], which immediately gives the eigenfunction
expansion theorem for the operator A. As explained in [45], it follows from the
celebrated Selberg trace formula that the regularized determinant of the operator
A is expressed in terms of the Selberg zeta-function.

The arithmetic case ' = PSL(2,Z) — the modular group — is considered in
§§6.2-6.3. Thus, in §6.2 we discuss as a curiosity the ‘sensation’ at the end of the
1970s about the connection of the eigenvalues of the Laplace operator with the
zeros of the Riemann zeta function and L-series by means of the so-called pseudo-
cuspforms. Using the Hilbert identity, we explain why pseudo-cuspforms do not
provide any information about the location of these zeros.

Finally, § 6.3 contains a discussion of the relationship between the values of
the Eisenstein-Maass series at Heegner points and the Dedekind zeta-functions of
imaginary quadratic fields. Using the uniform distribution of the Heegner points
in the fundamental domain of the modular group — the Linnik asymptotics — we
naively ‘prove’ the Riemann hypothesis. Of course, such an application of Lin-
nik’s asymptotics is unacceptable, as is confirmed by an analogue of the classical
Vinogradov-Gauss formula in the critical strip, obtained in the paper [48] by A.I.
Vinogradov and the author. Nevertheless, attempts to relate the Laplace operator,
pseudo-cuspforms and the Heegner points to zeros of Dedekind zeta-functions of
imaginary quadratic fields continue to this day. Evidence of this can be found in
the papers of Zagier [49] and Colin de Verdier [7, 8] in the early 1980’s, as well as
in the recent studies by E. Bombieri and P. Garrett (see conference talks [3, 18]).

2. MAIN DEFINITIONS

In response to questions in quantum mechanics, von Neumann developed a theory
of unbounded self-adjoint operators in a Hilbert space. According to the Dirac-von
Neumann axioms (se [41], for instance), it is self-adjoint operators that correspond
to quantum observables, and the simplest of them — the position and the momen-
tum of a particle — are described by unbounded operators.

For the convenience of the reader, we follow the classical monograph [2] and
briefly recall the standard notation and basic facts from the theory of self-adjoint
operators.

2.1. Self-adjoint operators. An operator A with dense domain D(A) in a Hilbert
space 7 is said to be symmetric if

(Af,9) = (£, Ag)
for all elemends f,g € D(A), where ( , ) is the inner product in . The adjoint

operator A* to the densely defined operator A is defined as follows: g € D(A*) if
there is g* € S such that

(Af.9) = (f,97)



4 L.A. TAKHTAJAN

for all f € D(A) and then g* = A*g. The operator A is said to be self-adjoint if
A = A*. Clearly, every self-adjoint operator is symmetric. An operator A is said
to be closed if its graph I'(A) — the set of pairs {f, Af} for all f € D(A) —is a
closed subset in J# @ J; A admits a closure if the closure of I'(A) in 5 & 5 is
the graph of an operator, that is, there is an operator A such that T'(4) = T'(4). A
closed operator defined on the whole of 77 is bounded.

A symmetric operator A is said to be essentially self-adjoint if its closure A is
a self-adjoint operator. A typical example is the operator A = id/dx acting in the
Hilbert space L*(R) and defined on the linear space C§°(R) of smooth functions with
compact support. Its closure A is a self-adjoint operator with the domain D(A) =
W4 (R), the Sobolev space of absolutely continuous square integrable functions with
square integrable derivative.

2.2. Resolvent and the spectral theorem. Let A be a closed operator. The
values A\ € C, for which an operator’

Ra(A) = (A=A

(resolvent” of an operator A) exists and is defined everywhere on J#, are called
regular values. The set p(A) C C of regular values is open and is called the resolvent
set. The spectrum of an operator A is the complement to the regular set, c(A) =
C\ p(A). For a self-adjoint operator o(A4) C R.

Resolvent of an operator A satisfies the relation

(2.1) RA\(A) — R,(A) = (A= p)RA(A)R,(A), where X, pe€ p(A),
which generalizes the elementary algebraic formula
1 1 A— L

a=X a—p (a=Na—p)
and is called the first Hilbert identity. It follows from (2.1) that Ry(A) is a holo-
morphic function on p(A) with the values in the Banach algebra .2 (5¢) of bounded
operators on 7. Let A and B be closed operators with a common domain. Their

resolvents satisfy the so-called Hilbert second identity

(2.2) RA(A) = RA(B) = RA(A)(B — A)R\(B), A € p(A) N p(B),
which generalizes the algebraic formula
1 1 b—a

a—X b=\ (a=Nb-))
The spectral theorem of von Neumann is a fundamental fact in the theory of
self-adjoint operators acting in a Hilbert space. In particular, for each self-adjoint

operator A there is unique projection-valued countably additive measure E, defined
on the g-algebra % of Borel subsets of the real line, such that E(§) = 0, E(R) = I,

D(A):{fejf:/oo A2d(E,\f,f)<oo},
and for f € D(A)
Af= [ g,

Here I is the identity operator in 7.
2Notation R(A, A) is also used.
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where Ey = E((—o00,\)) and the integral is understood as a limit of Riemann-
Stieltjes sums in the strong topology on .7. The relationship between the projection-
valued measure E and the resolvent R of A is given by the formula

b
(2.3) lim —/ (Ratie — Ra—ic)dA = E((a, b)) + %(E({a}) +E({b})),

sometimes called Stone’s formula. This formula is an operator version of the clas-
sical Sokhotski—Plemelj formula

1 1
— ———— =2mid(A
w0 v W
in the theory of distributions, and is a basis of the eigenfunction expansion theorem
for differential operators.

2.3. Determinant of an operator. Here we briefly recall the notion of the char-
acteristic determinant of a self-adjoint operator (see [22]). In the simplest case,
when K is a compact self-adjoint operator with trace (a trace class or nuclear
operator), the Fredholm determinant is given by the simple formula

(2.4) det(I — AK) = [T (1 = AN,
where ); are the eigenvalues of an operator K, and this is an entire function®. If
the operator K is invertible, then from (2.4) we easily obtain

%logdet(I—AK):—TrR,\(A), where A= K1

This formula can be generalized to a wider class of operators. Namely, if the
resolvent Ry (A) is of trace class, then the characteristic determinant det(A — AI)
of A is determined (up to a multiplicative constant) from the relation

(2.5) % logdet(A — AI) = —Tr Ry (A).

As we shall see below, this formula makes sense if we understand Tr to be a properly
regularized trace of the resolvent. If, in addition, Rx(A) is an integral operator
acting in L?(X) with integral kernel Ry (x,y) that is continuous on X x X, where
the subset X C R is bounded, then by a well-known theorem®

(2.6) Tr Ry\(A) = / Ry (z,x)dz.
X
In the case X = R the following formula holds:®

n

(2.7) Tr Ry (A) = lim Ry (x,x)d.

n—oo [_ .

A more general way of introducing a regularized determinant is based on the
notion of the zeta function of an elliptic operator (see the survey [39], as well as
[41] and references therein). For simplicity, we assume that A is an elliptic operator

3Since Tr|K| = > x| < oo

4See the monograph [22, §II1.10], as well as [31, §30.5, Theorem 12].

51t is sufficient to approximate Ry (A) by the operators PpRy(A)Ppn, where the P, are the
orthogonal projections onto L2(—n,n) C L?(R), and to use Theorem 6.3 in Chapter III in [22].
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with a purely discrete spectrum consisting of non-negative eigenvalues A,, of finite
multiplicity accumulating to infinity. The zeta function of A is defined by

1
Ca(s) = Z N
An>0 "
where it is assumed that the series converges absolutely for Res > a for some
a > 0. Under fairly general assumptions (for example, for the Sturm-Liouville
operator considered below), (4(s) admits an analytic (meromorphic) continuation
to a domain containing the half-plane Res > 0 and is regular for s = 0. Then the
regularized determinant det A of A is defined by

det A = exp {~C4(0)},
where the prime indicates the derivative with respect to s. The characteristic
determinant det(A — AI) is defined in a similar way, and for many examples this
definition is consistent with the formula (2.5).

3. STURM-LIOUVILLE PROBLEM

3.1. The resolvent and the eigenfunction expansion. Following the classic
monograph [33], we consider the simplest problem of finding all non-trivial solutions
of the Sturm-Liouville equation

(3.1) —y" +o(@)y=XNy, 0<z<m,
with zero boundary conditions
y(0) = y(m) = 0,

where v(z) is a continuous real-valued function on the interval [0, w]. The differential

operator
2

d
ﬁ——@'i"l}(l')

is symmetric’® on the subspace C&°(0,7) of smooth functions with compact support.
Its Friedrichs extension is the self-adjoint Sturm-Liouville operator L in L?(0,7)
with the domain

D(L) = {y € W3(0,7) : y(0) = y(r) = 0},
where W2(0,7) is the Sobolev space of square-integrable functions on (0, 7) with
square-integrable generalized derivatives up to second order.
Let y1(z,\) and ya(z, A) be solutions of equation (3.1) with the boundary con-
ditions
y1(0,A) =0, yi(O, A)=1 and y(m ) =0, yé(ﬂv A) =1,
and let d(\) = y1(m, A). The function d(A) is entire of order 1/2 with simple zeros

A corresponding to the simple eigenvalues of the operator L and tending to infinity.
When v(z) € C1(0, ), the following asymptotics holds:

1 1 ("
(3.2) A=n’+c+0 (—) , where c=— / v(x)dz.
n m™Jo

The operator L has a pure discrete spectrum and the corresponding eigenfunction
expansion theorem follows from (2.3). Specifically, the resolvent Ry = (L — \I)~*

6The symmetric operator £ acting in L2(0,7) has defect indices (2,2), and its self-adjoint
extensions are described by the Sturm-Liouville boundary conditions.
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of L is an operator-valued meromorphic function with simple poles at A = \,, and
with residues that are projection operators onto the one-dimensional subspaces
corresponding to the eigenfunctions. For A # A, the resolvent R) is a bounded
operator on L?(0, ) with integral kernel

m(m (2, N)y2 (&, N)O(E — x) + 31 (€, Ny (z, )b (x — £)),

where W(f,g) = f'g— fg’ is the Wronskian of functions f and g, so that the Wron-
skian of two solutions of equation (3.1) does not depend on z and W (y1, y2)(x, \) =
—d()), and (z) is the Heaviside function: §(z) = 0 for z < 0 and #(z) = 1 for
x> 0.

Indeed, the kernel Ry (x, &) satisfies the equation

(3.3) Ra(x,€) =

(3.4) (—% —I—v(a:)—/\) Ry(z,§) =d(x—¢&), O0<uzé<m

(where 6(z) is the Dirac delta function), which follows from (3.1) and the elementary
formula

0/ (x) = d()
in the theory of distributions. Using (3.4), we easily to show that the range of Ry
is D(L) and (L — AI)Ry = 1.

3.2. Characteristic determinant and trace identities. It follows from (3.2)
that the operator R) is of trace class when A\ # \,, so that by using the definition
of det(L — AI) in terms of the operator zeta function, it is not difficult to prove the
formula (2.5) (e.g., [41, §5.5.1]). Since the integral kernel Ry (z, &) of the trace class
operator Ry is continuous on [0, 7] x [0, 7], we get from (2.6) that

(3.5) Tr Ry = /07’ Ry (z,x)dx = _di) /07T y1(z, Ny (z, N)dz.

(A

It is easy to compute the integral in (3.5) using the following classical trick [13].
Specifically, we differentiate (3.1) for y;(x, A) with respect to A:

—gf +v(@)j1 = A1+ 1,

where the dot means the A-derivative. We multiply this equation by ya(z, A) and
subtract the equation for ya(z, A), multiplied by g1 (x, A). As the result, we obtain
the identity

(3.6) Y1ye = 9195 — 91y = —W (1, 92)".
Recalling the definition of the solutions y; and yo, we get from this that

/0 " Mo N = i (1, A) = d(N),

and comparing (2.5) with (3.5), we obtain
det(L — AI) = Cd(N),

with some constant C'. By computing the asymptotics as A — —oo in this formula
it is easy to get that C' =2 (see. [41, §5.5.1]). For example,

2 .
det [~ 2 1 _psinmVA
dx? VA
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Summarizing, we obtain the following Hadamard product representation for the
entire function d(\):

detL, g A
(37) an =55 I (1-5).
An#0
where 6 =1 if A = 0 is an eigenvalue for L, and § = 0 otherwise.

When v(z) € C?%(0,7), one can thoroughly investigate the asymptotics of the
function d(\) as A = —oo both with the help of the differential equation (3.1) and
with the help of a Hadamard product and the asymptotics (3.2) of the eigenvalues
with the remainder term O(n~2). Specifically, put A\ = —k?, where k > 0. The
differential equation (3.1) with respect to y; is equivalent to the Liouville integral

equation
inh & 1 [
() = smk L4 E/ sinh{k(z — t)}v(t)y1 (¢, N)dt.
0

Solving it by the method of successive approximations and integrating by parts, we
get after simple calculations that as k — oo

e e
(38 =5 {1 204 o (726 = 2(0(0) + v(m))) +O (kl)}

On the other hand, using the Euler formula for the function sinh 7k, we rewrite the
right hand side of (3.7) as”

B(\) =

det L smh 7k k2 4+ )\, sinh 7k
H H p(k),

k2 +nZ -

where

detL +—~ n sinh 7tk 1 A2 —n?
C = 7 and (k) = 1422
! 1_[1 L (k) mk nl:[l( +k2+n2>

Put sy = > 7 (A —n?—c). It follows from (3.2) with the remainder term O(n~?)

A2 —n? | 1 1
— k2 +n? _C;k2+n2+ﬁ5)‘+o<ﬁ)

_7TCCOth7Tk c n 1 L0 1
T % ok2 | 2N '

From this it is now simple to show (see [33]) that as k — oo

(3.9) @(A)—Cleﬂk 1+—+i( ?c® —4c+8sy) + O
' ~ Tonk ok 8K\ A '
Comparing the coefficients in the asymptotic formulas (3.8) and ( 9), we obtain

c_ _v0)+o(m)

01:7T n S — =7 = —
n2
2

2 4
"Here we assume that § = 0 B (3.7), which can always be achieved by shifting v(z).

The first of these formulas gives the expression

detA:27rﬁ%:27rﬁ (l—l—)\
n=1 n=1
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for the regularized determinant of the Sturm-Liouville operator, while the second
formula, written in the form®

i (/\n—HQ—%/Oﬂv(x)dx> _ %/oﬂv(x)dx_w’

n=1
is the celebrated Gelfand-Levitan trace formula [21] for the regularized trace of the
operator L! In the case where v(x) € C*°(0,7), formulas for the regularized traces
of all positive-integer powers of the operator L were obtained in Dikii’s classical
paper [10] (see also the survey [37] and references there).

4. ONE-DIMENSIONAL SCHRODINGER OPERATOR

Leaving aside the case of the radial Schrodinger equation (see the survey [12],
the monograph [35] and references there), we consider the Schrédinger equation on
the whole real line

(4.1) —y" +o(r)y=>N\y, —oo<z<o0.

Here the potential — a measurable, real-valued function v(z) — is assumed to be
rapidly decaying:

(4.2) /OO (1 + [)o(@)|dz < .

—0o0
Without loss of generality, we assume v(z) to be continuous. Under condition (4.2),

the Schrédinger operator
2

d

is defined on the functions ¢ € L*(R) that are twice differentiable on R and such

that —¢" +v(z)y € L?(R), and it is self-adjoint in L?(R). It is convenient to write
H=Hy+V,

where Hy = —d?/dxz? is the free Schrédinger operator with D(Hy) = WZ(R), and

V is a multiplication by v(zx) operator in L?(R). The operator H has an absolutely

continuous spectrum of multiplicity 2 filling the semi-axis [0, o), and finitely many

simple negative eigenvalues A1,...,A,. Let us explain this more carefully (see
[13, 15, 35, 41] for details).

4.1. Jost solutions and the resolvent. It is convenient to use the parametriza-
tion A = k2, in which the complex A-plane cut along [0,00) corresponds to the
upper half-plane of the variable k, the so-called ‘physical sheet’ of the Riemann
surface of the function k = v/A. Under the condition (4.2) the Jost solutions are
defined, namely, the functions fi(z, k) and fa(x, k) satisfying (4.1) and having the
asymptotics

fi(z, k) =™ +0(1), as x— oo,

fo(z, k) = e £ 0(1), as x— —oo.
The proof is based on the integral equation of the Volterra type

fles) = e — [TIEEZD

8We take the opportunity to note that this formula corrects a typing error in the corresponding
formula in §2.2 of [42].
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and the analogous equation for fa(z, k). The following estimate holds for & # 0:

(4.3) le=™ £y (2, k) — 1] < %ﬁ"m, where o(z) = / lv(t)|dt,
and moreover o € L'(a, 00) for each a € R and lim, o, o(z) = 0. Similarly,
(4.4) e fo(z, k) — 1| < Sj) %\&(m), where &(z) :/ lv(t)|dt,

and moreover & € L*(—00,a) for each a € R and lim,_, ., 5(z) = 0.

For fixed = the Jost solutions fi(x, k) and fa(x, k) admit analytic continuation
to the half-plane Im k& > 0 and for fixed k satisfy the estimates (4.3)—(4.4). For real
k

(4.5) fo(z, k) = a(k) fi(z, —k) + b(k) f1(z, k),
where a(k) = a(—Fk), b(k) = b(—k) and
la(k)[* =1+ [b(k)|*.

The functions a(k) and b(k) are called transition coefficients’. For the coefficient
a(k) we have the formula

(4.6) a(k) = ﬁW(fl(%k)aﬁ(%k))a

which implies that a(k) admits analytic continuation to the upper half-plane Im & >
0 and satisfies

(k)—1+0<|11|> as & — oo.

The function a(k) in the upper half-plane Im k& > 0 has finitely many simple zeros
12¢; on the imaginary semi-axis, and \; = _%JZ are the eigenvalues of the operator
H with the eigenfunctions ¢, (x) = f1(z,is;), j = 1,...,n. Furthermore, it follows
from the Poisson-Schwarz formula that a(k) satisfies the so-called dispersion relation

B 1 [ 10g|a k — iz
(4.7) a(k) = exp{m/ }H L mk>0.

The resolvent Ry = (H — AI)~! of the Schrédinger operator H is defined on
p(H) = C\{[0,00) U {1, An}}

and is an integral operator in L?(R) with the integral kernel

(4.8) Ri(z,y) = (fi(x, k) faly, k)0(x — y) + f1(y, k) fa(z, k)O(y — z)),

1
 2ika(k)

where £ = v/\. In particular, the integral kernel of the resolvent RR of the free
operator Hy takes the form

etklz—yl
2ik

(4.9) RS (z,y) = — , Imk > 0.

and r(k) = L) e called the trans-

9In quantum mechanics the functions ¢(k) = EOIE

la( )\2
mission and reflection coefficients, respectively.
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As in the case of the Sturm-Liouville operator, the integral kernel Ry (z,y) satisfies
the same equation (3.4),

(4.10) (—% +v(x) — /\) Ry(z,y) = 0(x —y),

where now —oo < z,y < 00.

The eigenfunction expansion for the operator H follows from the formulas (2.3)
and (4.5)—(4.8). In particular, denote by P the orthogonal projection from J# =
L?(R) onto the subspace spanned by 1, ..., ,, and denote by £, the Hilbert space
L? ([0, 00),C?; |a(k)|2dk). The operator % : S — §)o defined by the formula

(@ (k) = % / T @) e ke, =12,

is a partial isometry of the Hilbert spaces 52 and $)g:
U U =1I—-P, UU" = I,

where Iy is the identity operator on £)¢. The operator Z H% * is the multiplication
by k% operator in $)9. The eigenfunction expansion for the free Schrédinger operator
is the Fourier transform.

4.2. The characteristic determinant. Since the operator H has an absolutely
continuous spectrum, the formula (2.5) no longer makes sense, and there now arises
the problem of defining det(H — AI'). In the case of the radial Schrédinger operator,
this problem was solved by Buslaev and Faddeev in [5], which subsequently led to
the concept of the perturbation determinant [22]. Here we consider the case of the
one-dimensional Schrédinger operator and, for simplicity of presentation, instead
of (4.2) we impose a stronger condition on the potential v(x).

Namely, suppose that v(z) is a bounded function on the real axis and v(z) =
O(|z|=37¢) as |z| — oo for some & > 0. It follows from the first condition that V is
a bounded operator in L?(R), and the second condition means that in the estimates
(4.3)-(4.4) one can replace o(x) and 5(x) by O(|z|~27¢). By analogy with (2.5),
the regularized determinant of the operator H — AI is given by

d
(4.11) = 7 logdet(H — AI) = Tr(Ry — RY), Xep(H),

where Ry — RY is a trace class operator. Indeed, from the second Hilbert identity
we obtain

(4.12) Ry — RY = R\VRY.
Denote by vV the multiplication operator by the function /v(z), where

V(@) = V]v()le?,

§=0if v(x) > 0 and 6 = in/2 if v(x) < 0. Since \/v(z) € L*(R), it follows from
(4.8) and (4.9) that the operators R\v/V and v/V R} are Hilbert-Schmidt operators,
and therefore the operator Ry — R is of trace class.

Remarkably, the trace on the right-hand side of the formula (4.11) can be cal-
culated explicitly. In case of the radial Schrédinger equation, the corresponding
formula was given by Buslaev and Faddeev in [5], and in case of the whole axis,
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this is the last formula in section §1.1 of Faddeev’s survey [15] (see also Problem
2.6 in §3.2.2 of chapter 3 in [41]). In particular, the following relation holds:

(4.13) Tr(Ry — RY) = _dii log a(V\).

As far as we know, no complete derivation of this beautiful formula exists in the
literature. For the convenience of the reader, we present it here.

Proof. Recall that k& = v/X. For Imk > 0 the Jost solution fi(z,%) decays expo-
nentially for large . For such k a solution g(z, k) of (4.1) linear independent from
fi(z, k) is found from the relation W(f1,g) = 2ik, and it grows exponentially for
large x:

eMg(x, k) =140z 1) and e*¢(z,k) = —ik+O(xz"'7%) as z — oo.

The functions fi(z, k) and g(x, k) form a basis in the solution space, and from the
condition W(f1,g) = 2ik and (4.6) we get that

fo(z, k) = a(k)g(z, k) + c(k) fi(z, k).
Therefore, as x — oo we have
(4.14) e* fo(2, k) = a(k)+O(xz™*7%) and €™ f)(z, k) = —ika(k) + O(z™*7%).
Similarly, as * — —oo
(415) e i (o, k) = a(k)+O(a] %) and e fi(a, k) = ika(k)+O(je] ).

The trace class operator Ry — R) has an integral kernel Ry (z,y) that is contin-
uous on R x R and

RA(.’L',CL') = (fl(ka)f2($vk) _a(k))'

 2ika(k)
Thus, using formula (2.7), we obtain
Z’ n

(116) TRy~ B) = gt [ (k) ol K) (k)

As in the case of a Sturm-Liouville operator, the integral in (4.16) can be evaluated
explicitly. Namely, write (3.6) in the form

@1T) i ) fola k) = —iW(fl(:c,k),fg(:v,k))’ _ %W(fl(x,k),fg(:v,k))’,

where the dot now stands for the k-derivative. From the integral equation for
fi(z, k) we obtain

e f (2, k) =iz +O(x™%) and e *fl(x, k) =i—kzx+O0(x"°) as x— oo,
and therefore for such x we get by using (4.14) that

W (fi(2, k), fo(z, k) = (i = 2kz)a(k) + O(z 7).
Similarly, as ¢ — —o0,

W (fi(w, k), fo(z, k) = (i + 2ka)a(k) + O(|z|~*).

Using these formulas and (4.17), we obtain

n 7 1 ; —e
‘/0 fl(l', k)fg(i[:, k)d,f = (—% + TL) a(k) + %W(fl (O, k), fz(o, k)) + O(?’L )
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and
0

1 1 ;
f (LL', k)fg(i[:, k)d:v = (—% - n) a(k) + %W(fl (O, k), fz(o, k)) + O(?’L_E).
Adding two last formulas and using the relation
oy a(k) 1 . 1 .
a(k) = ——= + 52 W(f1(0,k), £2(0,k)) + 52 W(£1(0, k), £2(0, k)
following from (4.6), we have

n

lim (f1(z, k) fo(x, k) — a(k)) dx = ia(k).

n—oo J_ .

—n

Substitution of this relation into (4.16) gives the desired formula (4.13). O

4.3. Trace identities. It follows from (4.13) that the regularized determinant of
the Schrodinger operator is given by the formula

det(H — M) = a(V\),
is a holomorphic function on the complex A-plane cut along the non-negative semi-
axis, and has zeros at the eigenvalues of the operator H. Under the assumption

that the potential v(x) is a function in the Schwartz class'’, we easily obtain from
(4.13), (as in §3) the trace identities for the one-dimensional Schrédinger operator
H.
Namely, for such v(z) the coeflicient b(k) is a Schwartz class function, and there-

fore from (4.7) we immediately obtain an asymptotic expansion as k — oo:

o0

Cl _

(4.18) loga(k) = t O(Jk|™>°), Imk >0,

=1
which is an analogue of the expansion (3.9) for the characteristic determinant of
the Sturm-Liouville operator. Moreover, cg; = 0 and

n

_ 1y 2 N2l
(4.19) @kajﬁlwk1%mwmm—ﬂiqg;mﬁ .

An analogue of the asymptotic expression (3.8) is obtained by means of the
following beautiful argument (here we follow the famous paper [50] by Zakharov
and Faddeev). From formula (4.3) it follows that the function x(z, k) = log fi1(x, k)
is well-defined for large & with Im k& > 0, and

x(x, k) =ikx +o(l), = —o00 and x(z,k)=Iloga(k)+ikz+o(l), z— —oo.
As follows from (4.1), the function

7(,K) = x(a, k) ~ ik,
is a solution of the Riccati equation

o'+ 0% —v+2iko=0,

decays as |z| — co and satisifes

(4.20) 1%qm=—/md%mm.

— 00

10That is, it is smooth and rapidly decaying with all derivatives as |z| — oo.
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Now it is not difficult to verify the asymptotic expansion

(4.21) ola k) =3 gz’(]j))l + O([k|=>).
=1

The coefficients o;(z) are polynomials in the function v(z) and its derivatives at x,
and are determined by the recurrence relation

o1(z) = =074 ( Zaz i—1(@)oj(z),  o1(z) = v(z);

moreover, the o9 (x) are total z-derivatives. Comparing the formulas (4.18), (4.19)
with (4.20), (4.21), we obtain the Zakharov-Faddeev trace identities

n 1 21+1 %)
_/ k2l ].Og |(I( |dk + = 2l — Z 2l+l (Z) / UQH_l(,CC)d(E.

In [50], the reader can find a remarkable application of these formulas to the proof
of complete integrability of the Korteweg-de Vries equation.

Comparing (4.13) with (4.18), (4.19), we see that Tr(R\ — RY) can be expanded
as A\ — —oo in an asymptotic series in inverse odd powers of v/X. In the Gel’fand-
Dikii paper [19] this was proved directly, in both the rapidly decreasing case and
the periodic case. Namely, rewriting the second Hilbert identity (4.12) in the form

R\(I-VRY) =R},
we obtain
o0
Ry= R+ RAVRY)",
n=1
where the infinite series is understood as an asymptotic series as A — —oo. By

using the explicit formula (4.9) for the free resolvent, it is not difficult to obtain
the asymptotic expansion

Rz, ) —Zfl( D) L O(VAI).

=1

The coefficients R;(z) are easily found from the third-order differential equation

3
(—% +4(v(z) — )\)di:lzr + 21/(:10)) Ry(z,z) =0,

for the product of two solutions of the second-order equation (4.1). Details of these
beautiful calculations can be found in [19].
5. A CERTAIN FUNCTIONAL-DIFFERENCE OPERATOR
Consider the following functional-difference equation
Bl + i) + U — ib) + 2 (x) = Ab(a),
where

b>0 and —oo <z < o0,

and the function ¥ (z) admits analytic continuation into the strip

Iy ={z=x2+iy € C: |y| <b}.
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A functional-difference operator
H=U+U"'+V

is associated with this equation, where U and V are the self-adjoint Weyl opera-
tors acting in L?(R). The operator H arises in conformal field theory and in the
representation theory of the quantum group SLy(2,R). In [43] there is a spectral
analysis of this unbounded self-adjoint operator acting in L?(R). We give a detailed
presentation of these results.

5.1. Weyl operators. The quantum mechanical Weyl operators are unitary op-
erators U(u) and V(v) in L?(R), u,v € R, defined by the formulas

Uh)(@) = v —w), (VE)@) =), e A(R)
(see, e.g., [41, Ch. 2], where the Planck constant £ is set to be 1). The operators
U(u) and V(v) satisfy the Weyl commutation relations
Uu)V(v) = ™V (0)U(u).

In the representation theory of the quantum group SL,(2,R) one uses complex val-
ues of v and v, under which the Weyl operators U(u) and V (v) become unbounded
self-adjoint operators acting in L?(R).

Namely, consider the operators U and V, given formally by

(5.1) (UP)(@) = Pz +ib), (V)(z) = ™ ()
and satisfying the relation
(5.2) UV = VU, q=¢™

on the common domain of U and V. The operators U and V, defined by (5.1) are
unbounded self-adjoint operators acting in L?(R). Specifically, U is a self-adjoint
operator acting in L?(R) with the domain

D(U) = {¢(z) € L*(R) : e >"(p) € L*(R)},

where

00 = F) = [ vl s
is the Fourier transform'" in L2(R). Equivalently, the domain D(U) consists of the
functions ¢(z) which admit analytic continuation into the strip
I ={z=2+iyeC:0<y<b}
with the property ¢(x + iy) € L?(R) for all 0 < y < b and that the limit
P(x +ib —i0) = Elirg P(x +ib — ig)
exists in the sense of convergence in L?(R). Furthermore, for v € D(U) we have
(UY)(z) = Y(x + b — i0).
The domain D(U™!) of the inverse operator U~! is defined similarly, and we

have (U~14)(x) = ¢ (x — ib + i0). The domain D(V') of the self-adjoint operator

e are using the normalization of the Fourier transform that is customary in analytic number
theory.
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V consists of the functions ¥(z) € L2(R) for which e?***¢(x) € L?(R). Thus, we
have

Ul=7"1vz,

where the inverse Fourier transform is given by the formula
o0
via) = [ e rap
— 00

5.2. The operator Hj. The free operator Hy = U + U~! is an unbounded self-
adjoint operator acting in L?(R), and defined on D(Hy) = D(U) N D(U~1) by the
formula

(Hov)(z) = Y(x +ib—1i0) + ¢(x — ib+140), 1 € D(Hy).

Obviously, for b — 0 the operator b=2(Hy—2I) turns into the operator —d?/dz?. In
terms of the Fourier transform the operator Hy = .%# Hy.# ~! is the multiplication
by 2 cosh(27bp) operator, and thus domain D(H) admits an equivalent description:

D(H,) = {w<w>eL2<R>: /

— 00

o0

cosh? (27rbp)|z/}(p)|2dp < oo} ,

and it is a ‘hyperbolic analogue’ of the Sobolev space W3 (R).
ForA € C\ [2,00) the resolvent of the operator Hy,

R = (Ho— \I)™",
is the multiplication by (2 cosh(2wbp) — A)~! operator and it is bounded on L?(R).
Because the function 2 cosh(27bp) is a two-to-one map of the real axis —oo < p < 0o

onto [2,00), the spectrum of Hy is absolutely continuous and fills the semi-infinite
interval [2, 00) with multiplicity 2. Correspondingly, for A € C\ [2, 00) the resolvent

R} = (Ho—AI)™*

of Hy is an integral operator acting in L?(R) with integral kernel depending on the
difference of the arguments,

(53) B = [ R - ot
where
oo e27TipLE

It is convenient to use the parametrization (cf. §4.1)
A = 2 cosh(2wbk),

in which the resolvent set C\ [2,00) becomes the ‘physical sheet’” — the strip 0 <
Imk < 1/(2b) — and the continuous spectrum [2, 00) is doubly covered by the real
axis —oo < k < 0o. The integral (5.4) is easily calculated, and we obtain

i e*Zﬂ'ikx eQﬂ'ikx
~ 2bsinh(27bk) (1 —ezmalb T 1 2ralb
The function R} (z) is regular at x = 0 and for 0 < Imk < 1/(2b) the following
estimate holds:

(5.5) Ri(x)

) , A =2cosh(27bk).

B (@)] < Cemimblel,
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where C' > 0 is a constant'?, so that for A ¢ [2, 00) the formulas (5.3) and (5.5) do
indeed determine a bounded operator on L?(R).
It is instructive to rewrite (5.5) in terms of the solutions of the equation

(5.6) Y(x +ib — 140, k) + ¢(z — ib+ 00, k) = 2 cosh(2wbk)y(z, k)

for the continuous spectrum eigenvalues of the operator Hy, that is, in terms of
the solutions fy(z,k) = e*2™*% which are analogues of the Jost solutions in the
theory of the one-dimensional Schréodinger operator (see §4.1). Namely,

i f-(@, k) f+(y, k) | f-(y,k)f+ (k)
R —y) = bC(f—, f+)(k) ( 1- 62”(;*9)/57 + 1- 6*2”&77’)” > ’

(5.7)

where
C(fa g)(ZE, k) = f(:E + b, k)g(:t, k) - f(:Z?, k)g(:t + b, k)

is the so-called Casorati determinant, which is an analogue of the Wronskian for
solutions of the functional-difference equation (5.6). It is periodic function of x
with period ib, and in the case of the Jost solutions C(f_, f1)(x, k) = 2 sinh(27bk).

There is a remarkable similarity between (5.7) and the formulas (3.3) and (4.8),
where instead of the Heaviside function 6(z) a smoothed analogue of it is involved,
namely, the function 6 (z) defined by the formula'?

91,(I) = !

1 — e—2mz/b’
In this case, the analogue of the relation ¢'(x) = 6(z) is the formula
1
= 0~ i0) - 6z + i0)) = 6(a)
for real x, which is equivalent to the Sokhotski-Plemelj formula. The following
simple formula also holds

1 . 1 1
(5.8) %91,(3: +1i0) = VP Op(z) F 55(:17),

where the distribution 6(z) is understood as the Cauchy principal value. From
this we obtain for R} (z — y) the equation
(5.9) RY(x —y +ib—i0) + RS (x — y — ib +i0) — ARS (z —y) = 6(x — y).
Indeed, setting y = 0 and using (5.6), (5.8) and the regularity of R} (z) at z = 0,
we have
R (x + b — i0) + R (x — ib +i0) — AR3 (x)
- 1
~ 2bsinh(27bk)
+ f-(z —ib, k)by(—x — 10) + fy(z — ib, k)Oy(x + 0)]

[f-(x + b, k)0p(—z + i0) + f1(x + b, k)b (x — 10)

—% coth(2mbk) (f— (z, k)0 (—2) + 1 (z, k)Oy(2))

= m [f—(ib, k) — f1(ib k) — f—(—ib, k) + f4(—ib, k)] 6(z) = &(z).

12Here and below we use C to denote various constants.
13As noted by A.M. Polyakov, the function (x), after identification of z with the energy e
and identification of ZT'” with the inverse temperature ﬁ, coincides with the one-particle partition

-1
function Z = (1 — efﬁ> in the Bose-Einstein statistics.
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By using the representation (5.7) and equation (5.9), it is easy to verify directly
that for A € C\ [2,00) the integral operator (5.3) is the inverse of the operator
Hoy — M (see §§3—4).
5.3. The operator H. Here we consider the equation
(5.10) V(x4 ib — i0) + (z — ib + i0) + €2 %) (z) = 2 cosh(2mbk)(z),
which is the g-analogue of the equation

_w//_’_ewa — k?w
for the Bessel functions. As is well known, the last equation has a solution that
is decreasing as * — 0o, the modified Bessel function of the second kind K (e®)
given by the inverse Mellin transform of the product of two gamma functions.
The equation (5.10) also has a solution that is decreasing as  — oo, the Fourier
transform of a product involving another wonderful special function, Faddeev’s

quantum dilogarithm. This function was introduced by Faddeev in [16] and has the
integral representation'?

1 o) e2itz dt
(5.11) (2) —eXP{z/w m?}

where the contour of integration passes above the singularity at ¢ = 0. The repre-
sentation (5.11) is valid for [Imz| < ¢, = 3(b+ b~!) and defines a meromorphic
function with poles z = —ic, — mib —nib~*! for integer m,n > 0, which satisfies the
functional equations
By(2 +ib) = (1+q e ™) By(2), ¢=e™",
Oy(z +ib) = (L4 e 2™ )dy(z), G=emt .
Let
@(p, k) = exp{—ifB — mik?* — mi(p —icy)*}Py(p — k —icy) Py (p + k — icp),
where § = %(b2 +b~2). Using the analytic properties of ®;(z) (see, for example,
[43])), it is easy to verify that the function
o, k) = / (p, k)e™ " dp

is a solution of (5.10), where the contour of integration passes above the singularities
at p = k. Namely, the following statements hold.

1. For real k the function ¢(x,k) is an even real-valued function of k, having
the asymptotics

go(:v,k) _ M(k)e%rikm + M(_k)e—27rikm —i—O(l)
as real x — —oo, where
M(k) = exp {z’(ﬁ + g) — omik(k — icb)} Oy(2k —icy), M) = M(—Fk),

and )
— = 4sinh(27bk) sinh(27wb k).
| M (k)[?

So ¢(x, k) is a scattering solution for (5.10).

14The function ®;(z) has an interesting history (see [43], where the notation ~v(z) was used).
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2. For real z the function ¢(z, k) admits analytic continuation into the strip
0 <Imk < 1/(2b) and satisfies the reality condition

o(x, k) = p(, _];5)

3. For fixed k in the physical strip, the function ¢(z, k) extends to an entire
function of the complex variable x and satisfies equation (5.10).
4. The following estimates hold:

|(,0(JJ,]€)| < Ce—27rlmkm7
uniformly for —oo < z < a, and
lo(x, k)| < Cem(b+o e, |p(x £ib, k)| < Cem(b=b"Da

uniformly for a < z < co.

As & — —o0, equation (5.10) takes on the free form (5.6), so it is natural to as-
sume that (5.10) has Jost solutions, that is, solutions f4 (z, k) with the asymptotics

(5.12) fe(z, k) = 2™k L o(1) as 2 — —oo.

Namely, let

1
F+ (@ k) = R @eb- k) M (R
x(p(x —ib™ " k) — p(z +ib~ ', k) + 2sinh(27b™ k) (2, k)

and f_(z,k) = fi(z,—k). From properties 1 and 3 of the function ¢(x,k) we
immediately get that for real = the functions fi (z, k) are solutions of (5.10) and

(5.13) o, k) = M(k)f4 (2, k) + M(=k)f_(x, k)

From the properties of the solution ¢(x, k) listed above it is not difficult to derive
the following properties of the Jost solutions.

1’. For real x and k the functions fi(z, k) have the asymptotics (5.12).
2’. For real x the functions f4 (z, k) admit analytic continuation to the physical
strip 0 < Im &k < 1/(2b) and satisfy the condition

fi(.%', k) = fi(.%', —];’)

3’. For fixed k in the physical strip, the fi(x, k) are entire functions of the
variable x and satisfy equation (5.10) and condition (5.13). Moreover, the
asymptotics in 1’ remain valid for 0 < Imz < b.

4’. The estimates

|[fx (2, k)| < CeFomimbe,

hold uniformly for —co < x < a, and
|fi (k)] < Ce™ 0T (@i, k)| < Cem T

uniformly for a < z < co.

Using these analytic properties and the Phragmén-Lindelof theorem, one can
prove that Casorati determinant of the Jost solutions does not depend on z, and
therefore

C(f-, f+)(z, k) = 2sinh(27bk).
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Arguing as in case of the free operator Hy, from this we get that for A € C\ [2, 00)
the integral operator Ry acting in L?(R) with the symmetric kernel

BA@:Y) = Sy S h @b M)
(5.14) x(f-(@, k)p(y, k)0s(y — x) + f-(y, k) oz, k)b (z — y)),

is the resolvent of the operator H. Indeed, since the functions p(z, k) and f_(x, k)
satisfy (5.10), we get from (5.8) the equation

(5.15)  Ry(z +1ib—1i0,y) + Ra(z — ib+i0,y) + (*™* — \)Rx(z,y) = d(z — y),
and we get from the analytic properties of these functions the estimate
|Ra(2,y)| < Cem?rimEle=yl)

so that for A € C\ [2,00) the operator Ry is bounded on L?(R). Using (5.15) and
the identity

C(f-,¢)(z, k) = 2sinh(2xbk) M (k),
we obtain the desired statement Ry = (H — \I)~1.
Finally, the eigenfunction expansion theorem for the operator H is obtained from
(2.3). Namely, computing the jump of the resolvent kernel Ry (z,y) on the branch
cut [2,00) using (5.13), we get that the operator % given by the formula

@o® = [ s o) € PR)

maps L?(R) isometrically onto the Hilbert space % = L?([0,00), |M (k)| ~2dk),
that is,
U*U =1 and UU" = Iy,

where I is the identity operator on s%. Moreover, the operator Z H% ~' is the
multiplication by the function 2 cosh(27bk) operator on .54, so H has a simple
absolutely continuous spectrum filling [2, 00). As was noted in [43], the eigenfunc-
tion expansion theorem for H is a g-analogue of the classical Kontorovich-Lebedev
transform in the theory of special functions.

5.4. Operators for mirror curves. In [1] a remarkable connection was found
between the functional-difference operators constructed from Weyl operators U and
V' and the quantization of algebraic curves that are the images of toric Calabi-Yau
threefolds under the mirror symmetry. A typical example of such varieties is the
total space of the canonical bundle of a toric del Pezzo surface S. The spectral
properties of such operators were studied in [23]. In the simplest case, when S is
the Hirzebruch surface S = P! x P!, we obtain the operator

HO=U+U'4+V ¢V,

where the parameter ¢ > 0 plays the role of a physical mass. Thus the operator H
considered above corresponds to the massless case H = H(0). When S = P(1,m,n)
is a weighted projective space with m,n € N, the corresponding operator has the
form
Hm,n =U+V+ qu”Ume’”.

In [30] the spectral properties of the self-adjoint operators H(¢) and Hy, , in
L?(R) were investigated. In particular, there it was proved that these operators
have a purely discrete spectrum, and an asymptotic expression for the eigenvalues
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was obtained which implies that H(¢)~! and H,! are trace class operators. Fur-
thermore, an analogue of Weyl’s asymptotic law was obtained for the eigenvalue
counting function N(A): it was proved that
N(A 1
lim # =
A—00 log A (ﬂ'b)2

for the operator H(({), and
N()) Cm,n

o N T 7o 19 h m,n —
et log? X (27b)?’ Whete - Em,

for the operator Hy, ,. Hence for the eigenvalues A\, we get that
e = e®VE (14 0(1)),

as k — oo, where a = 7b for H(() and a = 27b/,/Cppp y for Hp, , (see (3.2) in §3.1).

A detailed proof of these formulas was given in [30]. We note here that it would be
quite interesting to obtain more accurate asymptotic formulas for the eigenvalues of
the operators H(¢) and H,, . As we saw in §3.2, it is rather instructive to compare
asymptotics of the eigenvalues with the asymptotics of the Fredholm determinants
of the operators H(¢)~* and H,,',. In [23] a remarkable connection was pointed out
between these determinants and the enumerative invariants of the corresponding
Calabi-Yau manifolds. We leave it to the reader to reflect on these intriguing
connections and associations.

(m+n+1)?2
2mn

6. LAPLACE OPERATOR ON THE FUNDAMENTAL DOMAIN OF A DISCRETE GROUP
ON THE LOBACHEVSKY PLANE

Let H = {z € C: Imz > 0} be the Poincaré model of the Lobachevsky plane

dz|? dx Nd
@ and the area form du(z) = < y, z =z +1y. The
Y

with the metric ds? = 3

Y
group of motions of the Lobachevsky plane is the Lie group G = PSL(2, R), which
acts on H by fractional-linear transformations,

b
HBZ»—)gz:ZZZ::dEH, where g—(ccl Z)GG.
Denote by A the Laplace operator of the Poincaré metric,
9 02 0?
(61) A =Y A Where A = W —+ a—y2,

defined on the space C§°(H) of smooth functions with compact support. The op-
erator A commutes with the action of G on H and is essentially self-adjoint on the
Hilbert space % = L?(H, du). Its closure, a self-adjoint operator Ag = A, has an
absolutely continuous spectrum of infinite multiplicity, filling the interval [1/4, c0).
It is convenient to use a parametrization A = s(1 — s), in which the resolvent set
C\ [1/4, c0) corresponds to the half-plane Res > 1/2.

The operator Ag is invariant under the action of G on H, so its resolvent R} =
(Ag — s(1 — s)I)~! is the integral operator with kernel

Rg\(zv ZI) = 719(2, 2'; s) = p(u(z, Zl)v s),

where

|z — 2'|2
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is a point-pair invariant in the Lobachevsky geometry (u(gz, gz") = u(z, 2’) for all
g € G), and ¢(u, s) is given by the classical integral

o, ) = 4i/0 (1 — )] (¢ + u) "t

™

and can be expressed explicitly in terms of the hypergeometric function. For fixed
s the function ¢(u, s) has asymptotics

(6.2) o(u,s) = —ﬁ logu+0O(1) as u—0

and

(6.3) o(u,8) =0w™7) as wu—o0o0, where o =Res.
Moreover,

(6.4) ro(z, 2’5 8) = 1o(2, 23 5).

Using these formulas, it is easy to check directly that if f € 57, then
(RS f)(2) = // ro(z,2';8)f(2)du(z") € D(Ag), where X =s(1—s),
H
and (Ag — M)RY f = f (see [14], and also the monographs [26, 29]).

6.1. The resolvent and the eigenfunction expansion. Let I" denote a Fuchsian
group of the first kind, that is, a discrete subgroup of the group G = PSL(2,R)
such that the quotient I'\H has finite area,

dzd
u(F)Z// Y < oo,
F Y

where F' is a fundamental domain of I in H. Recall that F is an open subset in
H such that 73 F Ny F = () when 7; # 72, and the union UyF over all v € T
is H. Equivalently, a Fuchsian group of the first kind is a discrete subgroup I' of
the group G which is finitely generated by hyperbolic generators ay, B1,. .., g, 8¢,

elliptic generators oy, ...,0,, of orders ki,...,k, > 2, and parabolic generators
Ti,...,Tn. They satisfy the relations
[al,ﬂl]...[ag,/@g]o'l...o'mTl...Tn:1 a,nd o—flz...:(j—ﬁlm:l’

where [a, 8] = aBa~137!, and the condition
= 1
X(F)—2—29—n—z<1—z) <0,
j=1 J

wherein p(F) = —27x(T). In case n > 0 the closure F' of the fundamental domain
F' is non-compact in H and contains n cusps, fixed points of the parabolic trans-
formations 7y, ..., T,, lying on RU {oco}. The simplest example is known to Gauss
(see [28]) fundamental domain F' of the modular group PSL(2,7Z),

F={zeH:|z|<in2®+y°>1}.
We have PSL(2, Z)\H ~ F, where F is the so-called modular figure,
ﬁ'z{zeH:—%<x<O u x2+y2>1}U{z€H:O§x§% u :C2—|—y221}.
A measurable function f on H is called I'-automorphic, if

fvz) = f(2)
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for all 2 € Hand v € I'. Let 2 = L?(F,du) be the Hilbert space of I'-automorphic
functions that are square-integrable on F' with respect to the measure du, with

dzd
117 = [ PSR <o

It is not difficult to show that the differential expression (6.1), defined on the space
C§°(F) of smooth functions on F' with compact support, is an essentially self-adjoint
operator in 7. Denote its closure by A.

Since the Laplace operator in the spaces 4 and 7 is given by the same differ-
ential expression (6.1), it is natural to assume that the resolvent of A in 5, that
is, the operator

Ry=(A—5(1-s)I)"", where \=s(l-s),

is still the integral operator with the integral kernel Ry(z,2") = r(z, z’; s) obtained
from the kernel r¢(z, z’; s) by the classical method of images. Using a simple crite-
rion for the convergence over a discrete group (see [14, 29]) and the estimate (6.3),
we can easily prove that if z # vz’ for all v € T, then for o > 1 the series

(6.5) r(z,2';8) = Zro(z,”yz/;s),

~el’

is absolutely convergent, uniformly with respect to z, z’ on every compact subset,
and it satisfies reality condition (6.4). The further analysis depends essentially on
whether the closure F of the fundamental domain in H is compact (the case n = 0)
or non-compact (the case n > 1).

The case n = 0 is elementary. Indeed, for o > 1 the kernel r(z, z; s) has a weak
singularity on the diagonal in F' x F' and defines a compact operator on 57, the
resolvent Ry of the operator A. The eigenfunction expansion theorem immediately
follows from the first Hilbert identity (2.1),

R>\ — RH = ()\ — /L)RHR>\7

and the Hilbert-Schmidt decomposition for the compact operator.
Indeed, choose s« > 1 and put R = R,,, where u = »(1—3) < 0. The self-adjoint
compact operator R is positive, so

R= i pnlly,
n=1

where [1,, are orthogonal projection operators in # onto finite-dimensional invari-

ant subspaces of the operator R corresponding to the eigenvalues p, > 0, and
_ _,,—1 H

w1 = —p~ . Here

Zﬂnzl and lim p, =0.
el n—00
Rewriting the Hilbert identity as equation for Ry,
(6.6) (I-(MA—p)R)Ry =R,

we get the eigenfunction expansion theorem for the operator A:

=, 1
RA:Z)\H_/\, where A\, =u+ —.
n=1

n
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In case n > 1 the derivation of the eigenfunction expansion theorem for A is
rather complicated. Namely, the spectrum of the Laplace operator now consists of
the n-fold absolutely continuous spectrum [1/4, c0) and finite multiplicity eigenval-
ues lying on 0 < A < oo without accumulation points on a finite interval. Moreover,
the so-called Eisenstein-Maass series, defined by the series over the cosets of I" which
are absolutely convergent for 0 = Re s > 1 admit meromorphic continuation to the
whole complex s-plane, with poles for ¢ < 1/2 and on the interval [1/2, 1], and the
eigenfunctions of the continuous spectrum of A are given by analytic continuation of
the Eisenstein-Maass series to the line o = 1/2. These results were announced'® in
Selberg’s famous paper [38], and were first proved by Faddeev [14]. The monograph
[29] of Lang is devoted to a detailed presentation of Faddeev’s method.

It is easy to show [14] that the series (6.5) still converges for ¢ > 1, and for
o > 2 it is the integral kernel of the resolvent Ry of A. Nevertheless, equation (6.6)
is no longer suitable for an investigation of the resolvent Ry for all A = s(1 —s) €
C\[1/4,00). The fact is that for u = s¢(1— ) with > > 2 the operator R = R, is no
longer compact, but rather has an absolutely continuous spectrum. A remarkable
observation made by Faddeev in [14] is that the main part of R generating this
spectrum can be identified and explicitly inverted! The paper [14] is based on
the virtuoso use of the resolvent technique, the spectral theory of Sturm-Liouville
operators, and the Fredholm theory. Here we present only the main steps of the
algebraic scheme of calculations; a detailed derivation of all necessary estimates can
be found in [14, 29].

In particular, for simplicity consider the case of one cusp'
fundamental domain F' in the form

F=FyUF,

6 00 and choose a

where Fj is compact and F is a strip {z = = + iy : Ll <<l

5 <z <5,y > a} for
some a > 0. Denote by Py and P, = I — P, orthogonal projection operators on
S corresponding to multiplication by the indicator functions of the regions Fy and

Fy, and write the operator R as
R = Rgo + Rio + Ro1 + Ri1,

where ROO = P()RP(), R01 = P()Rpl, RlO = PlRPO and R11 = PlRpl.

By using (6.5) it is not difficult to show that for s > 2 the operators Rog, Ro1
and Ry are compact. It follows from the representation (6.5), that the ‘cusp part’
of R, that is, the operator Ry; = P RP;, is the integral operator with kernel

Ri1(2,2") = Z R (2,~2"),
7€l

1 n
0 1
Rewriting this formula as

> z—2 —nl?
- 5, (25,

n=-—oo 4yy

where ' = ) ,nE Z} is the stabilizer of the cusp ico in the group T

157 proof based on potential theory was presented in Selberg’s then unpublished 1954 lectures
at the University of Gottingen.
16The case of several cusps is considered in the same way.
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we see that the kernel Ry1(z,2’) is an even periodic function of the variable z — «/
with period 1, and it can be expanded in a Fourier series

(6.7) Ri1(z,2") = to(y,y') + Z ti(y,y") cos(2mm(xz — 2')).

m=1

The constant term, that is, the function t(y,y’), is easily computable:

to(y.y/) = 1 vyt oy <y,
o\Y,y _2%_1 yl—xylx y>y/

and for the functions #x(y, y’) it is not difficult to obtain expressions in terms of the
modified Bessel functions.

The operator Ry acts in the Hilbert space P, .5, which has a natural subspace
L?([a, 00); y~2dy) consisting of functions independent of x, and the orthogonal pro-
jection operator P from P57 onto L?([a,0);y~2dy) is given by the integration:

1
2
(68) fG) o PO = [ S+ inds, yza
—3
We write the kernel R;;(z,2’) in the form
Ry =T+ Ry,

where T = PRy P is the integral operator in L?([a, 00); y~2dy) with kernel ¢o(y, y'),
and R, is the integral operator with kernel Ry1(z,2’) —to(y,y’). Using the Fourier
expansion (6.7) and standard estimates for the modified Bessel functions, we can
easily prove (for details, see [29]), that the operator R} is compact. By recalling
formulas in the §3.1, it is easy to verify that

T =(B—x(1-»I)"",
where B is a self-adjoint operator acting in L?([a,00);y 2dy) and given by the
differential expression By = —y2?d?yp/dy? and the boundary condition'”
xp(a) = ag'(a).
For o > 1/2 the resolvent Q) = (B — s(1 — s)I)~! is the integral operator with

kernel
1

2s —1

a(y, v’ s) = (e, )y 20 —y) +y 0y, s)0(y — ),

where
2s—1_ S~ X% 1
s+x—1 Y
For o = 1/2 the functions ¢(y, s) form a complete system of the continuous spec-
trum eigenfunctions for the operator B in the space L?([a, c0);y~2dy).
Summing up, for » > 2 we have

R=T+YV,
where V' is a compact operator. Therefore, A can be regarded as a perturbation of

B with the same absolutely continuous spectrum! Namely, we now write (6.6) in
the form

(6.9) (I— (A= @)T)Ry = R+ (A — p)VRy,

oy, s) =y +a

1THere we correct the typing error in [14] after (3.7) and also in the corresponding place in [42,
§3.1).
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where A = s(1 — s) and p = 2(1 — 3). It follows from the first Hilbert identity for
B that

I=A=pT=(I+A=pQx) ",
so (6.9) can be rewritten as

Ry={T+A=p)Q\)T+V)+ A=)+ A=pQrVRy,

or

(6.10) Ra=Qx+ T+ A= p)Q)V+ A= p) + (A= p)Qx)VE
if one uses the Hilbert identity once again. Putting

(6.11) Ra=Qx+ T+ A =)@ Ux(I+ (A= pn)Qn),

we obtain for Uy the equation

(6.12) Uy=V + H)\Uy, where Hy=MA—p)V{I+(\—p)Q,).

Equation (6.12), Faddeev’s equation in the theory of automorphic functions, has
the following remarkable properties [14].

1) The operator Hy is a Fredholm operator in the Banach space B of contin-
uous functions f(z) on F' with the norm
[flls = sup [f(2)] + sup y|f(2)|
z€Fy z€F
and depends analytically on s in the strip 0 < o < 2.

2) The singular points of the operator I — Hy, that is, the values of s for which
the homogeneous equation

v=Hyv

has a nontrivial solution in the space B, are discrete in the strip 0 < o < 2.

3) The singular points with o > 1/2, s # 1/2, correspond to non-negative
eigenvalues A = s(1 — s) of A of finite multiplicity, so that ¢ = 1/2 or
1/2 < s < 1. The corresponding eigenfunctions ¢ € 5 have the form

Y=+ (A=),

where v € B is a solution of the homogeneous equation. Eigenfunctions
corresponding to the case ¢ = 1/2 are cusp forms'®, that is, P(¢)(y) =0
for all y > 0.

4) The resolvent kernel r(z,2';s) of A for fixed z # 2z’ and ¢ > 1 admits
meromorphic continuation to the strip 0 < ¢ < 2, with discrete poles of
finite multiplicity. For o > 1/2 these poles lie only on the line 0 = 1/2 and
on the interval 1/2 < s < 1 and are simple, with the possible exception for
s=1/2.

5) The resolvent (A — AI)~! of A, where A = s(1 —s) € C\ [1/4,00) with
non-singular s and o > 1/2, is the operator Ry in (6.11), constructed from
the solution Uy of the Faddeev’s equation (6.12). The operator Ry is an
integral operator in 5 with the integral kernel r(z, 2’; s).

181y general, the space (%) of cusp forms is an invariant subspace of # consisting of functions
with zero integrals over all horocycles in I'\H. It is not difficult to show [20] that the spectrum of
A in 520 is discrete.
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Equation (6.12) is also used for analytic continuation of the continuous spectrum
eigenfunctions of A. In particular, consider the decomposition F' = Fy U F; and
define the function ¥(z, s) on F by ¢¥(z,s) = ¢(z,s) for z € Fy and 9(z, s) = 0 for
z € Fy. Clearly, if a is large enough, then ¢(z, s) determines a piece-wise smooth
T'-automorphic function on H. We put

U(z,5) = I+ A=)+ A= p)Qx)UNY(z,s)

and list the properties of ¥(z, s) [14].

(i) For fixed z the function ¥(z,s) is analytic in the strip 0 < o < 2, except
for the singular points for which o < 1/2 or 1/2 < s < 1, and ¥(z,s) is
analytic In a neighborhood of the line ¢ = 1/2, with the possible exception
of the point s = 1/2.

(ii) For non-singular s in the strip 0 < o < 2 the function ¥(z, s) is a smooth
I'-automorphic function on H, satisfying the equation

2 2
(6.13) —y? <% + (98—3/2) U(z,s) =s(l —s)¥(z,s).

For o > 1 the solution of (6.13) can be found ‘explicitly’ as the Eisenstein-Maass
series F(z, s):

(6.14) E(z,s)= Y. y'(72).

YEL\T

Namely, it is easy to show that for ¢ > 1 the series converges absolutely and
uniformly on compact subsets of H, and defines a I'-automorphic function satisfying
equation (6.13). For o > 1 it is not difficult to prove the equality ¥(z, s) = E(z, s),
which gives a meromorphic continuation of E(z,s) to the strip 0 < ¢ < 1, and on
the line o = 1/2 the function E(z, s) has no singularities except, possibly, the point
s=1/2.

Finally, the eigenfunction expansion theorem for A is obtained from the above
results using (2.3). The reader can find detailed proofs in Faddeev’s paper [14],
the indicated book by Lang [29] and Venkov’s monograph [44], which generalizes
Faddeev’s method to vector-valued functions. The characteristic determinant of
the operator A is defined using an appropriate regularization of the formula (2.5)
and M.G. Krein method of the spectral shift function. Moreover, the characteristic
determinant of A is expressed in terms of the Selberg zeta function of the Fuchsian
group I', and the calculation of the regularized trace in (2.5) reduces to the famous
Selberg trace formula! We refer the reader to [45] for details of these nontrivial
calculations. This concludes our exposition of Faddeev’s method.

As an interesting example, consider the case of the modular group I' = PSL(2, Z).
The corresponding Eisenstein-Maass series F(z,s) admits a simple expression in
terms of the Epstein zeta function of the positive-definite binary quadratic form
Q(m,n) = am? + bmn + cn? of the discriminant b? — 4ac = d < 0, where a = 1,
b= —2x and ¢ = 22 + 2, so d = —4y?. Furthermore, z = x + iy € H is the root of
the quadratic form @,

—b+d
2=
2a
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In particular, from (6.14) we easily obtain

(6.15) 2A(2s)y " E(zs) = > ﬁ

where ((s) is the Riemann zeta function, and the prime on the summation sign
indicates that the term with m = n = 0 is omitted. The Fourier series expansion
of the function E(z, s) is given by the beautiful formula'’

(6.16) E(z,8) =y*+c(s)y' ™ + ;(T\/sg) Z 0’1,25(TL)TLS_%K57% (2mny) cos(2mnz),
n=1

where K(y) is the modified Bessel function of the second kind and

s (25 —1) e
o) =30, o) = T &) =i (5) <)

It follows from Faddeev’s method that for fixed z the Eisenstein-Maass series
E(z,s) is a holomorphic function on the ‘physical sheet” 0 = Res > 1/2 and
is regular on the line ¢ = 1/2. From here it immediately follows that the zeta
function ((s) does not vanish on the line o = 1, which implies the asymptotic law
of primes! However, this method does not give any information about the poles of
E(z,s) on the ‘non-physical sheet’ o < 1/2. One can only say that the non-tirival
zeros of ((s) are related to the so-called resonances of the Laplace operator on the
modular figure.

6.2. Pseudo-cusp forms and zeros of L-series. In 1977, in H. Haas’s diploma
work at the University of Heidelberg under the direction of H. Neuenhoffer, several
of the first eigenvalues of the discrete spectrum of the Laplace operator on the
modular figure were calculated. Stark and Hejhal soon noticed that if one writes
A = % + t%, then the values s, = % + ity correspond to the first non-trivial
zeros of the Riemann zeta function and the Dirichlet L-series L(s,x) with the
quadratic character modulo 3! This unexpected observation caused a sensation
and was actively discussed in correspondence between Cartier and Weil in 1979
[6], as well as by Venkov, A.I. Vinogradov, Faddeev and author in the Leningrad
branch of V.A. Steklov Mathematical Institute of the USSR Academy of Sciences.
Hejhal has decided to verify Haas’s calculations and did not find these zeros among
the eigenvalues of the Laplace operator.

What was the reason for this discrepancy? As Hejhal explained in [25], Haas was
using the standard collocation method for the Neumann problem on the modular
figure, and he did not notice the appearance of a logarithmic singularity at the
corners of the modular figure z = p and z = 4, where p = (1 ++/=3)/2. In
particular, the function f(z) = r(z, 20; s) for z # 2o satisfies the equation

(6.17) Af =Af, where A=s(1-y5s),

and if zg = p or zp = i, then with discrete approximation it is easy to miss loga-
rithmic singularity (6.2) at z — zg. For y — oo and fixed zg, the resolvent kernel
has the asymptotics [17]

1-s

—27my
28_1E(2055)+O(6 )a

T(Zv 203 S) =

19(6.16) is sometimes called the Selberg-Chowla formula.
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and therefore if E(zq, s) = 0, then f(z) € L2(F,du). It is remarkable that for zg = i
and zg = p the function ((2s)FE(zo, s) is proportional to the Dedekind zeta function
of the imaginary quadratic fields Q(v/—1) and Q(v/=3), so A = s(1 — s) can be
expressed in terms of zeros of {(s) and corresponding L-series. However, f(z) is
not an eigenfunction of the Laplace operator, since it is not a cusp form. Namely,
the condition

/_ @ + iy)dz = 0

holds only for y > Im 2¢; such functions are called pseudo-cusp forms. Moreover,
for zg one can take any point on the modular figure, for example zg = v/—5. It is
well-known that the function ((2s)E(v/=5, s) has zeros outside the line Res = 1/2,
so corresponding values of A will not even be real. Thus, the pseudo-cusp forms
have no relation to the discrete spectrum of the Laplace operator, and equation
(6.17) does not impose any restrictions on A.

Indeed, if f € L2(F,du) satisfies (6.17) and f € D(A), then from the self-
adjointness of the operator A we obtain

A =NIFIIP = (Af, f) = (f. Af) = 0.

However, although f(z) = r(z, z0; s) € L*(F,du) when ((2s)E(z0,8) =0, f ¢ D(A)
and the integral (Af, f) is divergent, hence the previous argument does not apply.
Specifically,

(Af, ) = / /F Af(2)FEdu(z) = A1 + (20 70: ),

where the second term is obviously divergent. By using the reality condition (6.4),
the difference (Af, f)— (f, Af) can be defined as a limit, which one easily computes
via the first Hilbert identity:

lim (r(z, 20;8) — (2, 20,5)) = (A = N fI*.

Z—rZ20
The last formula does not give any restriction on A = s(1 — s), except for the
assumption that ¢(2s)E(zo,s) = 0.

Nevertheless, it makes sense to consider Hilbert spaces of pseudo-cusp forms

1
o = {fe%”: 21 flz+iy)de =0 for yZa},
2

for a fixed a > 0. In particular, denote by A, the Friedrichs extension of the opera-
tor A restricted to the subspace of smooth functions with compact support in 57;.
Lax and Philips proved [32] that the self-adjoint operator A, in %, has a purely
discrete spectrum, which was studied by Colin de Verdiere [7, 8]. Furthermore, it
was suggested in [8] that the discrete spectrum of the operator A, for a = v/3/2
is related to zeros of the Dedekind zeta function of the imaginary quadratic field

Q(vV=3).

6.3. Heegner points and Linnik asymptotics. The formula (6.15) provides an
explicit expression for the Dedekind zeta function (x (s) of the imaginary quadratic
field K = Q(+/d) of the fundamental discriminant d < 0 in terms of the Eisenstein-
Maass series. As is well known (e.g. [4]), the ideal class group of the field K is
isomorphic to the group of classes of properly equivalent primitive, positive-definite,
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integral binary quadratic forms with discriminant d. Each such quadratic form can

be written as Q(m,n) = am?+bmn + cn? with integer coefficients a, b, ¢, satisfying
a>0, (a,b,c)=1 and b*—4ac=d.

The root zg of the quadratic form () is given by

—b d

and the proper equivalence class of @ is completely determined by the condition
zg € F, where F' is the modular figure. Points zg € F are called Heegner points

for the discriminant d. From this we obtain®’
(6.18) =2 (1) o9 X Bles)

i=1
where h(d) is the ideal class number of the field K, wqy is the number of units in K,

and z; run over all Heegner points zg of the discriminant d.
Siegel’s celebrated theorem [40] states that for every 0 < e < 1/2

h(d) > c(e)|d|z <

with a non-effective constant c¢(¢) > 0. Before the classical paper [40], the only
known result was Hecke’s theorem that the generalized Riemann hypothesis for all
L-series with quadratic characters implies that h(d) — oo as d — —oo. Surpris-
ingly, in 1933 Deuring [9] proved an unexpected result that the condition h(d) =1
for infinitely many negative fundamental discriminants implies the Riemann hy-
pothesis!

Indeed, if h(d) = 1, then

14V
VA b,
2Q = 2

VD if d=4D and D = 2,3 (mod 4).
In the latter case, we get immediately from (6.16) and (6.18) that for such d
(6.19)  Cie(s) = |D|72¢(28) B(VD, s) = ¢(25)(1 + ¢(s)|D|>*) + O(e~>"IP1).

Suppose now that ((p) = 0 and Rep > 1/2. Because (x(s) = {(s)L(s, xa), where
Xd 18 a quadratic character modulo d given by the Kronecker symbol, by passing to
the limit d — —oo in (6.19) we obtain ((2p) = 0, a contradiction. The case d =1
(mod 4) is considered similarly.

Mordell soon [36] generalized Deuring’s result and proved that if the class num-
ber takes a fixed value for infinitely many fundamental negative discriminants, then
the Riemann hypothesis is true. His proof also uses the formulas (6.16) and (6.18).
Finally, Heilbronn [24] used the same assumption to deduce the generalized Rie-
mann hypothesis for all Dirichlet L-series with quadratic characters. From this and
the aforementioned theorem of Hecke it follows that h(d) — oo as d — —oc.

However, in the same year of 1934, Siegel proved his famous theorem, which
naturally moved the Deuring—Mordell-Heilbronn method to the background. It was
only in the 1960s that some of their arguments were used to solve the celebrated

20For the details see [48], for example, where zeta functions of orders in imaginary quadratic
fields are also considered.
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tenth discriminant problem of Gauss, in which Heegner points played a prominent
role.

Since h(d) — oo as d — —oo, the question arises of the distribution of the
Heegner points on the modular figure. The equivalent problem of the distribution of
the integer points on the reduction domain of a two-sheeted hyperboloid b? — 4ac =
d < 0 was solved by Linnik [34] using his ergodic method. Here the condition

5)-

was also assumed for some prime p, where (%) is the Legendre symbol. In particular,
Linnik proved that as d — —oo, the Heegner points are uniformly distributed on
the modular figure with respect to the measure

dp* = 3 d:z:;ly, so that p*(F) =1.
Ty
In [47] the uniform distribution was proved on average over d, that is, for those
values of d for which so-called Salié sums admit a good estimate. Finally, Duke
[11] proved the uniform distribution of Heegner points as d — —oo using a non-
trivial estimate for the Fourier coefficients of modular forms of half-integer weight,
obtained by Iwaniec [27]. Specifically, let Q be a convex domain with piece-wise
smooth boundary on the modular figure, and let N () be the number of Heegner
points in 2. Then the Linnik asymptotic expression
N(Q
(6.20) T @+ 0(d )
is valid for some 0 > 0 (possibly depending on ).

We now return to representation (6.18) for (x(s) and, as proposed in [47], we
use the uniform distribution of Heegner points on F; — the modular figure £ with
the restriction Imz < \/M/2 More precisely, assuming that the 6 > 0 in (6.20)
does not depend on the domain 2, we replace the sum in (6.18) by an integral! As
a result, as d — —oo we get that

|d| —s/2
20 )= (1) ceon@ [[ B+ @i
d

where 0 = Res. The integral in (6.21) can be evaluated explicitly. Namely, by
using (6.13), the integral Green’s formula, the invariance of E(z,s) with respect to
the modular group, and the Fourier expansion (6.16), we obtain

B 9)du(s) = ——— [ [ AB(z,5)dsdy
//Fd s(s—1) Fy

_ ot oreEL ol
_5(5—1) _% 8y zZ,S8 y:@ i

_ 1 M (571)/2_ @ M 75/2
s—1\ 4 s 4 '
Thus, for fixed s we have

_ 6h(d) 1 cs) (a7
(6.22)  Cie(s) = — |d|<(2s)<s_1 - (Z) >+O(h(d)|d| 5-0/2)
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Suppose now that for some sequence of fundamental discriminants d, we can
choose § = 1 +¢ with arbitrary € > 0 in the Linnik asymptotics (see the correspond-
ing arguments in [47]). Let {(p) = 0, where Re p > 1/2. Since Cx (s) = ¢(s)L(s, xa),
by letting d — —oo we get from (6.22) that ((2p) = 0. This contradiction ‘proves’
the Riemann hypothesis, as in the Deuring—Mordell-Heilbronn approach.

Of course, the starting formula (6.21) needs to be proved, since for domains €
lying on the very ‘top’ of the truncated modular figure Fy, the Linnik asymptotic
expression (6.20) loses its meaning, and the Heegner points are no longer uniformly
distributed as d — —oo. The easiest way to see it is to average the representation
(6.18) of a zeta function (p(s) of order Op with the discriminant D = df? in the
imaginary quadratic field Q(\/E) over all —D < X. The corresponding formula, an
analogue of the classical Vinogradov-Gauss formula [46] in the critical strip, was
obtained in [48] and has the form

D] o 1+3 14452
(6.23) Z (T) Cp(s) = ((25)(P(s) X T2 4-¢c(s)P(1—5) X" 2 )+ Ry(X).

—D<X

Here

D(s) =

27°¢(s) X3/ 0g® X )
(s +2)¢(s+2) ls —1|(|s — 1/2| +log™' X))’

and the estimate of the remainder is uniform with respect to s on compact subsets
of the critical strip. The leading term of the asymptotics in (6.23) is proportional to
¢(s), which makes the previous argument inapplicable. Thus if Linnik’s asymptotic
expression can hold up to the very top of the truncated modular figure F;, then it
is only for very special values of d.

In the above arguments the formula (6.18) played the key role. It was also used
by Zagier [49] to construct a nontrivial representation of SL(2,R) connected with
the zeros of the Riemann zeta function. We should also mention recent works by
Bombieri and Garrett on the spectrum of the Laplace operator on the space of
pseudo-cusp forms in connection with the zeros of (x (s) (see the talks [3, 18]). We
leave the reader alone with this intriguing works and literature cited there.

and R,(X)=0 (

Note added in Proof. The results of the talks [3] and [18] have now appeared
on the arXiv: Enrico Bombieri and Paul Garrett, “Designed Pseudo-Laplacians”,
https://arxiv.org/abs/2002.07929.
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