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Etudes of the resolvent

L.A. TAKHTAJAN

To the blessed memory of my teachers, Ludwig Dmitrievich Faddeev and Askold Ivanovich
Vinogradov

Abstract. Based on the notion of the resolvent and on the Hilbert identities,
this paper presents a number of classical results in the theory of differential
operators and some of their applications to the theory of automorphic func-
tions and number theory from a unified point of view. For instance, for the
Sturm-Liouville operator there is a derivation of the Gelfand-Levitan trace for-
mula, and for the one-dimensional Schrödinger operator a derivation of Fad-
deev’s formula for the characteristic determinant and the Zakharov-Faddeev
trace identities. Recent results on the spectral theory of a certain functional-
difference operator arising in conformal field theory are then presented. The
last section of the survey is devoted to the Laplace operator on a fundamen-
tal domain of a Fuchsian group of the first kind on the Lobachevsky plane.
An algebraic scheme is given for proving analytic continuation of the integral
kernel of the resolvent of the Laplace operator and the Eisenstein-Maass se-
ries. In conclusion, there is a discussion of the relation between the values of
the Eisenstein-Maass series at Heegner points and Dedekind zeta-functions of
imaginary quadratic fields, and it is explained why pseudo-cuspforms for the
case of the modular group do not provide any information about the zeros of
the Riemann zeta-function.
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1. Introduction

This survey is an extended and revised version of my talk at the meeting of the
Moscow Mathematical Society on April 1, 2014. The reader is presented with a col-
lage of classical results in the theory of differential operators, written from a single
viewpoint, together with some applications to automorphic functions and number
theory. The relationship between these topics reflects the unity of mathematics,
and their choice reflects the tastes and interests of the author, influenced by the
traditions of the Leningrad-St. Petersburg mathematical school. The survey is in-
tended for a broad readership, from specialists in operator theory and functional
analysis to algebraic geometers and theoretical physicists. To convey to a mod-
ern reader the elegance and beauty of the results, the achievements of the Soviet
mathematical school, we chose a neoclassical style of presentation.

Let us describe the contents of this survey in more detail. In §2 we recall the no-
tion of the resolvent, which plays a main role in the theory of self-adjoint operators
in a Hilbert space. In §2.2 we present the Hilbert identities for the resolvent of a
self-adjoint operator A, and in §2.3 we give the definition of the regularized deter-
minant detA. Section 3 is devoted to the classical Sturm-Liouville theory. Thus, in
§3.1 we briefly recall well-known facts, and in §3.2 we derive the celebrated Gelfand-
Levitan trace formula. Section 4 is devoted to the presentation of main results for
the one-dimensional Schrödinger operator H . In particular, in §4.1 we introduce
the Jost solutions and recall the formula for the resolvent of the operator H , in §4.2
we derive Faddeev’s formula for the regularized determinant det(H − λI), and in
§4.3 we present the derivation of the Zakharov-Faddeev trace identities.

Section 5 is based on [43] and is devoted to the spectral analysis of a certain
functional-difference operator, a special pseudodifferential operator H of infinite
order which arises in conformal field theory and in the representation theory of
quantum groups. Thus, in §5.1 we introduce the self-adjoint Weyl operators U and
V in the definition of the operator H = U + U−1 + V , and in §5.2 we consider
the ‘unperturbed’ operator H0 = U + U−1. In §5.3 we define a solution to the
scattering problem and the Jost functions, and we give an explicit formula for the
resolvent of the self-adjoint operatorH in the Hilbert space L2(R) together with the
eigenfunction expansion theorem. Finally, in §5.4 we describe functional-difference
operators for mirror curves.

The last section, §6, is devoted to the spectral theory of the Laplace operatorA on
a fundamental domain of a Fuchsian group of the first kind Γ on the Lobachevsky
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plane H. Of particular interest here is the case of a non-compact fundamental
domain, when A has a continuous spectrum (considered in Faddeev’s classical paper
[14]). Thus, in §6.1 we follow [14] and give an algebraic scheme for proving a
fundamental result on meromorphic continuation with respect to the variable s of
the integral kernel of the resolvent (A− s(1 − s)I)−1 of the operator A and of the
Eisenstein-Maass series E(z, s), to the domain 0 < Re s ≤ 1. Moreover, in the
half-plane Re s ≥ 1

2 , the resolvent kernel can have only simple poles and only poles

on the line Re s = 1
2 and the interval [ 12 , 1], while the Eisenstein-Maass series can

have only poles on the interval [ 12 , 1], which immediately gives the eigenfunction
expansion theorem for the operator A. As explained in [45], it follows from the
celebrated Selberg trace formula that the regularized determinant of the operator
A is expressed in terms of the Selberg zeta-function.

The arithmetic case Γ = PSL(2,Z) — the modular group — is considered in
§§6.2–6.3. Thus, in §6.2 we discuss as a curiosity the ‘sensation’ at the end of the
1970s about the connection of the eigenvalues of the Laplace operator with the
zeros of the Riemann zeta function and L-series by means of the so-called pseudo-
cuspforms. Using the Hilbert identity, we explain why pseudo-cuspforms do not
provide any information about the location of these zeros.

Finally, § 6.3 contains a discussion of the relationship between the values of
the Eisenstein-Maass series at Heegner points and the Dedekind zeta-functions of
imaginary quadratic fields. Using the uniform distribution of the Heegner points
in the fundamental domain of the modular group — the Linnik asymptotics — we
naively ‘prove’ the Riemann hypothesis. Of course, such an application of Lin-
nik’s asymptotics is unacceptable, as is confirmed by an analogue of the classical
Vinogradov-Gauss formula in the critical strip, obtained in the paper [48] by A.I.
Vinogradov and the author. Nevertheless, attempts to relate the Laplace operator,
pseudo-cuspforms and the Heegner points to zeros of Dedekind zeta-functions of
imaginary quadratic fields continue to this day. Evidence of this can be found in
the papers of Zagier [49] and Colin de Verdièr [7, 8] in the early 1980’s, as well as
in the recent studies by E. Bombieri and P. Garrett (see conference talks [3, 18]).

2. Main definitions

In response to questions in quantum mechanics, von Neumann developed a theory
of unbounded self-adjoint operators in a Hilbert space. According to the Dirac-von
Neumann axioms (se [41], for instance), it is self-adjoint operators that correspond
to quantum observables, and the simplest of them — the position and the momen-
tum of a particle — are described by unbounded operators.

For the convenience of the reader, we follow the classical monograph [2] and
briefly recall the standard notation and basic facts from the theory of self-adjoint
operators.

2.1. Self-adjoint operators. An operator A with dense domainD(A) in a Hilbert
space H is said to be symmetric if

(Af, g) = (f,Ag)

for all elemends f, g ∈ D(A), where ( , ) is the inner product in H . The adjoint
operator A∗ to the densely defined operator A is defined as follows: g ∈ D(A∗) if
there is g∗ ∈ H such that

(Af, g) = (f, g∗)
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for all f ∈ D(A) and then g∗ = A∗g. The operator A is said to be self-adjoint if
A = A∗. Clearly, every self-adjoint operator is symmetric. An operator A is said
to be closed if its graph Γ(A) — the set of pairs {f,Af} for all f ∈ D(A) — is a
closed subset in H ⊕ H ; A admits a closure if the closure of Γ(A) in H ⊕ H is

the graph of an operator, that is, there is an operator Ā such that Γ(A) = Γ(Ā). A
closed operator defined on the whole of H is bounded.

A symmetric operator A is said to be essentially self-adjoint if its closure Ā is
a self-adjoint operator. A typical example is the operator A = id/dx acting in the
Hilbert space L2(R) and defined on the linear space C∞

0 (R) of smooth functions with
compact support. Its closure Ā is a self-adjoint operator with the domain D(Ā) =
W 1

2 (R), the Sobolev space of absolutely continuous square integrable functions with
square integrable derivative.

2.2. Resolvent and the spectral theorem. Let A be a closed operator. The
values λ ∈ C, for which an operator1

Rλ(A) = (A− λI)−1

(resolvent2 of an operator A) exists and is defined everywhere on H , are called
regular values. The set ρ(A) ⊆ C of regular values is open and is called the resolvent
set. The spectrum of an operator A is the complement to the regular set, σ(A) =
C \ ρ(A). For a self-adjoint operator σ(A) ⊆ R.

Resolvent of an operator A satisfies the relation

(2.1) Rλ(A)−Rµ(A) = (λ − µ)Rλ(A)Rµ(A), where λ, µ ∈ ρ(A),

which generalizes the elementary algebraic formula

1

a− λ
− 1

a− µ
=

λ− µ

(a− λ)(a− µ)

and is called the first Hilbert identity. It follows from (2.1) that Rλ(A) is a holo-
morphic function on ρ(A) with the values in the Banach algebra L (H ) of bounded
operators on H . Let A and B be closed operators with a common domain. Their
resolvents satisfy the so-called Hilbert second identity

(2.2) Rλ(A) −Rλ(B) = Rλ(A)(B −A)Rλ(B), λ ∈ ρ(A) ∩ ρ(B),

which generalizes the algebraic formula

1

a− λ
− 1

b− λ
=

b− a

(a− λ)(b − λ)
.

The spectral theorem of von Neumann is a fundamental fact in the theory of
self-adjoint operators acting in a Hilbert space. In particular, for each self-adjoint
operator A there is unique projection-valued countably additive measure E, defined
on the σ-algebra B of Borel subsets of the real line, such that E(∅) = 0, E(R) = I,

D(A) =

{

f ∈ H :

∫ ∞

−∞
λ2d(Eλf, f) <∞

}

,

and for f ∈ D(A)

Af =

∫ ∞

−∞
λdEλf,

1Here I is the identity operator in H .
2Notation R(λ, A) is also used.
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where Eλ = E((−∞, λ)) and the integral is understood as a limit of Riemann-
Stieltjes sums in the strong topology on H . The relationship between the projection-
valued measure E and the resolvent Rλ of A is given by the formula

(2.3) lim
ε→0+

1

2πi

∫ b

a

(Rλ+iε −Rλ−iε)dλ = E((a, b)) +
1

2
(E({a}) + E({b})),

sometimes called Stone’s formula. This formula is an operator version of the clas-
sical Sokhotski–Plemelj formula

1

λ− i0
− 1

λ+ i0
= 2πiδ(λ)

in the theory of distributions, and is a basis of the eigenfunction expansion theorem
for differential operators.

2.3. Determinant of an operator. Here we briefly recall the notion of the char-
acteristic determinant of a self-adjoint operator (see [22]). In the simplest case,
when K is a compact self-adjoint operator with trace (a trace class or nuclear
operator), the Fredholm determinant is given by the simple formula

(2.4) det(I − λK) =
∏

i

(1− λiλ) ,

where λi are the eigenvalues of an operator K, and this is an entire function3. If
the operator K is invertible, then from (2.4) we easily obtain

d

dλ
log det(I − λK) = −TrRλ(A), where A = K−1.

This formula can be generalized to a wider class of operators. Namely, if the
resolvent Rλ(A) is of trace class, then the characteristic determinant det(A − λI)
of A is determined (up to a multiplicative constant) from the relation

(2.5)
d

dλ
log det(A− λI) = −TrRλ(A).

As we shall see below, this formula makes sense if we understand Tr to be a properly
regularized trace of the resolvent. If, in addition, Rλ(A) is an integral operator
acting in L2(X) with integral kernel Rλ(x, y) that is continuous on X ×X , where
the subset X ⊂ R is bounded, then by a well-known theorem4

(2.6) TrRλ(A) =

∫

X

Rλ(x, x)dx.

In the case X = R the following formula holds:5

(2.7) TrRλ(A) = lim
n→∞

∫ n

−n

Rλ(x, x)dx.

A more general way of introducing a regularized determinant is based on the
notion of the zeta function of an elliptic operator (see the survey [39], as well as
[41] and references therein). For simplicity, we assume that A is an elliptic operator

3Since Tr |K| =
∑

i
|λi| < ∞.

4See the monograph [22, §III.10], as well as [31, §30.5, Theorem 12].
5It is sufficient to approximate Rλ(A) by the operators PnRλ(A)Pn, where the Pn are the

orthogonal projections onto L2(−n, n) ⊂ L2(R), and to use Theorem 6.3 in Chapter III in [22].
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with a purely discrete spectrum consisting of non-negative eigenvalues λn of finite
multiplicity accumulating to infinity. The zeta function of A is defined by

ζA(s) =
∑

λn>0

1

λsn
,

where it is assumed that the series converges absolutely for Re s > a for some
a > 0. Under fairly general assumptions (for example, for the Sturm-Liouville
operator considered below), ζA(s) admits an analytic (meromorphic) continuation
to a domain containing the half-plane Re s ≥ 0 and is regular for s = 0. Then the
regularized determinant detA of A is defined by

detA = exp {−ζ′A(0)} ,
where the prime indicates the derivative with respect to s. The characteristic
determinant det(A − λI) is defined in a similar way, and for many examples this
definition is consistent with the formula (2.5).

3. Sturm-Liouville problem

3.1. The resolvent and the eigenfunction expansion. Following the classic
monograph [33], we consider the simplest problem of finding all non-trivial solutions
of the Sturm-Liouville equation

(3.1) − y′′ + v(x)y = λy, 0 ≤ x ≤ π,

with zero boundary conditions

y(0) = y(π) = 0,

where v(x) is a continuous real-valued function on the interval [0, π]. The differential
operator

L = − d2

dx2
+ v(x)

is symmetric6 on the subspace C∞
0 (0, π) of smooth functions with compact support.

Its Friedrichs extension is the self-adjoint Sturm-Liouville operator L in L2(0, π)
with the domain

D(L) = {y ∈W 2
2 (0, π) : y(0) = y(π) = 0},

where W 2
2 (0, π) is the Sobolev space of square-integrable functions on (0, π) with

square-integrable generalized derivatives up to second order.
Let y1(x, λ) and y2(x, λ) be solutions of equation (3.1) with the boundary con-

ditions

y1(0, λ) = 0, y′1(0, λ) = 1 and y2(π, λ) = 0, y′2(π, λ) = 1,

and let d(λ) = y1(π, λ). The function d(λ) is entire of order 1/2 with simple zeros
λn corresponding to the simple eigenvalues of the operator L and tending to infinity.
When v(x) ∈ C1(0, π), the following asymptotics holds:

(3.2) λn = n2 + c+O

(

1

n

)

, where c =
1

π

∫ π

0

v(x)dx.

The operator L has a pure discrete spectrum and the corresponding eigenfunction
expansion theorem follows from (2.3). Specifically, the resolvent Rλ = (L − λI)−1

6The symmetric operator L acting in L2(0, π) has defect indices (2, 2), and its self-adjoint
extensions are described by the Sturm-Liouville boundary conditions.
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of L is an operator-valued meromorphic function with simple poles at λ = λn and
with residues that are projection operators onto the one-dimensional subspaces
corresponding to the eigenfunctions. For λ 6= λn the resolvent Rλ is a bounded
operator on L2(0, π) with integral kernel

(3.3) Rλ(x, ξ) =
1

W (y1, y2)(λ)
(y1(x, λ)y2(ξ, λ)θ(ξ − x) + y1(ξ, λ)y2(x, λ)θ(x− ξ)),

where W (f, g) = f ′g−fg′ is the Wronskian of functions f and g, so that the Wron-
skian of two solutions of equation (3.1) does not depend on x and W (y1, y2)(x, λ) =
−d(λ), and θ(x) is the Heaviside function: θ(x) = 0 for x < 0 and θ(x) = 1 for
x ≥ 0.

Indeed, the kernel Rλ(x, ξ) satisfies the equation

(3.4)

(

− ∂2

∂x2
+ v(x) − λ

)

Rλ(x, ξ) = δ(x− ξ), 0 < x, ξ < π

(where δ(x) is the Dirac delta function), which follows from (3.1) and the elementary
formula

θ′(x) = δ(x)

in the theory of distributions. Using (3.4), we easily to show that the range of Rλ

is D(L) and (L− λI)Rλ = I.

3.2. Characteristic determinant and trace identities. It follows from (3.2)
that the operator Rλ is of trace class when λ 6= λn, so that by using the definition
of det(L−λI) in terms of the operator zeta function, it is not difficult to prove the
formula (2.5) (e.g., [41, §5.5.1]). Since the integral kernel Rλ(x, ξ) of the trace class
operator Rλ is continuous on [0, π]× [0, π], we get from (2.6) that

(3.5) TrRλ =

∫ π

0

Rλ(x, x)dx = − 1

d(λ)

∫ π

0

y1(x, λ)y2(x, λ)dx.

It is easy to compute the integral in (3.5) using the following classical trick [13].
Specifically, we differentiate (3.1) for y1(x, λ) with respect to λ:

−ẏ′′1 + v(x)ẏ1 = λẏ1 + y1,

where the dot means the λ-derivative. We multiply this equation by y2(x, λ) and
subtract the equation for y2(x, λ), multiplied by ẏ1(x, λ). As the result, we obtain
the identity

(3.6) y1y2 = ẏ1y
′′
2 − ẏ′′1y2 = −W (ẏ1, y2)

′.

Recalling the definition of the solutions y1 and y2, we get from this that
∫ π

0

y1(x, λ)y2(x, λ)dx = ẏ1(π, λ) = ḋ(λ),

and comparing (2.5) with (3.5), we obtain

det(L− λI) = Cd(λ),

with some constant C. By computing the asymptotics as λ→ −∞ in this formula
it is easy to get that C = 2 (see. [41, §5.5.1]). For example,

det

(

− d2

dx2
− λI

)

= 2
sinπ

√
λ√

λ
.
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Summarizing, we obtain the following Hadamard product representation for the
entire function d(λ):

(3.7) d(λ) =
detL

2
(−λ)δ

∏

λn 6=0

(

1− λ

λn

)

,

where δ = 1 if λ = 0 is an eigenvalue for L, and δ = 0 otherwise.
When v(x) ∈ C2(0, π), one can thoroughly investigate the asymptotics of the

function d(λ) as λ→ −∞ both with the help of the differential equation (3.1) and
with the help of a Hadamard product and the asymptotics (3.2) of the eigenvalues
with the remainder term O(n−2). Specifically, put λ = −k2, where k > 0. The
differential equation (3.1) with respect to y1 is equivalent to the Liouville integral
equation

y1(x, λ) =
sinh kx

k
+

1

k

∫ x

0

sinh{k(x− t)}v(t)y1(t, λ)dt.

Solving it by the method of successive approximations and integrating by parts, we
get after simple calculations that as k → ∞

(3.8) d(λ) =
eπk

2k

{

1 +
πc

2k
+

1

8k2
(

π2c2 − 2(v(0) + v(π))
)

+O

(

1

k3

)}

.

On the other hand, using the Euler formula for the function sinhπk, we rewrite the
right hand side of (3.7) as7

Φ(λ) =
detL

2

sinhπk

πk

∞
∏

n=1

n2

λn

∞
∏

n=1

k2 + λn
k2 + n2

= C1
sinhπk

πk
ϕ(k),

where

C1 =
detL

2

∞
∏

n=1

n2

λn
and ϕ(k) =

sinhπk

πk

∞
∏

n=1

(

1 +
λ2n − n2

k2 + n2

)

.

Put sλ =
∑∞

n=1(λn−n2−c). It follows from (3.2) with the remainder term O(n−2)
that

∞
∑

n=1

λ2n − n2

k2 + n2
= c

∞
∑

n=1

1

k2 + n2
+

1

k2
sλ +O

(

1

k3

)

=
πc cothπk

2k
− c

2k2
+

1

k2
sλ +O

(

1

k3

)

.

From this it is now simple to show (see [33]) that as k → ∞

(3.9) Φ(λ) =
C1e

πk

2πk

{

1 +
πc

2k
+

1

8k2
(

π2c2 − 4c+ 8sλ
)

+O

(

1

k3

)}

.

Comparing the coefficients in the asymptotic formulas (3.8) and (3.9), we obtain

C1 = π и sλ − c

2
= −v(0) + v(π)

4
.

The first of these formulas gives the expression

detA = 2π

∞
∏

n=1

λn
n2

= 2π

∞
∏

n=1

(

1 +
λn − n2

n2

)

7Here we assume that δ = 0 в (3.7), which can always be achieved by shifting v(x).
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for the regularized determinant of the Sturm-Liouville operator, while the second
formula, written in the form8

∞
∑

n=1

(

λn − n2 − 1

π

∫ π

0

v(x)dx

)

=
1

2π

∫ π

0

v(x)dx − v(0) + v(π)

4
,

is the celebrated Gelfand-Levitan trace formula [21] for the regularized trace of the
operator L! In the case where v(x) ∈ C∞(0, π), formulas for the regularized traces
of all positive-integer powers of the operator L were obtained in Dikii’s classical
paper [10] (see also the survey [37] and references there).

4. One-dimensional Schrödinger operator

Leaving aside the case of the radial Schrödinger equation (see the survey [12],
the monograph [35] and references there), we consider the Schrödinger equation on
the whole real line

(4.1) − y′′ + v(x)y = λy, −∞ < x <∞.

Here the potential — a measurable, real-valued function v(x) — is assumed to be
rapidly decaying:

(4.2)

∫ ∞

−∞
(1 + |x|)|v(x)|dx <∞.

Without loss of generality, we assume v(x) to be continuous. Under condition (4.2),
the Schrödinger operator

H = − d2

dx2
+ v(x)

is defined on the functions ψ ∈ L2(R) that are twice differentiable on R and such
that −ψ′′+ v(x)ψ ∈ L2(R), and it is self-adjoint in L2(R). It is convenient to write

H = H0 + V,

where H0 = −d2/dx2 is the free Schrödinger operator with D(H0) = W 2
2 (R), and

V is a multiplication by v(x) operator in L2(R). The operator H has an absolutely
continuous spectrum of multiplicity 2 filling the semi-axis [0,∞), and finitely many
simple negative eigenvalues λ1, . . . , λn. Let us explain this more carefully (see
[13, 15, 35, 41] for details).

4.1. Jost solutions and the resolvent. It is convenient to use the parametriza-
tion λ = k2, in which the complex λ-plane cut along [0,∞) corresponds to the
upper half-plane of the variable k, the so-called ‘physical sheet’ of the Riemann
surface of the function k =

√
λ. Under the condition (4.2) the Jost solutions are

defined, namely, the functions f1(x, k) and f2(x, k) satisfying (4.1) and having the
asymptotics

f1(x, k) = eikx + o(1), as x→ ∞,

f2(x, k) = e−ikx + o(1), as x→ −∞.

The proof is based on the integral equation of the Volterra type

f1(x, k) = eikx −
∫ ∞

x

sin k(x− t)

k
v(t)f1(t, k)dt,

8We take the opportunity to note that this formula corrects a typing error in the corresponding
formula in §2.2 of [42].
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and the analogous equation for f2(x, k). The following estimate holds for k 6= 0:

(4.3) |e−ikxf1(x, k)− 1| ≤ σ(x)

k
e

1
|k|

σ(x), where σ(x) =

∫ ∞

x

|v(t)|dt,

and moreover σ ∈ L1(a,∞) for each a ∈ R and limx→∞ σ(x) = 0. Similarly,

(4.4) |eikxf2(x, k) − 1| ≤ σ̃(x)

k
e

1
|k| σ̃(x), where σ̃(x) =

∫ x

−∞
|v(t)|dt,

and moreover σ̃ ∈ L1(−∞, a) for each a ∈ R and limx→−∞ σ̃(x) = 0.
For fixed x the Jost solutions f1(x, k) and f2(x, k) admit analytic continuation

to the half-plane Im k > 0 and for fixed k satisfy the estimates (4.3)–(4.4). For real
k

(4.5) f2(x, k) = a(k)f1(x,−k) + b(k)f1(x, k),

where a(k) = a(−k), b(k) = b(−k) and

|a(k)|2 = 1 + |b(k)|2.
The functions a(k) and b(k) are called transition coefficients9. For the coefficient
a(k) we have the formula

(4.6) a(k) =
1

2ik
W (f1(x, k), f2(x, k)),

which implies that a(k) admits analytic continuation to the upper half-plane Im k >
0 and satisfies

a(k) = 1 +O

(

1

|k|

)

as k → ∞.

The function a(k) in the upper half-plane Im k > 0 has finitely many simple zeros
iκj on the imaginary semi-axis, and λj = −κ2

j are the eigenvalues of the operator

H with the eigenfunctions ψj(x) = f1(x, iκj), j = 1, . . . , n. Furthermore, it follows
from the Poisson-Schwarz formula that a(k) satisfies the so-called dispersion relation

(4.7) a(k) = exp

{

1

πi

∫ ∞

−∞

log |a(q)|
q − k

dq

} n
∏

j=1

k − iκj

k + iκj
, Im k > 0.

The resolvent Rλ = (H − λI)−1 of the Schrödinger operator H is defined on

ρ(H) = C \ {[0,∞) ∪ {λ1, . . . , λn}}
and is an integral operator in L2(R) with the integral kernel

(4.8) Rλ(x, y) = − 1

2ika(k)
(f1(x, k)f2(y, k)θ(x− y) + f1(y, k)f2(x, k)θ(y − x)),

where k =
√
λ. In particular, the integral kernel of the resolvent R0

λ of the free
operator H0 takes the form

(4.9) R0
λ(x, y) = −e

ik|x−y|

2ik
, Im k > 0.

9In quantum mechanics the functions t(k) = 1
|a(k)|2

and r(k) =
|b(k)|2

|a(k)|2
are called the trans-

mission and reflection coefficients, respectively.



Etudes of the resolvent 11

As in the case of the Sturm-Liouville operator, the integral kernel Rλ(x, y) satisfies
the same equation (3.4),

(4.10)

(

− ∂2

∂x2
+ v(x) − λ

)

Rλ(x, y) = δ(x− y),

where now −∞ < x, y <∞.
The eigenfunction expansion for the operator H follows from the formulas (2.3)

and (4.5)–(4.8). In particular, denote by P the orthogonal projection from H =
L2(R) onto the subspace spanned by ψ1, . . . , ψn, and denote by H0 the Hilbert space
L2
(

[0,∞),C2; |a(k)|−2dk
)

. The operator U : H → H0 defined by the formula

(U f)l(k) =
1√
2π

∫ ∞

−∞
f(x)fl(x, k)dx, l = 1, 2,

is a partial isometry of the Hilbert spaces H and H0:

U
∗
U = I − P, U U

∗ = I0,

where I0 is the identity operator on H0. The operator U HU ∗ is the multiplication
by k2 operator in H0. The eigenfunction expansion for the free Schrödinger operator
is the Fourier transform.

4.2. The characteristic determinant. Since the operator H has an absolutely
continuous spectrum, the formula (2.5) no longer makes sense, and there now arises
the problem of defining det(H−λI). In the case of the radial Schrödinger operator,
this problem was solved by Buslaev and Faddeev in [5], which subsequently led to
the concept of the perturbation determinant [22]. Here we consider the case of the
one-dimensional Schrödinger operator and, for simplicity of presentation, instead
of (4.2) we impose a stronger condition on the potential v(x).

Namely, suppose that v(x) is a bounded function on the real axis and v(x) =
O(|x|−3−ε) as |x| → ∞ for some ε > 0. It follows from the first condition that V is
a bounded operator in L2(R), and the second condition means that in the estimates
(4.3)–(4.4) one can replace σ(x) and σ̃(x) by O(|x|−2−ε). By analogy with (2.5),
the regularized determinant of the operator H − λI is given by

(4.11) − d

dλ
log det(H − λI) = Tr(Rλ −R0

λ), λ ∈ ρ(H),

where Rλ − R0
λ is a trace class operator. Indeed, from the second Hilbert identity

we obtain

(4.12) Rλ −R0
λ = RλV R

0
λ.

Denote by
√
V the multiplication operator by the function

√

v(x), where
√

v(x) =
√

|v(x)|eiδ,

δ = 0 if v(x) ≥ 0 and δ = iπ/2 if v(x) < 0. Since
√

v(x) ∈ L2(R), it follows from

(4.8) and (4.9) that the operatorsRλ

√
V and

√
V R0

λ are Hilbert-Schmidt operators,
and therefore the operator Rλ −R0

λ is of trace class.
Remarkably, the trace on the right-hand side of the formula (4.11) can be cal-

culated explicitly. In case of the radial Schrödinger equation, the corresponding
formula was given by Buslaev and Faddeev in [5], and in case of the whole axis,
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this is the last formula in section §1.1 of Faddeev’s survey [15] (see also Problem
2.6 in §3.2.2 of chapter 3 in [41]). In particular, the following relation holds:

(4.13) Tr(Rλ −R0
λ) = − d

dλ
log a(

√
λ).

As far as we know, no complete derivation of this beautiful formula exists in the
literature. For the convenience of the reader, we present it here.

Proof. Recall that k =
√
λ. For Im k > 0 the Jost solution f1(x, k) decays expo-

nentially for large x. For such k a solution g(x, k) of (4.1) linear independent from
f1(x, k) is found from the relation W (f1, g) = 2ik, and it grows exponentially for
large x:

eikxg(x, k) = 1 +O(x−1−ε) and eikxg′(x, k) = −ik +O(x−1−ε) as x→ ∞.

The functions f1(x, k) and g(x, k) form a basis in the solution space, and from the
condition W (f1, g) = 2ik and (4.6) we get that

f2(x, k) = a(k)g(x, k) + c(k)f1(x, k).

Therefore, as x→ ∞ we have

(4.14) eikxf2(x, k) = a(k)+O(x−1−ε) and eikxf ′
2(x, k) = −ika(k)+O(x−1−ε).

Similarly, as x→ −∞
(4.15) e−ikxf1(x, k) = a(k)+O(|x|−1−ε) and e−ikxf ′

1(x, k) = ika(k)+O(|x|−1−ε).

The trace class operator Rλ −R0
λ has an integral kernel R̃λ(x, y) that is contin-

uous on R× R and

R̃λ(x, x) = − 1

2ika(k)
(f1(x, k)f2(x, k)− a(k)) .

Thus, using formula (2.7), we obtain

(4.16) Tr(Rλ −R0
λ) =

i

2ka(k)
lim
n→∞

∫ n

−n

(f1(x, k)f2(x, k)− a(k)) dx.

As in the case of a Sturm-Liouville operator, the integral in (4.16) can be evaluated
explicitly. Namely, write (3.6) in the form

(4.17) f1(x, k)f2(x, k) = − 1

2k
W (ḟ1(x, k), f2(x, k))

′ =
1

2k
W (f1(x, k), ḟ2(x, k))

′,

where the dot now stands for the k-derivative. From the integral equation for
f1(x, k) we obtain

e−ikxḟ1(x, k) = ix+O(x−ε) and e−ikxḟ ′
1(x, k) = i− kx+O(x−ε) as x→ ∞,

and therefore for such x we get by using (4.14) that

W (ḟ1(x, k), f2(x, k)) = (i− 2kx)a(k) +O(x−ε).

Similarly, as x→ −∞,

W (f1(x, k), ḟ2(x, k)) = (i+ 2kx)a(k) +O(|x|−ε).

Using these formulas and (4.17), we obtain
∫ n

0

f1(x, k)f2(x, k)dx =

(

− i

2k
+ n

)

a(k) +
1

2k
W (ḟ1(0, k), f2(0, k)) +O(n−ε)
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and
∫ 0

−n

f1(x, k)f2(x, k)dx =

(

− i

2k
− n

)

a(k) +
1

2k
W (f1(0, k), ḟ2(0, k)) +O(n−ε).

Adding two last formulas and using the relation

ȧ(k) = −a(k)
k

+
1

2ik
W (ḟ1(0, k), f2(0, k)) +

1

2ik
W (f1(0, k), ḟ2(0, k))

following from (4.6), we have

lim
n→∞

∫ n

−n

(f1(x, k)f2(x, k)− a(k)) dx = iȧ(k).

Substitution of this relation into (4.16) gives the desired formula (4.13). �

4.3. Trace identities. It follows from (4.13) that the regularized determinant of
the Schrödinger operator is given by the formula

det(H − λI) = a(
√
λ),

is a holomorphic function on the complex λ-plane cut along the non-negative semi-
axis, and has zeros at the eigenvalues of the operator H . Under the assumption
that the potential v(x) is a function in the Schwartz class10, we easily obtain from
(4.13), (as in §3) the trace identities for the one-dimensional Schrödinger operator
H .

Namely, for such v(x) the coefficient b(k) is a Schwartz class function, and there-
fore from (4.7) we immediately obtain an asymptotic expansion as k → ∞:

(4.18) log a(k) =

∞
∑

l=1

cl
kl

+O(|k|−∞), Im k > 0,

which is an analogue of the expansion (3.9) for the characteristic determinant of
the Sturm-Liouville operator. Moreover, c2l = 0 and

(4.19) c2l+1 = − 1

πi

∫ ∞

−∞
k2l log |a(k)|dk − 2

2l+ 1

n
∑

j=1

(iκj)
2l+1.

An analogue of the asymptotic expression (3.8) is obtained by means of the
following beautiful argument (here we follow the famous paper [50] by Zakharov
and Faddeev). From formula (4.3) it follows that the function χ(x, k) = log f1(x, k)
is well-defined for large k with Im k > 0, and

χ(x, k) = ikx+ o(1), x→ ∞ and χ(x, k) = log a(k) + ikx+ o(1), x→ −∞.

As follows from (4.1), the function

σ(x, k) =
d

dx
χ(x, k) − ik,

is a solution of the Riccati equation

σ′ + σ2 − v + 2ikσ = 0,

decays as |x| → ∞ and satisifes

(4.20) log a(k) = −
∫ ∞

−∞
σ(x, k)dx.

10That is, it is smooth and rapidly decaying with all derivatives as |x| → ∞.
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Now it is not difficult to verify the asymptotic expansion

(4.21) σ(x, k) =

∞
∑

l=1

σl(x)

(2ik)l
+O(|k|−∞).

The coefficients σl(x) are polynomials in the function v(x) and its derivatives at x,
and are determined by the recurrence relation

σl(x) = −σ′
l−1(x)−

l−1
∑

j=1

σl−j−1(x)σj(x), σ1(x) = v(x);

moreover, the σ2l(x) are total x-derivatives. Comparing the formulas (4.18), (4.19)
with (4.20), (4.21), we obtain the Zakharov-Faddeev trace identities

1

πi

∫ ∞

−∞
k2l log |a(k)|dk + 2

2l + 1

n
∑

j=1

(iκj)
2l+1 =

(

1

2i

)2l+1 ∫ ∞

−∞
σ2l+1(x)dx.

In [50], the reader can find a remarkable application of these formulas to the proof
of complete integrability of the Korteweg-de Vries equation.

Comparing (4.13) with (4.18), (4.19), we see that Tr(Rλ −R0
λ) can be expanded

as λ→ −∞ in an asymptotic series in inverse odd powers of
√
λ. In the Gel’fand–

Dikii paper [19] this was proved directly, in both the rapidly decreasing case and
the periodic case. Namely, rewriting the second Hilbert identity (4.12) in the form

Rλ(I − V R0
λ) = R0

λ,

we obtain

Rλ = R0
λ +

∞
∑

n=1

R0
λ(V R

0
λ)

n,

where the infinite series is understood as an asymptotic series as λ → −∞. By
using the explicit formula (4.9) for the free resolvent, it is not difficult to obtain
the asymptotic expansion

Rλ(x, x) =

∞
∑

l=1

Rl(x)

λl+
1
2

+O(|
√
λ|−∞).

The coefficients Rl(x) are easily found from the third-order differential equation
(

− d3

dx3
+ 4(v(x) − λ)

d

dx
+ 2v′(x)

)

Rλ(x, x) = 0,

for the product of two solutions of the second-order equation (4.1). Details of these
beautiful calculations can be found in [19].

5. A certain functional-difference operator

Consider the following functional-difference equation

ψ(x+ ib) + ψ(x− ib) + e2πbxψ(x) = λψ(x),

where

b > 0 and −∞ < x <∞,

and the function ψ(x) admits analytic continuation into the strip

Πb = {z = x+ iy ∈ C : |y| < b}.
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A functional-difference operator

H = U + U−1 + V

is associated with this equation, where U and V are the self-adjoint Weyl opera-
tors acting in L2(R). The operator H arises in conformal field theory and in the
representation theory of the quantum group SLq(2,R). In [43] there is a spectral
analysis of this unbounded self-adjoint operator acting in L2(R). We give a detailed
presentation of these results.

5.1. Weyl operators. The quantum mechanical Weyl operators are unitary op-
erators U(u) and V (v) in L2(R), u, v ∈ R, defined by the formulas

(U(u)ψ)(x) = ψ(x− u), (V (v)ψ)(x) = e−ivxψ(x), ψ ∈ L2(R)

(see, e.g., [41, Ch. 2], where the Planck constant ~ is set to be 1). The operators
U(u) and V (v) satisfy the Weyl commutation relations

U(u)V (v) = eiuvV (v)U(u).

In the representation theory of the quantum group SLq(2,R) one uses complex val-
ues of u and v, under which the Weyl operators U(u) and V (v) become unbounded
self-adjoint operators acting in L2(R).

Namely, consider the operators U and V , given formally by

(5.1) (Uψ)(x) = ψ(x+ ib), (V ψ)(x) = e2πbxψ(x)

and satisfying the relation

(5.2) UV = q2V U, q = eπib
2

on the common domain of U and V . The operators U and V , defined by (5.1) are
unbounded self-adjoint operators acting in L2(R). Specifically, U is a self-adjoint
operator acting in L2(R) with the domain

D(U) = {ψ(x) ∈ L2(R) : e−2πbpψ̂(p) ∈ L2(R)},
where

ψ̂(p) = F (ψ)(p) =

∫ ∞

−∞
ψ(x)e−2πipxdx

is the Fourier transform11 in L2(R). Equivalently, the domain D(U) consists of the
functions ψ(x) which admit analytic continuation into the strip

Π+
b = {z = x+ iy ∈ C : 0 < y < b}

with the property ψ(x+ iy) ∈ L2(R) for all 0 ≤ y < b and that the limit

ψ(x+ ib− i0) = lim
ε→0+

ψ(x + ib− iε)

exists in the sense of convergence in L2(R). Furthermore, for ψ ∈ D(U) we have

(Uψ)(x) = ψ(x + ib− i0).

The domain D(U−1) of the inverse operator U−1 is defined similarly, and we
have (U−1ψ)(x) = ψ(x − ib + i0). The domain D(V ) of the self-adjoint operator

11We are using the normalization of the Fourier transform that is customary in analytic number
theory.
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V consists of the functions ψ(x) ∈ L2(R) for which e2πbxψ(x) ∈ L2(R). Thus, we
have

U−1 = F
−1VF ,

where the inverse Fourier transform is given by the formula

ψ(x) =

∫ ∞

−∞
ψ̂(p)e2πipxdp.

5.2. The operator H0. The free operator H0 = U + U−1 is an unbounded self-
adjoint operator acting in L2(R), and defined on D(H0) = D(U) ∩D(U−1) by the
formula

(H0ψ)(x) = ψ(x+ ib− i0) + ψ(x − ib+ i0), ψ ∈ D(H0).

Obviously, for b→ 0 the operator b−2(H0−2I) turns into the operator −d2/dx2. In

terms of the Fourier transform the operator Ĥ0 = FH0F
−1 is the multiplication

by 2 cosh(2πbp) operator, and thus domainD(H0) admits an equivalent description:

D(H0) =

{

ψ(x) ∈ L2(R) :

∫ ∞

−∞
cosh2(2πbp)|ψ̂(p)|2dp <∞

}

,

and it is a ‘hyperbolic analogue’ of the Sobolev space W 2
2 (R).

Forλ ∈ C \ [2,∞) the resolvent of the operator Ĥ0,

R̂0
λ = (Ĥ0 − λI)−1,

is the multiplication by (2 cosh(2πbp)− λ)−1 operator and it is bounded on L2(R).
Because the function 2 cosh(2πbp) is a two-to-one map of the real axis −∞ < p <∞
onto [2,∞), the spectrum of Ĥ0 is absolutely continuous and fills the semi-infinite
interval [2,∞) with multiplicity 2. Correspondingly, for λ ∈ C\ [2,∞) the resolvent

R0
λ = (H0 − λI)−1

of H0 is an integral operator acting in L2(R) with integral kernel depending on the
difference of the arguments,

(5.3) (R0
λψ)(x) =

∫ ∞

−∞
R0

λ(x− y)ψ(y)dy,

where

(5.4) R0
λ(x) =

∫ ∞

−∞

e2πipx

2 cosh(2πbp)− λ
dp.

It is convenient to use the parametrization (cf. §4.1)

λ = 2 cosh(2πbk),

in which the resolvent set C \ [2,∞) becomes the ‘physical sheet’ — the strip 0 <
Im k ≤ 1/(2b) — and the continuous spectrum [2,∞) is doubly covered by the real
axis −∞ < k <∞. The integral (5.4) is easily calculated, and we obtain

(5.5) R0
λ(x) =

i

2b sinh(2πbk)

(

e−2πikx

1− e2πx/b
+

e2πikx

1− e−2πx/b

)

, λ = 2 cosh(2πbk).

The function R0
λ(x) is regular at x = 0 and for 0 < Im k ≤ 1/(2b) the following

estimate holds:

|R0
λ(x)| ≤ Ce−2π Im k|x|,
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where C > 0 is a constant12, so that for λ /∈ [2,∞) the formulas (5.3) and (5.5) do
indeed determine a bounded operator on L2(R).

It is instructive to rewrite (5.5) in terms of the solutions of the equation

(5.6) ψ(x+ ib− i0, k) + ψ(x− ib+ i0, k) = 2 cosh(2πbk)ψ(x, k)

for the continuous spectrum eigenvalues of the operator H0, that is, in terms of
the solutions f±(x, k) = e±2πikx, which are analogues of the Jost solutions in the
theory of the one-dimensional Schrödinger operator (see §4.1). Namely,

(5.7) R0
λ(x− y) =

i

bC(f−, f+)(k)

(

f−(x, k)f+(y, k)

1− e2π(x−y)/b
+
f−(y, k)f+(x, k)

1− e−2π(x−y)/b

)

,

where
C(f, g)(x, k) = f(x+ ib, k)g(x, k)− f(x, k)g(x+ ib, k)

is the so-called Casorati determinant, which is an analogue of the Wronskian for
solutions of the functional-difference equation (5.6). It is periodic function of x
with period ib, and in the case of the Jost solutions C(f−, f+)(x, k) = 2 sinh(2πbk).

There is a remarkable similarity between (5.7) and the formulas (3.3) and (4.8),
where instead of the Heaviside function θ(x) a smoothed analogue of it is involved,
namely, the function θb(x) defined by the formula13

θb(x) =
1

1− e−2πx/b
.

In this case, the analogue of the relation θ′(x) = δ(x) is the formula

1

ib
(θb(x− i0)− θb(x+ i0)) = δ(x)

for real x, which is equivalent to the Sokhotski-Plemelj formula. The following
simple formula also holds

(5.8)
1

ib
θb(x± i0) =

1

ib
v.p. θb(x) ∓

1

2
δ(x),

where the distribution θb(x) is understood as the Cauchy principal value. From
this we obtain for R0

λ(x − y) the equation

(5.9) R0
λ(x− y + ib− i0) +R0

λ(x− y − ib+ i0)− λR0
λ(x− y) = δ(x− y).

Indeed, setting y = 0 and using (5.6), (5.8) and the regularity of R0
λ(x) at x = 0,

we have

R0
λ(x+ ib− i0) +R0

λ(x− ib+ i0)− λR0
λ(x)

=
i

2b sinh(2πbk)
[f−(x+ ib, k)θb(−x+ i0) + f+(x+ ib, k)θb(x− i0)

+ f−(x− ib, k)θb(−x− i0) + f+(x− ib, k)θb(x+ i0)]

− i

b
coth(2πbk)(f−(x, k)θb(−x) + f+(x, k)θb(x))

=
1

4 sinh(2πbk)
[f−(ib, k)− f+(ib, k)− f−(−ib, k) + f+(−ib, k)] δ(x) = δ(x).

12Here and below we use C to denote various constants.
13As noted by A.M. Polyakov, the function θb(x), after identification of x with the energy ǫ

and identification of 2π
b

with the inverse temperature 1
kT

, coincides with the one-particle partition

function Z =
(

1− e−
ǫ

kT

)−1
in the Bose-Einstein statistics.
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By using the representation (5.7) and equation (5.9), it is easy to verify directly
that for λ ∈ C \ [2,∞) the integral operator (5.3) is the inverse of the operator
H0 − λI (see §§3–4).

5.3. The operator H. Here we consider the equation

(5.10) ψ(x+ ib− i0) + ψ(x− ib+ i0) + e2πbxψ(x) = 2 cosh(2πbk)ψ(x),

which is the q-analogue of the equation

−ψ′′ + e2xψ = k2ψ

for the Bessel functions. As is well known, the last equation has a solution that
is decreasing as x → ∞, the modified Bessel function of the second kind Kik(e

x)
given by the inverse Mellin transform of the product of two gamma functions.
The equation (5.10) also has a solution that is decreasing as x → ∞, the Fourier
transform of a product involving another wonderful special function, Faddeev’s
quantum dilogarithm. This function was introduced by Faddeev in [16] and has the
integral representation14

(5.11) Φb(z) = exp

{

1

4

∫ ∞

−∞

e2itz

sinh bt sinh b−1t

dt

t

}

,

where the contour of integration passes above the singularity at t = 0. The repre-
sentation (5.11) is valid for | Im z| < cb = 1

2 (b + b−1) and defines a meromorphic

function with poles z = −icb−mib−nib−1 for integer m,n ≥ 0, which satisfies the
functional equations

Φb(z + ib) = (1 + q−1e−2πbz)Φb(z), q = eπib
2

,

Φb(z + ib−1) = (1 + q̃−1e−2πb−1z)Φb(z), q̃ = eπib
−2

.

Let

ϕ̂(p, k) = exp{−iβ − πik2 − πi(p− icb)
2}Φb(p− k − icb)Φb(p+ k − icb),

where β =
π

12
(b2 + b−2). Using the analytic properties of Φb(z) (see, for example,

[43])), it is easy to verify that the function

ϕ(x, k) =

∫ ∞

−∞
ϕ̂(p, k)e2πipxdp

is a solution of (5.10), where the contour of integration passes above the singularities
at p = ±k. Namely, the following statements hold.

1. For real k the function ϕ(x, k) is an even real-valued function of k, having
the asymptotics

ϕ(x, k) =M(k)e2πikx +M(−k)e−2πikx + o(1)

as real x→ −∞, where

M(k) = exp
{

i(β +
π

4
)− 2πik(k − icb)

}

Φb(2k − icb), M(k) =M(−k),
and

1

|M(k)|2 = 4 sinh(2πbk) sinh(2πb−1k).

So ϕ(x, k) is a scattering solution for (5.10).

14The function Φb(z) has an interesting history (see [43], where the notation γ(z) was used).
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2. For real x the function ϕ(x, k) admits analytic continuation into the strip
0 < Im k ≤ 1/(2b) and satisfies the reality condition

ϕ(x, k) = ϕ(x,−k̄).
3. For fixed k in the physical strip, the function ϕ(x, k) extends to an entire

function of the complex variable x and satisfies equation (5.10).
4. The following estimates hold:

|ϕ(x, k)| ≤ Ce−2π Im kx,

uniformly for −∞ < x ≤ a, and

|ϕ(x, k)| ≤ Ce−π(b+b−1)x, |ϕ(x ± ib, k)| ≤ Ceπ(b−b−1)x,

uniformly for a ≤ x <∞.

As x→ −∞, equation (5.10) takes on the free form (5.6), so it is natural to as-
sume that (5.10) has Jost solutions, that is, solutions f±(x, k) with the asymptotics

(5.12) f±(x, k) = e±2πikx + o(1) as x→ −∞.

Namely, let

f+(x, k) =
1

4 sinh(2πb−1k)M(k)

×
(

ϕ(x − ib−1, k)− ϕ(x+ ib−1, k) + 2 sinh(2πb−1k)ϕ(x, k)
)

and f−(x, k) = f+(x,−k). From properties 1 and 3 of the function ϕ(x, k) we
immediately get that for real x the functions f±(x, k) are solutions of (5.10) and

(5.13) ϕ(x, k) =M(k)f+(x, k) +M(−k)f−(x, k).
From the properties of the solution ϕ(x, k) listed above it is not difficult to derive
the following properties of the Jost solutions.

1
′. For real x and k the functions f±(x, k) have the asymptotics (5.12).

2
′. For real x the functions f±(x, k) admit analytic continuation to the physical

strip 0 < Im k ≤ 1/(2b) and satisfy the condition

f±(x, k) = f±(x,−k̄).
3
′. For fixed k in the physical strip, the f±(x, k) are entire functions of the

variable x and satisfy equation (5.10) and condition (5.13). Moreover, the
asymptotics in 1

′ remain valid for 0 ≤ Imx ≤ b.
4
′. The estimates

|f±(x, k)| ≤ Ce∓2π Im kx,

hold uniformly for −∞ < x ≤ a, and

|f±(x, k)| ≤ Ceπ(b
−1−b)x, |f±(x+ ib, k)| ≤ Ceπ(b+b−1)x,

uniformly for a ≤ x <∞.

Using these analytic properties and the Phragmén-Lindelöf theorem, one can
prove that Casorati determinant of the Jost solutions does not depend on x, and
therefore

C(f−, f+)(x, k) = 2 sinh(2πbk).
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Arguing as in case of the free operator H0, from this we get that for λ ∈ C \ [2,∞)
the integral operator Rλ acting in L2(R) with the symmetric kernel

Rλ(x, y) =
i

2b sinh(2πbk)M(k)

×(f−(x, k)ϕ(y, k)θb(y − x) + f−(y, k)ϕ(x, k)θb(x− y)),(5.14)

is the resolvent of the operator H . Indeed, since the functions ϕ(x, k) and f−(x, k)
satisfy (5.10), we get from (5.8) the equation

(5.15) Rλ(x+ ib− i0, y) +Rλ(x − ib+ i0, y) + (e2πbx − λ)Rλ(x, y) = δ(x− y),

and we get from the analytic properties of these functions the estimate

|Rλ(x, y)| ≤ Ce−2π Im k|x−y|,

so that for λ ∈ C \ [2,∞) the operator Rλ is bounded on L2(R). Using (5.15) and
the identity

C(f−, ϕ)(x, k) = 2 sinh(2πbk)M(k),

we obtain the desired statement Rλ = (H − λI)−1.
Finally, the eigenfunction expansion theorem for the operatorH is obtained from

(2.3). Namely, computing the jump of the resolvent kernel Rλ(x, y) on the branch
cut [2,∞) using (5.13), we get that the operator U given by the formula

(U ψ)(k) =

∫ ∞

−∞
ψ(x)ϕ(x, k)dx, ψ(x) ∈ L2(R),

maps L2(R) isometrically onto the Hilbert space H0 = L2([0,∞), |M(k)|−2dk),
that is,

U
∗
U = I and U U

∗ = I0,

where I0 is the identity operator on H0. Moreover, the operator U HU −1 is the
multiplication by the function 2 cosh(2πbk) operator on H0, so H has a simple
absolutely continuous spectrum filling [2,∞). As was noted in [43], the eigenfunc-
tion expansion theorem for H is a q-analogue of the classical Kontorovich-Lebedev
transform in the theory of special functions.

5.4. Operators for mirror curves. In [1] a remarkable connection was found
between the functional-difference operators constructed from Weyl operators U and
V and the quantization of algebraic curves that are the images of toric Calabi-Yau
threefolds under the mirror symmetry. A typical example of such varieties is the
total space of the canonical bundle of a toric del Pezzo surface S. The spectral
properties of such operators were studied in [23]. In the simplest case, when S is
the Hirzebruch surface S = P1 × P1, we obtain the operator

H(ζ) = U + U−1 + V + ζV −1,

where the parameter ζ > 0 plays the role of a physical mass. Thus the operator H
considered above corresponds to the massless case H = H(0). When S = P(1,m, n)
is a weighted projective space with m,n ∈ N, the corresponding operator has the
form

Hm,n = U + V + q−mnU−mV −n.

In [30] the spectral properties of the self-adjoint operators H(ζ) and Hm,n in
L2(R) were investigated. In particular, there it was proved that these operators
have a purely discrete spectrum, and an asymptotic expression for the eigenvalues
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was obtained which implies that H(ζ)−1 and H−1
m,n are trace class operators. Fur-

thermore, an analogue of Weyl’s asymptotic law was obtained for the eigenvalue
counting function N(λ): it was proved that

lim
λ→∞

N(λ)

log2 λ
=

1

(πb)2

for the operator H(ζ), and

lim
λ→∞

N(λ)

log2 λ
=

cm,n

(2πb)2
, where cm,n =

(m+ n+ 1)2

2mn

for the operator Hm,n. Hence for the eigenvalues λk we get that

λk = eα
√
k (1 + o(1)),

as k → ∞, where α = πb for H(ζ) and α = 2πb/
√
cm,n for Hm,n (see (3.2) in §3.1).

A detailed proof of these formulas was given in [30]. We note here that it would be
quite interesting to obtain more accurate asymptotic formulas for the eigenvalues of
the operators H(ζ) and Hm,n. As we saw in §3.2, it is rather instructive to compare
asymptotics of the eigenvalues with the asymptotics of the Fredholm determinants
of the operatorsH(ζ)−1 and H−1

m,n. In [23] a remarkable connection was pointed out
between these determinants and the enumerative invariants of the corresponding
Calabi-Yau manifolds. We leave it to the reader to reflect on these intriguing
connections and associations.

6. Laplace operator on the fundamental domain of a discrete group

on the Lobachevsky plane

Let H = {z ∈ C : Im z > 0} be the Poincaré model of the Lobachevsky plane

with the metric ds2 =
|dz|2
y2

and the area form dµ(z) =
dx ∧ dy
y2

, z = x + iy. The

group of motions of the Lobachevsky plane is the Lie group G = PSL(2,R), which
acts on H by fractional-linear transformations,

H ∋ z 7→ gz =
az + b

cz + d
∈ H, where g =

(

a b
c d

)

∈ G.

Denote by A the Laplace operator of the Poincaré metric,

(6.1) A = −y2∆ where ∆ =
∂2

∂x2
+

∂2

∂y2
,

defined on the space C∞
0 (H) of smooth functions with compact support. The op-

erator A commutes with the action of G on H and is essentially self-adjoint on the
Hilbert space H0 = L2(H, dµ). Its closure, a self-adjoint operator A0 = Ā, has an
absolutely continuous spectrum of infinite multiplicity, filling the interval [1/4,∞).
It is convenient to use a parametrization λ = s(1 − s), in which the resolvent set
C \ [1/4,∞) corresponds to the half-plane Re s > 1/2.

The operator A0 is invariant under the action of G on H, so its resolvent R0
λ =

(A0 − s(1− s)I)−1 is the integral operator with kernel

R0
λ(z, z

′) = r0(z, z
′; s) = ϕ(u(z, z′), s),

where

u(z, z′) =
|z − z′|2
4yy′
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is a point-pair invariant in the Lobachevsky geometry (u(gz, gz′) = u(z, z′) for all
g ∈ G), and ϕ(u, s) is given by the classical integral

ϕ(u, s) =
1

4π

∫ 1

0

[t(1 − t)]s−1(t+ u)−sdt

and can be expressed explicitly in terms of the hypergeometric function. For fixed
s the function ϕ(u, s) has asymptotics

(6.2) ϕ(u, s) = − 1

4π
log u+O(1) as u→ 0

and

(6.3) ϕ(u, s) = O(u−σ) as u→ ∞, where σ = Re s.

Moreover,

(6.4) r0(z, z′; s) = r0(z, z
′; s̄).

Using these formulas, it is easy to check directly that if f ∈ H0, then

(R0
λf)(z) =

∫∫

H

r0(z, z
′; s)f(z′)dµ(z′) ∈ D(A0), where λ = s(1− s),

and (A0 − λI)R0
λf = f (see [14], and also the monographs [26, 29]).

6.1. The resolvent and the eigenfunction expansion. Let Γ denote a Fuchsian
group of the first kind, that is, a discrete subgroup of the group G = PSL(2,R)
such that the quotient Γ\H has finite area,

µ(F ) =

∫∫

F

dxdy

y2
<∞,

where F is a fundamental domain of Γ in H. Recall that F is an open subset in
H such that γ1F ∩ γ2F̄ = ∅ when γ1 6= γ2, and the union ∪γF̄ over all γ ∈ Γ
is H. Equivalently, a Fuchsian group of the first kind is a discrete subgroup Γ of
the group G which is finitely generated by hyperbolic generators α1, β1, . . . , αg, βg,
elliptic generators σ1, . . . , σm of orders k1, . . . , km ≥ 2, and parabolic generators
τ1, . . . , τn. They satisfy the relations

[α1, β1] · · · [αg, βg]σ1 · · ·σmτ1 · · · τn = 1 and σk1

1 = · · · = σkm

m = 1,

where [α, β] = αβα−1β−1, and the condition

χ(Γ) = 2− 2g − n−
m
∑

j=1

(

1− 1

kj

)

< 0,

wherein µ(F ) = −2πχ(Γ). In case n > 0 the closure F̄ of the fundamental domain
F is non-compact in H and contains n cusps, fixed points of the parabolic trans-
formations τ1, . . . , τn, lying on R ∪ {∞}. The simplest example is known to Gauss
(see [28]) fundamental domain F of the modular group PSL(2,Z),

F =
{

z ∈ H : |x| < 1
2 и x2 + y2 > 1

}

.

We have PSL(2,Z)\H ≃ F̃ , where F̃ is the so-called modular figure,

F̃ =
{

z ∈ H : − 1
2 < x < 0 и x2 + y2 > 1

}

∪
{

z ∈ H : 0 ≤ x ≤ 1
2 и x2 + y2 ≥ 1

}

.

A measurable function f on H is called Γ-automorphic, if

f(γz) = f(z)
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for all z ∈ H and γ ∈ Γ. Let H = L2(F, dµ) be the Hilbert space of Γ-automorphic
functions that are square-integrable on F with respect to the measure dµ, with

‖f‖2 =
∫∫

F

|f(z)|2dxdy
y2

<∞.

It is not difficult to show that the differential expression (6.1), defined on the space
C∞

0 (F ) of smooth functions on F with compact support, is an essentially self-adjoint
operator in H . Denote its closure by A.

Since the Laplace operator in the spaces H0 and H is given by the same differ-
ential expression (6.1), it is natural to assume that the resolvent of A in H , that
is, the operator

Rλ = (A− s(1− s)I)−1, where λ = s(1− s),

is still the integral operator with the integral kernel Rλ(z, z
′) = r(z, z′; s) obtained

from the kernel r0(z, z
′; s) by the classical method of images. Using a simple crite-

rion for the convergence over a discrete group (see [14, 29]) and the estimate (6.3),
we can easily prove that if z 6= γz′ for all γ ∈ Γ, then for σ > 1 the series

(6.5) r(z, z′; s) =
∑

γ∈Γ

r0(z, γz
′; s),

is absolutely convergent, uniformly with respect to z, z′ on every compact subset,
and it satisfies reality condition (6.4). The further analysis depends essentially on
whether the closure F̄ of the fundamental domain in H is compact (the case n = 0)
or non-compact (the case n ≥ 1).

The case n = 0 is elementary. Indeed, for σ > 1 the kernel r(z, z′; s) has a weak
singularity on the diagonal in F × F and defines a compact operator on H , the
resolvent Rλ of the operator A. The eigenfunction expansion theorem immediately
follows from the first Hilbert identity (2.1),

Rλ −Rµ = (λ− µ)RµRλ,

and the Hilbert-Schmidt decomposition for the compact operator.
Indeed, choose κ > 1 and put R = Rµ, where µ = κ(1−κ) < 0. The self-adjoint

compact operator R is positive, so

R =
∞
∑

n=1

µnΠn,

where Πn are orthogonal projection operators in H onto finite-dimensional invari-
ant subspaces of the operator R corresponding to the eigenvalues µn > 0, and
µ1 = −µ−1. Here

∞
∑

n=1

Πn = I and lim
n→∞

µn = 0.

Rewriting the Hilbert identity as equation for Rλ,

(6.6) (I − (λ− µ)R)Rλ = R,

we get the eigenfunction expansion theorem for the operator A:

Rλ =

∞
∑

n=1

Πn

λn − λ
, where λn = µ+

1

µn
.
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In case n ≥ 1 the derivation of the eigenfunction expansion theorem for A is
rather complicated. Namely, the spectrum of the Laplace operator now consists of
the n-fold absolutely continuous spectrum [1/4,∞) and finite multiplicity eigenval-
ues lying on 0 ≤ λ <∞ without accumulation points on a finite interval. Moreover,
the so-called Eisenstein-Maass series, defined by the series over the cosets of Γ which
are absolutely convergent for σ = Re s > 1 admit meromorphic continuation to the
whole complex s-plane, with poles for σ < 1/2 and on the interval [1/2, 1], and the
eigenfunctions of the continuous spectrum of A are given by analytic continuation of
the Eisenstein-Maass series to the line σ = 1/2. These results were announced15 in
Selberg’s famous paper [38], and were first proved by Faddeev [14]. The monograph
[29] of Lang is devoted to a detailed presentation of Faddeev’s method.

It is easy to show [14] that the series (6.5) still converges for σ > 1, and for
σ > 2 it is the integral kernel of the resolvent Rλ of A. Nevertheless, equation (6.6)
is no longer suitable for an investigation of the resolvent Rλ for all λ = s(1 − s) ∈
C\[1/4,∞). The fact is that for µ = κ(1−κ) with κ > 2 the operator R = Rµ is no
longer compact, but rather has an absolutely continuous spectrum. A remarkable
observation made by Faddeev in [14] is that the main part of R generating this
spectrum can be identified and explicitly inverted! The paper [14] is based on
the virtuoso use of the resolvent technique, the spectral theory of Sturm-Liouville
operators, and the Fredholm theory. Here we present only the main steps of the
algebraic scheme of calculations; a detailed derivation of all necessary estimates can
be found in [14, 29].

In particular, for simplicity consider the case of one cusp16 i∞ and choose a
fundamental domain F in the form

F = F0 ∪ F1,

where F̄0 is compact and F̄1 is a strip {z = x + iy : − 1
2 ≤ x ≤ 1

2 , y ≥ a} for
some a > 0. Denote by P0 and P1 = I − P0 orthogonal projection operators on
H corresponding to multiplication by the indicator functions of the regions F0 and
F1, and write the operator R as

R = R00 +R10 +R01 +R11,

where R00 = P0RP0, R01 = P0RP1, R10 = P1RP0 and R11 = P1RP1.
By using (6.5) it is not difficult to show that for κ > 2 the operators R00, R01

and R10 are compact. It follows from the representation (6.5), that the ‘cusp part’
of R, that is, the operator R11 = P1RP1, is the integral operator with kernel

R11(z, z
′) =

∑

γ∈Γ∞

R0
κ
(z, γz′),

where Γ∞ =

{(

1 n
0 1

)

, n ∈ Z

}

is the stabilizer of the cusp i∞ in the group Γ.

Rewriting this formula as

R11(z, z
′) =

∞
∑

n=−∞
ϕ

( |z − z′ − n|2
4yy′

,κ

)

,

15A proof based on potential theory was presented in Selberg’s then unpublished 1954 lectures
at the University of Göttingen.

16The case of several cusps is considered in the same way.



Etudes of the resolvent 25

we see that the kernel R11(z, z
′) is an even periodic function of the variable x− x′

with period 1, and it can be expanded in a Fourier series

(6.7) R11(z, z
′) = t0(y, y

′) +
∞
∑

m=1

tk(y, y
′) cos(2πm(x− x′)).

The constant term, that is, the function t0(y, y
′), is easily computable:

t0(y, y
′) =

1

2κ − 1

{

yκy′1−κ, y ≤ y′,

y1−κy′κ, y > y′,

and for the functions tk(y, y
′) it is not difficult to obtain expressions in terms of the

modified Bessel functions.
The operator R11 acts in the Hilbert space P1H , which has a natural subspace

L2([a,∞); y−2dy) consisting of functions independent of x, and the orthogonal pro-
jection operator P from P1H onto L2([a,∞); y−2dy) is given by the integration:

(6.8) f(z) 7→ P (f)(y) =

∫ 1
2

− 1
2

f(x+ iy)dx, y ≥ a.

We write the kernel R11(z, z
′) in the form

R11 = T +R′
11,

where T = PR11P is the integral operator in L2([a,∞); y−2dy) with kernel t0(y, y
′),

and R′
11 is the integral operator with kernel R11(z, z

′)− t0(y, y′). Using the Fourier
expansion (6.7) and standard estimates for the modified Bessel functions, we can
easily prove (for details, see [29]), that the operator R′

11 is compact. By recalling
formulas in the §3.1, it is easy to verify that

T = (B − κ(1 − κ)I)−1,

where B is a self-adjoint operator acting in L2([a,∞); y−2dy) and given by the
differential expression Bϕ = −y2d2ϕ/dy2 and the boundary condition17

κϕ(a) = aϕ′(a).

For σ > 1/2 the resolvent Qλ = (B − s(1 − s)I)−1 is the integral operator with
kernel

q(y, y′; s) =
1

2s− 1

(

ϕ(y, s)y′1−sθ(y′ − y) + y1−sϕ(y′, s)θ(y − y′)
)

,

where

ϕ(y, s) = ys + a2s−1 s− κ

s+ κ − 1
y1−s.

For σ = 1/2 the functions ϕ(y, s) form a complete system of the continuous spec-
trum eigenfunctions for the operator B in the space L2([a,∞); y−2dy).

Summing up, for κ > 2 we have

R = T + V,

where V is a compact operator. Therefore, A can be regarded as a perturbation of
B with the same absolutely continuous spectrum! Namely, we now write (6.6) in
the form

(6.9) (I − (λ− µ)T )Rλ = R+ (λ− µ)V Rλ,

17Here we correct the typing error in [14] after (3.7) and also in the corresponding place in [42,
§3.1].
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where λ = s(1− s) and µ = κ(1 − κ). It follows from the first Hilbert identity for
B that

I − (λ− µ)T = (I + (λ− µ)Qλ)
−1
,

so (6.9) can be rewritten as

Rλ = (I + (λ− µ)Qλ)(T + V ) + (λ − µ)(I + (λ− µ)Qλ)V Rλ,

or

(6.10) Rλ = Qλ + (I + (λ− µ)Qλ)V + (λ− µ)(I + (λ − µ)Qλ)V Rλ

if one uses the Hilbert identity once again. Putting

(6.11) Rλ = Qλ + (I + (λ− µ)Qλ)Uλ (I + (λ− µ)Qλ) ,

we obtain for Uλ the equation

(6.12) Uλ = V +HλUλ, where Hλ = (λ− µ)V (I + (λ− µ)Qλ) .

Equation (6.12), Faddeev’s equation in the theory of automorphic functions, has
the following remarkable properties [14].

1) The operator Hλ is a Fredholm operator in the Banach space B of contin-
uous functions f(z) on F with the norm

‖f‖B = sup
z∈F0

|f(z)|+ sup
z∈F1

y|f(z)|

and depends analytically on s in the strip 0 < σ < 2.
2) The singular points of the operator I−Hλ, that is, the values of s for which

the homogeneous equation

v = Hλv

has a nontrivial solution in the space B, are discrete in the strip 0 < σ < 2.
3) The singular points with σ ≥ 1/2, s 6= 1/2, correspond to non-negative

eigenvalues λ = s(1 − s) of A of finite multiplicity, so that σ = 1/2 or
1/2 < s ≤ 1. The corresponding eigenfunctions ψ ∈ H have the form

ψ = (I + (λ− µ)Qλ)v,

where v ∈ B is a solution of the homogeneous equation. Eigenfunctions
corresponding to the case σ = 1/2 are cusp forms18, that is, P (ψ)(y) = 0
for all y > 0.

4) The resolvent kernel r(z, z′; s) of A for fixed z 6= z′ and σ > 1 admits
meromorphic continuation to the strip 0 < σ < 2, with discrete poles of
finite multiplicity. For σ ≥ 1/2 these poles lie only on the line σ = 1/2 and
on the interval 1/2 ≤ s ≤ 1 and are simple, with the possible exception for
s = 1/2.

5) The resolvent (A − λI)−1 of A, where λ = s(1 − s) ∈ C \ [1/4,∞) with
non-singular s and σ > 1/2, is the operator Rλ in (6.11), constructed from
the solution Uλ of the Faddeev’s equation (6.12). The operator Rλ is an
integral operator in H with the integral kernel r(z, z′; s).

18In general, the space H (0) of cusp forms is an invariant subspace of H consisting of functions
with zero integrals over all horocycles in Γ\H. It is not difficult to show [20] that the spectrum of

A in H (0) is discrete.
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Equation (6.12) is also used for analytic continuation of the continuous spectrum
eigenfunctions of A. In particular, consider the decomposition F = F0 ∪ F1 and
define the function ψ(z, s) on F by ψ(z, s) = ϕ(z, s) for z ∈ F1 and ψ(z, s) = 0 for
z ∈ F0. Clearly, if a is large enough, then ψ(z, s) determines a piece-wise smooth
Γ-automorphic function on H. We put

Ψ(z, s) = (I + (λ− µ)(I + (λ− µ)Qλ)Uλ)ψ(z, s)

and list the properties of Ψ(z, s) [14].

(i) For fixed z the function Ψ(z, s) is analytic in the strip 0 < σ < 2, except
for the singular points for which σ < 1/2 or 1/2 ≤ s ≤ 1, and Ψ(z, s) is
analytic In a neighborhood of the line σ = 1/2, with the possible exception
of the point s = 1/2.

(ii) For non-singular s in the strip 0 < σ < 2 the function Ψ(z, s) is a smooth
Γ-automorphic function on H, satisfying the equation

(6.13) − y2
(

∂2

∂x2
+

∂2

∂y2

)

Ψ(z, s) = s(1 − s)Ψ(z, s).

For σ > 1 the solution of (6.13) can be found ‘explicitly’ as the Eisenstein-Maass
series E(z, s):

(6.14) E(z, s) =
∑

γ∈Γ∞\Γ
ys(γz).

Namely, it is easy to show that for σ > 1 the series converges absolutely and
uniformly on compact subsets of H, and defines a Γ-automorphic function satisfying
equation (6.13). For σ > 1 it is not difficult to prove the equality Ψ(z, s) = E(z, s),
which gives a meromorphic continuation of E(z, s) to the strip 0 < σ ≤ 1, and on
the line σ = 1/2 the function E(z, s) has no singularities except, possibly, the point
s = 1/2.

Finally, the eigenfunction expansion theorem for A is obtained from the above
results using (2.3). The reader can find detailed proofs in Faddeev’s paper [14],
the indicated book by Lang [29] and Venkov’s monograph [44], which generalizes
Faddeev’s method to vector-valued functions. The characteristic determinant of
the operator A is defined using an appropriate regularization of the formula (2.5)
and M.G. Krein method of the spectral shift function. Moreover, the characteristic
determinant of A is expressed in terms of the Selberg zeta function of the Fuchsian
group Γ, and the calculation of the regularized trace in (2.5) reduces to the famous
Selberg trace formula! We refer the reader to [45] for details of these nontrivial
calculations. This concludes our exposition of Faddeev’s method.

As an interesting example, consider the case of the modular group Γ = PSL(2,Z).
The corresponding Eisenstein-Maass series E(z, s) admits a simple expression in
terms of the Epstein zeta function of the positive-definite binary quadratic form
Q(m,n) = am2 + bmn + cn2 of the discriminant b2 − 4ac = d < 0, where a = 1,
b = −2x and c = x2 + y2, so d = −4y2. Furthermore, z = x+ iy ∈ H is the root of
the quadratic form Q,

z =
−b+

√
d

2a
.
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In particular, from (6.14) we easily obtain

(6.15) 2ζ(2s)y−sE(z, s) =

∞
∑′

m,n=−∞

1

Q(m,n)s
,

where ζ(s) is the Riemann zeta function, and the prime on the summation sign
indicates that the term with m = n = 0 is omitted. The Fourier series expansion
of the function E(z, s) is given by the beautiful formula19

(6.16) E(z, s) = ys + c(s)y1−s +
4
√
y

ξ(2s)

∞
∑

n=1

σ1−2s(n)n
s− 1

2Ks− 1
2
(2πny) cos(2πnx),

where Ks(y) is the modified Bessel function of the second kind and

σs(n) =
∑

d|n
ds, c(s) =

ξ(2s− 1)

ξ(2s)
, ξ(s) = π− s

2Γ
(s

2

)

ζ(s).

It follows from Faddeev’s method that for fixed z the Eisenstein-Maass series
E(z, s) is a holomorphic function on the ‘physical sheet’ σ = Re s > 1/2 and
is regular on the line σ = 1/2. From here it immediately follows that the zeta
function ζ(s) does not vanish on the line σ = 1, which implies the asymptotic law
of primes! However, this method does not give any information about the poles of
E(z, s) on the ‘non-physical sheet’ σ < 1/2. One can only say that the non-tirival
zeros of ζ(s) are related to the so-called resonances of the Laplace operator on the
modular figure.

6.2. Pseudo-cusp forms and zeros of L-series. In 1977, in H. Haas’s diploma
work at the University of Heidelberg under the direction of H. Neuenhöffer, several
of the first eigenvalues of the discrete spectrum of the Laplace operator on the
modular figure were calculated. Stark and Hejhal soon noticed that if one writes
λk = 1

4 + t2k, then the values sk = 1
2 + itk correspond to the first non-trivial

zeros of the Riemann zeta function and the Dirichlet L-series L(s, χ) with the
quadratic character modulo 3! This unexpected observation caused a sensation
and was actively discussed in correspondence between Cartier and Weil in 1979
[6], as well as by Venkov, A.I. Vinogradov, Faddeev and author in the Leningrad
branch of V.A. Steklov Mathematical Institute of the USSR Academy of Sciences.
Hejhal has decided to verify Haas’s calculations and did not find these zeros among
the eigenvalues of the Laplace operator.

What was the reason for this discrepancy? As Hejhal explained in [25], Haas was
using the standard collocation method for the Neumann problem on the modular
figure, and he did not notice the appearance of a logarithmic singularity at the
corners of the modular figure z = ρ and z = i, where ρ = (1 +

√
−3)/2. In

particular, the function f(z) = r(z, z0; s) for z 6= z0 satisfies the equation

(6.17) Af = λf, where λ = s(1− s),

and if z0 = ρ or z0 = i, then with discrete approximation it is easy to miss loga-
rithmic singularity (6.2) at z → z0. For y → ∞ and fixed z0, the resolvent kernel
has the asymptotics [17]

r(z, z0; s) =
y1−s

2s− 1
E(z0, s) +O(e−2πy),

19(6.16) is sometimes called the Selberg-Chowla formula.



Etudes of the resolvent 29

and therefore if E(z0, s) = 0, then f(z) ∈ L2(F, dµ). It is remarkable that for z0 = i
and z0 = ρ the function ζ(2s)E(z0, s) is proportional to the Dedekind zeta function
of the imaginary quadratic fields Q(

√
−1) and Q(

√
−3), so λ = s(1 − s) can be

expressed in terms of zeros of ζ(s) and corresponding L-series. However, f(z) is
not an eigenfunction of the Laplace operator, since it is not a cusp form. Namely,
the condition

∫ 1
2

− 1
2

f(x+ iy)dx = 0

holds only for y > Im z0; such functions are called pseudo-cusp forms. Moreover,
for z0 one can take any point on the modular figure, for example z0 =

√
−5. It is

well-known that the function ζ(2s)E(
√
−5, s) has zeros outside the line Re s = 1/2,

so corresponding values of λ will not even be real. Thus, the pseudo-cusp forms
have no relation to the discrete spectrum of the Laplace operator, and equation
(6.17) does not impose any restrictions on λ.

Indeed, if f ∈ L2(F, dµ) satisfies (6.17) and f ∈ D(A), then from the self-
adjointness of the operator A we obtain

(λ− λ̄)‖f‖2 = (Af, f)− (f,Af) = 0.

However, although f(z) = r(z, z0; s) ∈ L2(F, dµ) when ζ(2s)E(z0, s) = 0, f /∈ D(A)
and the integral (Af, f) is divergent, hence the previous argument does not apply.
Specifically,

(Af, f) =

∫∫

F

Af(z)f(z)dµ(z) = λ‖f‖2 + r(z0, z0; s),

where the second term is obviously divergent. By using the reality condition (6.4),
the difference (Af, f)−(f,Af) can be defined as a limit, which one easily computes
via the first Hilbert identity:

lim
z→z0

(r(z, z0; s)− r(z, z0, s̄)) = (λ− λ̄)‖f‖2.

The last formula does not give any restriction on λ = s(1 − s), except for the
assumption that ζ(2s)E(z0, s) = 0.

Nevertheless, it makes sense to consider Hilbert spaces of pseudo-cusp forms

Ha =

{

f ∈ H :

∫ 1
2

− 1
2

f(x+ iy)dx = 0 for y ≥ a

}

,

for a fixed a > 0. In particular, denote by ∆a the Friedrichs extension of the opera-
tor ∆ restricted to the subspace of smooth functions with compact support in Ha.
Lax and Philips proved [32] that the self-adjoint operator ∆a in Ha has a purely
discrete spectrum, which was studied by Colin de Verdière [7, 8]. Furthermore, it

was suggested in [8] that the discrete spectrum of the operator ∆a for a =
√
3/2

is related to zeros of the Dedekind zeta function of the imaginary quadratic field
Q(

√
−3).

6.3. Heegner points and Linnik asymptotics. The formula (6.15) provides an
explicit expression for the Dedekind zeta function ζK(s) of the imaginary quadratic

field K = Q(
√
d) of the fundamental discriminant d < 0 in terms of the Eisenstein-

Maass series. As is well known (e.g. [4]), the ideal class group of the field K is
isomorphic to the group of classes of properly equivalent primitive, positive-definite,
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integral binary quadratic forms with discriminant d. Each such quadratic form can
be written as Q(m,n) = am2+bmn+cn2 with integer coefficients a, b, c, satisfying

a > 0, (a, b, c) = 1 and b2 − 4ac = d.

The root zQ of the quadratic form Q is given by

zQ =
−b+

√
d

2a
∈ H,

and the proper equivalence class of Q is completely determined by the condition
zQ ∈ F̃ , where F̃ is the modular figure. Points zQ ∈ F̃ are called Heegner points
for the discriminant d. From this we obtain20

(6.18) ζK(s) =
2

wd

( |d|
4

)−s/2

ζ(2s)

h(d)
∑

i=1

E(zi, s),

where h(d) is the ideal class number of the field K, wd is the number of units in K,
and zi run over all Heegner points zQ of the discriminant d.

Siegel’s celebrated theorem [40] states that for every 0 < ε < 1/2

h(d) > c(ε)|d| 12−ε

with a non-effective constant c(ε) > 0. Before the classical paper [40], the only
known result was Hecke’s theorem that the generalized Riemann hypothesis for all
L-series with quadratic characters implies that h(d) → ∞ as d → −∞. Surpris-
ingly, in 1933 Deuring [9] proved an unexpected result that the condition h(d) = 1
for infinitely many negative fundamental discriminants implies the Riemann hy-
pothesis!

Indeed, if h(d) = 1, then

zQ =







1 +
√
d

2
if d = 4D,

√
D if d = 4D and D ≡ 2, 3 (mod 4).

In the latter case, we get immediately from (6.16) and (6.18) that for such d

(6.19) ζK(s) = |D|−s/2ζ(2s)E(
√
D, s) = ζ(2s)(1 + c(s)|D| 12−s) +O(e−2π|D|).

Suppose now that ζ(ρ) = 0 and Re ρ > 1/2. Because ζK(s) = ζ(s)L(s, χd), where
χd is a quadratic character modulo d given by the Kronecker symbol, by passing to
the limit d → −∞ in (6.19) we obtain ζ(2ρ) = 0, a contradiction. The case d ≡ 1
(mod 4) is considered similarly.

Mordell soon [36] generalized Deuring’s result and proved that if the class num-
ber takes a fixed value for infinitely many fundamental negative discriminants, then
the Riemann hypothesis is true. His proof also uses the formulas (6.16) and (6.18).
Finally, Heilbronn [24] used the same assumption to deduce the generalized Rie-
mann hypothesis for all Dirichlet L-series with quadratic characters. From this and
the aforementioned theorem of Hecke it follows that h(d) → ∞ as d→ −∞.

However, in the same year of 1934, Siegel proved his famous theorem, which
naturally moved the Deuring–Mordell–Heilbronn method to the background. It was
only in the 1960s that some of their arguments were used to solve the celebrated

20For the details see [48], for example, where zeta functions of orders in imaginary quadratic
fields are also considered.
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tenth discriminant problem of Gauss, in which Heegner points played a prominent
role.

Since h(d) → ∞ as d → −∞, the question arises of the distribution of the
Heegner points on the modular figure. The equivalent problem of the distribution of
the integer points on the reduction domain of a two-sheeted hyperboloid b2−4ac =
d < 0 was solved by Linnik [34] using his ergodic method. Here the condition

(

d

p

)

= 1

was also assumed for some prime p, where (np ) is the Legendre symbol. In particular,

Linnik proved that as d → −∞, the Heegner points are uniformly distributed on
the modular figure with respect to the measure

dµ∗ =
3

π

dxdy

y2
, so that µ∗(F ) = 1.

In [47] the uniform distribution was proved on average over d, that is, for those
values of d for which so-called Salié sums admit a good estimate. Finally, Duke
[11] proved the uniform distribution of Heegner points as d → −∞ using a non-
trivial estimate for the Fourier coefficients of modular forms of half-integer weight,
obtained by Iwaniec [27]. Specifically, let Ω be a convex domain with piece-wise
smooth boundary on the modular figure, and let N(Ω) be the number of Heegner
points in Ω. Then the Linnik asymptotic expression

(6.20)
N(Ω)

h(d)
= µ∗(Ω) +O(|d|−δ),

is valid for some δ > 0 (possibly depending on Ω).
We now return to representation (6.18) for ζK(s) and, as proposed in [47], we

use the uniform distribution of Heegner points on F̃d — the modular figure F̃ with
the restriction Im z ≤

√

|d|/2. More precisely, assuming that the δ > 0 in (6.20)
does not depend on the domain Ω, we replace the sum in (6.18) by an integral! As
a result, as d→ −∞ we get that

(6.21) ζK(s) =

( |d|
4

)−s/2

ζ(2s)h(d)

∫∫

F̃d

E(z, s)dµ∗(z) +O(h(d)|d|−δ−σ/2),

where σ = Re s. The integral in (6.21) can be evaluated explicitly. Namely, by
using (6.13), the integral Green’s formula, the invariance of E(z, s) with respect to
the modular group, and the Fourier expansion (6.16), we obtain

∫∫

F̃d

E(z, s)dµ(z) =
1

s(s− 1)

∫∫

F̃d

∆E(z, s)dxdy

=
1

s(s− 1)

∫ 1
2

− 1
2

∂E

∂y
(z, s)

∣

∣

∣

∣

y=

√
|d|
2

dx

=
1

s− 1

( |d|
4

)(s−1)/2

− c(s)

s

( |d|
4

)−s/2

.

Thus, for fixed s we have

(6.22) ζK(s) =
6h(d)

π
√

|d|
ζ(2s)

(

1

s− 1
− c(s)

s

( |d|
4

)1/2−s
)

+O(h(d)|d|−δ−σ/2).
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Suppose now that for some sequence of fundamental discriminants d, we can
choose δ = 1

4+ε with arbitrary ε > 0 in the Linnik asymptotics (see the correspond-
ing arguments in [47]). Let ζ(ρ) = 0, where Re ρ > 1/2. Since ζK(s) = ζ(s)L(s, χd),
by letting d→ −∞ we get from (6.22) that ζ(2ρ) = 0. This contradiction ‘proves’
the Riemann hypothesis, as in the Deuring–Mordell–Heilbronn approach.

Of course, the starting formula (6.21) needs to be proved, since for domains Ω

lying on the very ‘top’ of the truncated modular figure F̃d, the Linnik asymptotic
expression (6.20) loses its meaning, and the Heegner points are no longer uniformly
distributed as d → −∞. The easiest way to see it is to average the representation
(6.18) of a zeta function ζD(s) of order OD with the discriminant D = df2 in the

imaginary quadratic field Q(
√
d) over all −D ≤ X . The corresponding formula, an

analogue of the classical Vinogradov-Gauss formula [46] in the critical strip, was
obtained in [48] and has the form

(6.23)
∑

−D≤X

( |D|
4

)s/2

ζD(s) = ζ(2s)(Φ(s)X1+ s

2 +c(s)Φ(1−s)X1+ 1−s

2 )+Rs(X).

Here

Φ(s) =
2−sζ(s)

(s+ 2)ζ(s+ 2)
and Rs(X) = O

(

X3/4 log3X

|s− 1|(|s− 1/2|+ log−1X)

)

,

and the estimate of the remainder is uniform with respect to s on compact subsets
of the critical strip. The leading term of the asymptotics in (6.23) is proportional to
ζ(s), which makes the previous argument inapplicable. Thus if Linnik’s asymptotic

expression can hold up to the very top of the truncated modular figure F̃d, then it
is only for very special values of d.

In the above arguments the formula (6.18) played the key role. It was also used
by Zagier [49] to construct a nontrivial representation of SL(2,R) connected with
the zeros of the Riemann zeta function. We should also mention recent works by
Bombieri and Garrett on the spectrum of the Laplace operator on the space of
pseudo-cusp forms in connection with the zeros of ζK(s) (see the talks [3, 18]). We
leave the reader alone with this intriguing works and literature cited there.

Note added in Proof. The results of the talks [3] and [18] have now appeared
on the arXiv: Enrico Bombieri and Paul Garrett, “Designed Pseudo-Laplacians”,
https://arxiv.org/abs/2002.07929.
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[6] P. Cartier, “Comment l’hypotèse de Riemann ne fut pas prouvée (extraits de deux lettres de P.
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