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Abstract: We revisit and generalize our previous algebraic construction of the chiral
effective action for Conformal Field Theory on higher genus Riemann surfaces. We show
that the action functional can be obtained by evaluating a certain Deligne cohomology
class over the fundamental class of the underlying topological surface. This Deligne
class is constructed by applying a descent procedure with respe@doharesolution

of any covering map of a Riemann surface. Detailed calculations are presented in the
two cases of an ordinagech cover, and of the universal covering map, which was used
in our previous approach. We also establish a dictionary that allows to use the same
formalism for different covering morphisms.

The Deligne cohomology class we obtain depends on a point in the Earle—Eells
fibration over the Teichmiller space, and on a smooth coboundary for the Schwarzian
cocycle associated to the base-point Riemann surface. From it, we obtain a variational
characterization of Hubbard'’s universal family of projective structures, showing that the
locus of critical points for the chiral action under fiberwise variation along the Earle—
Eells fibration is naturally identified with the universal projective structure.
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1. Introduction

This paper is a follow-up to our previous paper [2], where we presented an algebraic
construction of the chiral effective action for Conformal Field Theory on higher genus
Riemann surfaces. The aim of the present work is two-fold.

First, in light of the renewed interest for Classical Field Theory [13], we present
a case study for an action functional whose construction exhibits non-trivial algebraic
properties —the action is actually the evaluation of a certain Deligne class. The functional
is non-topological, which should be contrasted with cases where methods of homological
algebra and algebraic topology were used to construct topological terms [18,20, 3].
Furthermore, in the recent development of String Theory, there appear dynamical fields
of a new geometric content, such as, for example,RHeeld. It is very important to
find adequate geometric structures to describe these fields and to devise suitable action
functionals [19]. Some attempts have been made at introducing the languggibes
as the proper geometric structure, at least in the lower degrees (where the language itself
makes sense). In this approach, one usually settles @ech description relative to
some open covering of the underlying manifold. Therefore an added motivation to our
work, although we mention gerbes only in passing, was to show the universal nature
of the Cech paradigm for constructing action functionals. By this we mean to develop
a method which works for gener@lech resolutions and cohomology with respect to
arbitrary coverings and not just the standard open cover, and which allows to freely
change among the coverings.

This brings us to the second goal: to describe explicitly the dependence of the chiral
action functional on various default choices, which is necessary in order to make our
construction in [2] work for arbitrary coverings. In particular, this calls for the following:

1. A detailed analysis of the descent equations with respect to the nerve of the cover,
where the use of Deligne complexes becomes crucial.

2. An analysis of the dependence of the chiral action on the choice of the projective
structure on the Riemann surface.

Recall that the choice of the universal cover for a Riemann surface, made in [2], yields
a default choice for the projective structure: the Fuchsian projective structure, provided
by the uniformization map. Since the universal Conformal Ward Identity (CWI) deter-
mines the chiral action only up to a holomorphic projective connection, the dependence
of the chiral action functional on the choice of a projective structure should be compat-
ible with it. Indeed, we prove this for the chiral action “on shell”, i.e., for solutions of
the classical equations of motion.
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In order to describe the content of this paper in more detail, we briefly recall the main
results in [2].

Let u be a Beltrami coefficient o — a smooth bounded functienwith the property
[itlloo = SUpccln(z)] < 1—and letf be a solution of the Beltrami equation

fr=ufz,

a self-mapf : C — C, unique up to post-composition with a Mdbius transformation.
The Euclidean version of Polyakov’s action functional for two-dimensional quantum
gravity [35] has the form

S[f] = 2i zzuidZAdZ
(sz

and solves the universal Conformal Ward Identity

28 Mz 50(2) =127 Mzzzs

whereW[u] is the generating functional for the vacuum chiral conformal block, and
C

—@S[f]-

Herec is the central charge of the theory, and we denotedl the variational operator.

In [2], we extended Polyakov’s ansatz frdthto a compact Riemann surfageof
genusg > 1, using the following construction. Consider the universal céer X,
whereH is the upper half-plane, and lgtbe a Beltrami coefficient offll, which is a
pull-back of a Beltrami coefficient oX (see 2.1 and [2], and also [1,34] for details).
Depending on the extension gfinto the lower half-plane, there exists a unique solution
f to the Beltrami equation oH. Itis a mapf : H — D with the following intertwining

property:

Winl =

foll'=Tof,

whereTI is a Fuchsian group uniformizing the Riemann surfacét is isomorphic to
m1(X) as an abstract group), aid— T is an isomorphism onto a discrete subgroup
of PSLy(C). The domainD = f(H) is diffeomorphic toH and can be made equal to
H by choosing an appropriate extensiorpofin this way one gets a deformation map
f:X=T\H— I'\D = X (which is also denoted by) onto a new Riemann surface
X.

The de Rham complex oH is a complex off’-modules for the obvious pull-back

action. The basic 2-form of Polyakov’s ansatz

olf]= %ude/\dz_

Z
onH is manifestly not invariant under the actionltfthis means that regarding /] as
a 0-cochain fof™ with values in 2-forms, its group coboundary is not zero. Nevertheless,
o[ f] can be extended to a cocycl¥ ] of total degree 2 living in the double complex
CP4 = C4(I', AP (H)), whose total cohomology coincides with the de Rham cohomol-
ogy of X. Simple integration for the genus zero case is replaced by the evaluation over
a suitable representati of the fundamental clags(] of X, defining

SLfT=(QLlf], X).
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This construction [2] extends the definition of the chiral action to a higher genus Riemann
surfaceX, and the functionab[ f] has the same variational properties as Polyakov’s
action on the complex plane. In particular, it solves the universal CWI, the general
solution being the sum a¥ [1] = —c/9672 S[ f]1and an arbitrary quadratic differential,
holomorphic with respect to the new complex structur&atetermined by the Beltrami
differential u.

The main advantage of working with the universal cadés that one can use formulas
from the genus zero case and simply “push them onto” the double cor@pléx=
C4(T", AP (H)).} However, working with the universal cover uses several default choices,
as follows:

— The groups™ andr" are discrete subgroups of PSR) and PSIx(C) respectively, so
that local sections to the covering maps— X andD — X are projective structures
subordinated to the complex structuresibfand X, respectively. These projective
structures are inherent in the choicdtbés a cover, and they do not appear explicitly
in the expression for the total cocydH f1].

— H3(X,C) = 0 has to be invoked to close the descent equations leadingdrton
the total cocycl&?. This fact can be interpreted as the vanishing of an obstruction or,
in other words, as an integrability property for the problem of choosing integration
constants to the last descent equation. An element of arbitrariness is introduced in the
explicit computation of2 by choosing a shift of &-valued 3-cochain in this equation
to turn it intoCech coboundary.

— A specific choice of logarithm branches was made in [2].

The analysis of this construction shows that what we have used were not some specific
features of the universal covBr — X, but rather its algebraic properties relative to the
double complexC?:4: the facts thaffl is contractible, and thdt is cohomologically
trivial with respect to modules of smooth formsBnThese are precisely the properties
of a “good” cover [7], one for which th€ech—de Rham double complex computes
cohomology groups for both theories. .

As in [2], start with the deformation map : X — X, defined, say, as the solution
of the Beltrami equation oX. It is natural to ask whether it is possible to carry out
the same scheme as wilh with respect to a different cover of, for example an
ordinary open covelily = {U,};c; Of X, with the requirement that it should allow for
a change of covering morphism without changing the formalism. This is achieved by
considering, for a given covering mép— X and a sheaf’, or complex of sheaves*
on X, its Cech cohomologyd*(U — X; F), or hypercohomolog#l®*(U — X; F*),
respectively. The framework of the universal cover is retrieved from the observation that
group cohomology fof" is Cech cohomology for the coveririfj — X.

Our main difference from [2] is the use of the Deligne complex instead of the simpler
de Rham complex. In particular, introducing the smooth de Rham shagvese work

with the Deligne complex of length Z(3)3, : Z(3) - A% LY AL LY A2, where
Z(3) (2m)3Z and apply the same procedure as before. Namely, we form the double

complexC?4 = CI(U - X; Z(S)D) localize the Polyakov's 2-formv to U as an
element of degregs, 0) in this compleX, and perform the usual descent calculations. The

1 Another procedure would be to find a covariant version of everything on thexbésfe[27, 40]), but this
introduces additional “background” structures with no direct bearing to the complex and algebro-topological
structures ofx.

2 There is a degree shift caused by the insertion of the integers at degree zero in the Deligne complex.
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latter procedure was first introduced into mathematical physics in [17]. Specifically, we
solve for elementd and® of degree(2, 1) and(1, 2), respectively, satisfying equations
Sw = d andde = dO, with 50 e Z(3), wheres is the Cech coboundary operator.

It is crucial that these equations are solvable due to the vanishing of the tame symbol
(T X, T X] in holomorphicDeligne cohomology. As a result, starting from Polyakov's
2-form w[ f] we obtain a cocycl€[ f] of total degree 3 in the total complex Tot:°.

This constitutes the first result of the paper, Proposition 1. Note that it is convenient,
for a regular open covéxy, to consider the most general form of the bulk term for the
Polyakov’s action, given by adding a smooth projective conneétitmthe local basic
2-form for genus O:

olfl= %,uzdz/\dz+2uhdz/\dz

Z

Here z is a local coordinate fot/ € Uy, andh a representative ity of a smooth
projective connection olX — a smooth coboundary for the usual Schwarzian cocycle
relative to the covet/x. The spaca(X) of all such coboundaries is an affine space
over the vector space of smooth quadratic differentialso®n H, the pull-back of
a projective connection is a quadratic differential. See Sects. 2.2, 2.3 and 3.2, 3.3 for
details.

In Sect. 3.4, we translated the generalizzeth formalism for the universal cover
H — X into group cohomology fof" = 71(X), so that Proposition 1 translates into
Proposition 3, thus refining the corresponding results in [2].

For the construction of the action functional, we need to evaluate the caey¢le
against the fundamental clgsg] of a Riemann surfac¥, which we represent as a cycle
¥ in a homological double comple&, , = S,(N,U) of singular p-simplices in the
q + 1-fold product ofU with itself. Using the pairing, ) between Deligne cocycles and
cycles, which is well-defined because difn= 2 = 3 — 1, we can define

S[f1=(Qlf],'S),

where'X is the shift of the cyclex so that it has total homological degree 3. Due
to the insertion of integers into the Deligne complex, the paifingis well defined
only moduloZ(3), so that the action functionei[f] is well-defined only modul@(3).
Using the exponential map— exp{z/(Zm‘) }, that identifiesC/Z(3) with C*, one can

replace the comple(3)3, with A% —— Al 4 A? and resets all degrees by one, so
that cocycle2 would correspond to a cocycté of total degree 2. The corresponding
pairing(, ), will be now multiplicative and single-valued, with value<ifi. As a result,
the single-valued functional

ALf] = (W[f], Z)m = exp(S[f1/(2ri)?}

is the exponential of the action, which is quite natural since we are dealing with an
effective action in QFT. Details of this construction are presented in Sects. 2.2 and 2.4.

In Sect. 3.3.4 we prove the independence of the functiahgl from the choices of
logarithm branches, establish its relations with Bloch dilogarithms, and show that it can
be considered &8*-torsor.

The second result of the paper should be understood from the viewpoint of Classical
Field Theory. Let3(X) — 7 (X) be the Earle—Eells principal fibration over the Tech-
mduller spaceT (X). The total spacé3(X) of this fibration is the unit ball in thé& >
norm in the space of all smooth Beltrami differentialsXnTo everyu € B(X) there
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corresponds a deformation mgigx) : X — X, a solution of the Beltrami equation on
X, uniquely determined by the condition that when pulled back to the universalldover
it gives a Fuchsian deformation, i.€(H) = H. This allows to consider the functional
Alflasamap : Q(X) x B(X) — C*.

When studying the variational problem for the functiongllg] and A[ /'], we con-
sider the deformation map as the dynamical field, and the projective connectias
an external field, with the problem to compute the variation with respett @eomet-
rically, these variations are tangent vectors3i( ), and are of two types, depending
on whether they deform the complex structureXobr not, i.e., whether the associated
Kodaira-Spencer cocycle (see Sect. 4.1) is holomorphically trivial or not. In the former
case, the variations correspond to vertical tangent vectors to the Earle—Eells fibration
B(X) — T (X), and here we consider only these variations.

One needs to show that this variational problem is well-defined even though the action
itself is not expressed in terms of a simple integration dvef a 2-form. In “physical”
terminology, the bulk term given by the 2-formis a multi-valued one, and we prove
in Theorem 1 that the variation of the action depends solely on the variation of the bulk
term and is a well-defined 2-form g, We give two proofs of this result. The first one is
based on a careful analysis of the descent equations for the variations of all components
of the Deligne cocycl&] f]. The second proof, albeit in a sketchy form, shows that this
result is, in fact, more general, and depends only on descent properties of the variational
bicomplex. Takens’ results [37,13,41] are essential in this context. We plan to return
to this result with more details in a more general situation, not limited to dimension 2,
elsewhere.

However, this result holds only thanks to the good gluing properties of the variations,
which follow from the triviality of the Kodaira-Spencer cocycle, and this formalism can
not be directly applied to the case of general variations. In this respect, we point out
that there was an error in the computation of general variation in the universal cover
formalism [2]. While a brute-force calculation would achieve the goal, we prefer to
defer it until the development of the proper treatment of the variational formalism for
multi-valued actions, where variational bicomplex(es) glue in a more complicated way
due to the non-vanishing of the deformation class.

Returning to the present paper, we also give a geometric interpretation of Theorem 1.
It states that at critical points under vertical variations of the dynamical fielthe
external field — the smooth projective connectionis holomorphic with respect to the
complex structure o defined by the deformation maf In Sect. 4.2, we reformulate
this by saying that the space of critical points coincides with the pull-baé 30 of
Hubbard’s universal projective structufgX) — 7 (X), studied in [25,34].

The paper is organized as follows. In Sect. 2 we set up some necessary tools. In
particular, we give a brief tour of Deligne complexes and explainGbeh formalism
with respect to a coveriny — X. We also present the minimum amount of formulas
necessary to perform the evaluation over representatives of the fundamentékglass
A more in-depth presentation would have led us through a rather long detour from the
main line of the paper, therefore we provide it in the appendix, in A.2. Sections 3 and 4
comprise the main body of the paper. After some general remarks in 3.2 and 3.3, we
construct the representative cocy@ef ], usingCech formalism with respect to an open
cover. We analyze the changes under redefinition of the logarithm branches and of the
trivializing coboundary for the tame symb(irx, TX] in 3.3.5. In 3.4, we present our
construction in the form suitable for coverings — X other than the open oriéy,
and in particular translate everything in termdbf= H. Finally, in 4.1 we discuss the
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variation of the action. After a brief reminder of some basic notions about families of
projective structures in 4.2, we present in 4.3 a geometric interpretation of the vertical
variation of the action.

2. Preliminaries and Notations

2.1. Quasi-conformal maps and deformatiohgt X be compact Riemann surface of
genusg > 1. A Riemann surface is called marked, if a system of standard generators
of its fundamental groupr1(X) is chosen (up to an inner automorphism). J&tX)

be the Teichmiiller space of marked compact Riemann surfaces of gewith base

point the Riemann surfacé. Itis defined as the set of equivalence classes of orientation
preserving diffeomorphisms

f:X—>)~(,

where the triple§X, f1, X1]and[X, fo, Xz] are said to be equivalent if the mgipo f1

is homotopic to a conformal mapping &f onto X». It is well-known (see, e.g., [34]),
that 7 (X) is a smooth manifold of real dimensiorg 6- 6, and it admits a complex
structure. .

For any quasi-conformal map: X — X, letu = u(f) be the Beltrami differential
for X associated tg. Itis a section of X ® T X*, whereT X is theholomorphicdangent
bundle ofX, satisfying the Beltrami equation

df = udf,

whered = 9/dz, d = 9/3z. Conversely, if aC°° Beltrami differentialx hasL®-norm
less than ongju| < 1, then the Beltrami equation is solvable and its solutfas a
diffeomorphism.

Denote byA~11(X) = I'(X, TX ® TX™) the vector space of all smooth Beltrami
differentials forX, and byB(X) the open unit ball it ~11(X) with respect to the.>-
norm. Itis known that3(X) is the total space of a smooth infinite-dimensional principal
fibration over7 (X) with structure grou;(X), the group of all orientation preserving
diffeomorphisms ofX isotopic to the identity [14, 34]. Briefly, for evepy € B(X) we
lift it to the universal covef and consider the solutiofi(u) of the Beltrami equation
on H with the condition thatf (H) = H. Such anf exists and is unique up to a post-

composition with Mobius automorphism Bf. If g € G(X), thenus def u(f og).
This provides an identification between the description of the Teichmiiller space as
the space of equivalence classes of the tripiesf, X] with fixed X, and as the quotient
of B(X) by G(X).
For anyu € B(X) denote byfu] the corresponding elementi(X) and by f (n) :
X — X, the resulting deformation df. Though actuallyX,, depends only on the class
(1], we suppress this in the notation, and whenever the elemisrfixed, or clear from
the context, we denot&,, by X, as above.

Let A»9(X) = I'(X, TX*®P ® TX*®q) be the space of > tensors of weight
(p, q), with the proviso that we take the tangent bundle whenever ejpher ¢ is
negative (likeA~11(X) for Beltrami differentials). Denote b;@f(’q the corresponding
sheaves of sections. It is well-known that the operator

0y =0 —pd —kap : AGY — Akt (2.1.1)
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is thea-operator for the complex structure determinecuoy the pull-back byf of the
complex structure oiX ,. This gives rise to the exact sequence

0 A~20x) % A-i(x) - HL(X,.©,) - 0,
where®,, is the tangent sheaf d&f,, which is isomorphic to
0— T,(B(X)/T (X)) = Tu(B(X)) = T;;y(T(X)) — 0,

and provides the canonical identificati@j, (7 (X)) = Hl(XM, ©,) (see, e.g. [34]).

2.2. Sheaves and Deligne complex&sr any smooth manifold/, we denote by’
the sheaf of smooth complex-valugeforms onM, and byA” (M) the corresponding
spaces of global sections. Thgﬁl = A,,, the sheaf of smooth complex-valued func-
tions. WhenM is complex, we denote b2/, the sheaves of holomorphjeforms. In
particular,ggl = Oy, the structure sheaf.

Recall that thénypercohomologgroupsH? (M, F*) of a complex of sheaves

F*:F'— F'— ...

are defined as the cohomology groups of the total complex of a suitable resdltition
of the complexF*®. In practice, one usually takesGech resolution relative to some
(sufficiently fine) covetsy, of M and considers the double complex

cra € ¢awy, Fr).

The hypercohomolog¥l” (M, F*) is computed by taking?” (TotC**), with the con-
vention that the total differentiab in degree(p, ¢) is given byD = d + (—1)”3,
whered is the differential in the comple¥® and$ is the differential in theCech di-
rection. Furthermore, two complexd® and G* are said to beguasi-isomorphidf
there is a morphisnt’®* — G* inducing an isomorphism of their conomology sheaves:

H*(F) = H*(G). The standard (spectral sequence) argument implies that their hyper-
cohomology groups are the same. We will apply this machinery to the case when the
complexF'* is a smooth Deligne complex.

The use of Deligne complexes is nowadays fairly common, so we just recall the
notations and a few basic facts needed in the sequel. Itis convenient to use the “algebraic

geometers’ twist” and sét(p) def (2ri)P7Z. Following [16, 9] we have:

Definition 1. Let M be a smooth manifold. The following complex of sheaves
LDV LpIn —> Ay —> A 5 S Al

is called thesmooth Deligne complex. Thesmooth Deligne cohomology groups of M
— denoted b)Hl")(M, Z(p)) — are the hypercohomology groufl§ (M, Z(p)%,).

Remark 1Z(p) is placed in degree zero and the degree of each fgynin Z(p)3, is
r + 1. The first differential is just the inclusianof Z(p) in Ay, while d is the usual
de Rham differential. The complex is truncated to zero after degrée equivalent
definition of the Deligne complex is presented in the appendix, cf. A.1.



Generating Functional in CFT on Riemann Surfaces |l: Homological Aspects 311

The exponential mag : A, — A}, f — exp(f/(27i)?~1), induces a quasi-
isomorphism

. ~ dlog d d —
Z(p)p = (AY —3 AL, 5 S Al b,

where[—1] denotes the operation of shifting a complex one step to the right. Namely,
for a complexF® the complext*[—1] is defined ag’[—1]% = FF1, withd;_3; = —d.

To prove this quasi-isomorphism, observe that the non zero cohomology sheaves
of the complexZ(p)$, areCar/Z(p)m andéjfjl/dész, located in degree 1 angl,
respectively. Next, consider the standard exponential exact sequersefp)y —>
Ay BN A}, — 1, implying the following commutative diagram:

t d d d

-1
Z(p)m Ay Al e Al
| | |

dlog 1 —d —d -1
A*M Ay, - 454

where the first vertical arrow on the left is the exponential map, and the others are given
by multiplication by (—1)=1/(27i)?~1 in degreek. Now it is obvious that the two
complexes have the same cohomology sheaves (by identifyifigp) = C* through

the exponential map) and therefore have the same hypercohomology groups, up to an

index shift: Hf, (M, Z(p)) = HI~Y(M, A}, — Al — - — AP,

Remark 2In general, the truncation of the Deligne complép)7, after degreep is
fundamental. However, when did = p — 1, this truncation is irrelevant. In other
words, when the length of the complex coincides with the dimen&iop)7, becomes
an augmented de Rham compleé&(p)yy — Aj, [15]. Therefore the only non triv-
ial cohomology sheaf occurs in degree 1, @hg)7, becomes quasi-isomorphic to
Cuy/Z(p)p[—1]. As aresult,

HA(M, Z(p)) = HI"Y (M, C/Z(p)) = HI"*(M,C"),
where the latter isomorphism is given by the exponential map.

Working out explicitly the first cohomology groups, one gets the following isomor-
phisms:HA (M, Z(1)) = H(M, A%,) — the multiplicative group of global invertible
functions —-H2 (M, Z(1)) = H(M, A},) —the group of isomorphism classes of smooth
line bundles — antH%(M, Z(2)) = HY (M, Ay — Ab) — the group of isomorphism
classes of line bundles with connection. Higher Deligne cohomology groups describe
more complicated higher geometric structures — ggrbesand 2gerbes

When M is complex, there is an entirely analogous definition forlibe®morphic
Deligne complex:

° d d d -1
Z(P)p not : ZAPIM —> Ly —> Qy ——> - —> QT

with the holomorphic Deligne cohomology grou;ﬁsbyhol(M, Z(p)) being the hyper-
cohomology groups of the compl@(p)b’hol.
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Many of the formal properties of the smooth Deligne complex are also valid in the
holomorphic category. In particular, there is the exponential quasi-isomorphism

d

o9 gt 4, .4, grhy g,

Z(P).D,hm = (Q*
since non-trivial cohomology sheaves of these complexes occur only in degrees 1
andp and coincide, which implies the isomorphism in the hypercohomology, so that
HY (M, Z(p) = HIYM, @ — QY — - — ). Whendim: M = p — 1
the truncation becomes |rrelevant aﬁijl;a)uhoI is justZ(p)m — Kj,. Therefore,
thanks to the exactness of the holomorphic de Rham com:ﬁt@@,b’hol is also quasi-
isomorphic taCy; /Z(p) y[—1], and we have

HY (M, Z(p)p pop) = H™H(M, C/Z(p)) = HI"H(M, C¥).

In particular, whenV is a Riemann surfac¥ andp = 2 we have, for obvious dimen-
sional reasons

H3(X, Z(2)p o) = H?(X,C*) = C*
and
HY(X, Z(D% o) = H3(X, C) = 0.
These elementary facts will play a major role in the constructions in Sect. 3.

There is a cup produtt : Z(p)}, ® Z(q) — Z(p + q)3 given by [16,9]:

f-g degf =0,
fUg=1fAndg degf>0 and deg =g,
0 otherwise,

and induced product in cohomology: : HL, (M, Z(p)) ® HL(M, Z(q)) — Hg”
(M,Z(p + q)). Note that since Deligne cohomology is defined using resolutions of
complexes of sheaves, one has to take into account the appropriate sign rules. That is,
for two complexes'® andG*® one forms the double complexes

CPI(F) = C!Ux, FP) and C™(G) = C*WUx, G")
and defines the cup product
U: CP(F) ® C™(G) — CI Uy, F¥ ® G") C CPTIH(F ® G)
of two elementq f;, .. ;,} € C79(F) and{gj,....;,} € C**(G) by

(_l)qr ﬁo ,,,,, ®g1q lq+1 ..... iq+5' (221)

In this formula, one could replace tigeby any other produck®* ® G* — (F°* U G*),
in particular by the cup product for Deligne complexes, introduced above.

Brylinski and McLaughlin [11] spell out several cup products for the first few degrees
representing interesting symbol maps. We will use one of them later, so here we recall
its construction.

As already observe(H%(M, 7Z.(1)) corresponds to the group of smooth line bundles

on M. Working out details of theCech resolution relative to théech coveildy =
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{U;}icr, onefinds that a class H%(M, Z(1)) is represented by the cocydlé;, m; i),
where f;; € T'(U; N U,-,A%) andm;j, € T(U; NU; N Uy, Z(1) i) are subject to the
relations:

Sfik — fix + fij = mijk,
mjg — mik —mij +mjjr = 0.

Thusg;; = expf;j is aCech 1-cocycle with values in invertible functions, as expected.
Consider now two line bundldsandL’ over M, represented by cocycleég;;, m; i)

and ( l’] m;jk), respectively. Their cup product, to be denoted by the “tame” symbol

(L, L'] (see, e.g., [11]), is an element B (M, Z(2)), represented by the cocycle

(= fij df jio> mijk frgs mijemi,)-

A similar interpretation holds for the holomorphic Deligne cohomology. In particular,
Hp, hoI(M 7Z(1)) corresponds to the group of holomorphic line bundleg/brand the

cup product of two such line bundleg(is, L'] € Hé hol(M. Z(2)). When dint M = 1,
according to the previous remark, the cup product of two holomorphic line bundles is a
trivial cocycle:(L, L'] = 0.

In this paper our main emphasis will be on smooth Deligne cohomology in degree
three. With respect to th€ech covetdy, a class mHD(M Z(3)) is represented by

the total cocyclew;, a;;, f,,k,m,jkz) wherew; € I'(U;, A3), a;j € T(U; NU;, AY)),
fijk € DU NU; N U, AY), andm;jy € T(U; NU; N U N Uy, Z(3) ) are subject to
the relations:

wj o =daij, aj—ai+ai; = —dfijs (2.2.2)
8 fijkt = mijkrs  dmijiip = 0.

According to [9,10],H13)(M, Z(3)) is the group of isomorphism classesggrbeson
M, equipped withconnective structurdescribed bya;;}, and withcurving described
by {w;}.

2.3. Cech formalism for generalized coverings this section, we prowde the necessary
machinery to translate statements and computations carried out in a conve@tchal
covering by open sets to other kinds of coverings, such as the universal cover, that
will allow to merge results from our previous approach [2] into the present one. This
formalism is not yet part of a mathematical physics curriculum, so here we present
the prerequisites necessary for compui@gch cohomology, referring to the standard
sources [4,32,5] where the theoretical background is explained.

Let M be a smooth manifold or topological space. The general idea is to pass from
inclusionsU — M to general local homeomorphismis — M which are not nec-
essarily injective. Technically, one fixes a categByy whose objects are spaces étale
over M, morphisms are the covering maps, and which is closed with respect to the fiber
product of the maps oved, with M being the terminal object ifiy;. The coverings are
surjective families of local homeomorphismd@y,, namely familieq f; : U; — U} of
M-maps suchthdl = | J; fi(U;). In practice, we shall restrict our attention to covering
maps ofM itself. The key observation is thatlf; < M andU; — M are inclusions,
thenU; N U; = U; xu U; —the fiber product of maps; — M andU; — M —so
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that the notion of fiber product for covering maps replaces the notion of intersection of
open sets.
For a covering/ — M in Cy; we obtain an augmented simplicial object [6]

M<LU<7<7UXMU§UXMUXMU§...
by considering the nerv¥, (U — M). Specifically, for any integey > 0 we define

NyU —> M)=Uxpy---xyU
N e’
(q+1)-times
where fori =0, ..., g the arrows are the mags : N,(U - M) — N,_1(U - M),
forgetting thei™ factor in the product.

For an abelian shedf on M (more precisely, o)) the Cech complex relative to
a coveringl — M in Cy; is defined by setting for any > 0,

q
CUU; F) =T(Ny(U — M), F) with § =" (-1'd;.
i=0
The ordinaryCech formalism is recovered by considering an open dayet= {U; }ie;

of M and the covering[,.; U; — M, so thatin degreg we just get the disjoint union
of all g-fold intersections

NyUm) = ] Uon---n U,
i0,.-s1q

and the resulting€ech complex is the standard one.

At the other extreme, ld — M be a regular covering map akddl= Deck(U /M)
the corresponding group of deck transformations acting property on the right. One
immediately verifies that

Uxy - xyUZEUXxGx---xG,
—_——— — ———

(g+1)—times g—times

and under this isomorphism the maps N, (U — M) - N,_1(U — M) become

(x- 81,82, -5 8q) i=0
di(x,gl,...,gq): (x,gl,...,gigi+1,...,gq) i:]_,“"q_l
(-xvgl"'-vgq—l) l:q

Hence, theCech complex with respect tf — M becomes the usual Eilenberg-
MacLane cochain complex ai@ with values in theG-moduleF (U):

CI(U; F) = C1(G; F(U)).

Thus theCech cohomology of this complex is just the group cohomology ofith
values in theG-module F (U), where the module structure is given by the pull-back
action. A particular case of special interest for us is wiien the universal cover o/,

so thatG = m1(M).



Generating Functional in CFT on Riemann Surfaces |l: Homological Aspects 315

The formalism clearly extends to the case where we consider a combtEsheaves
onM —typically, the de Rham complex. The hypercohomology with respect to a covering
U — M will be the cohomology of the total complex 6 (U; AP).

In some favorable cases, one or both spectral sequences associated to the double
complex above will degenerate at the first level. Degeneration at the first level of the first
spectral sequence, that is, the one associated to the filtratipnisequivalent to

HY(U — M; AP)=0 forallg > 0.
Since eacM? is assumed to be a sheaf, thatdg,(M) is the kernel

AP(M) —= AP(U) —= AP(U xu U) ,

the cohomology of the total complei%l(U; AP) equaIsH(fR(M).

On the other hand, the degeneration of the other spectral sequence (at the same level)
means the compleA® is a resolution of some sheéf, so that the total conomology
equalsH?(U — M; F). Therefore, when both of these cases are realized, we have a
Cech-de Rham type situation [7], that is

HP(U — M; A®) = HP(U — M; F) = Hy(M).

The obvious example of this situation is tBech—de Rham double complex rela-
tive to the ordinary covet [;.; U;, where the above isomorphism gives the usual de
Rham theorem#? (M, C) = Hé’R(M). Another example of utmost importance is the
universal coveH — X of a Riemann surfac¥ of genug > 1. Since there exist; (X)-
equivariant partitions of unity [26], the sheava§ are acyclic:HY (r1(X), Af) = 0
for ¢ > 0 and allp. Moreover, sincél is contractible, the de Rham compldaf (H) is
obvicr)#sly acyclic in dimension greater than zero, and as a result we have the isomor-
phis

HP(m1(X), C) = Hi(M).

2.4. Evaluation over the fundamental clagor the construction of the action functional

we need to evaluate Deligne cohomology classes against the fundamentékdglags

X, which we need to represent as a cycle in a suitable homological double complex —in
a way analogous to the use©@éch resolutions to compute the hypercohomology.

The aim of this section is to introduce the minimum set of tools necessary to describe
the homological (double) complex and to perform the evaluation, relegating all tech-
nical details to the appendix. There, we construct an explicit represeniatofe X |
with respect to a covering — X by mirroring the cohomology computations done
in 3.3. The computations are explicit enough that the reader who is only interested in the
formulas forx can read A.2 directly. Also, the reader interested only in the construction
of the local action cocycle can safely proceed to Sect. 3.

As usual, whenever we mention facts that are not specifi€ teing a Riemann
or topological surface, we use the notatithto denote a general smooth manifold or
topological space with covering — M.

3 See also [2] for a simple-minded proof without spectral sequences.
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2.4.1 Consider the double complex
Sp.q =S,(Ny(U — M)),

whereN,(U — M) is the nerve of the covering — M ands, is the singular simplices
functor, i.e.,S, (M) is the set of continuous mags” — M, whereA? is the standard
simplex. For everyp > 0, the covering ma/ — M induces a corresponding map
€:5,0=S,(U) = S,(M) between simplices — the augmentation map. The double
complexS, . has two boundary operators: the usual boundary operator on singular
chains,d’ : S, , — S,-14, and the boundary operatéf : S, , — S, ,—1 induced
by the face maps of the nen&’! = Y (-1)'d;,, whered; : Ny(U) - Ny—1(U) and
d;, is the induced map on singular chains. As usual, we have the simple compl&x Tot
with total differentiald = 8’ + (—=1)?3” onS,, 4.

If Uisthe ordinaryi:ech covering/y = |[;c; Ui, then

Sp(NgUm) = [] SpWign---NUs).

00,0l

If, on the other handl/ is a regular covering space with as a group of deck trans-
formations, thers, (U) is aG-module withG-action given by translation of simplices.
It follows that S, (N, (U)), for ¢ > 0, consists of simplices intt’ parameterized by

g-tuples of elements ir;. Taking into account the expression for the face méps

computed in 2.3, we get

Sp(Nq(U)) = Sp(U) Rz Bq(G)»

whereB,(G) is the bar resolution [28] andG is the integral group ring of;. Hence,
for any p, thed”-homology is just the group homology

Hy(Sp(Ne(U))) = Hy(G: Sp(U)).

We are interested in the situation wh8g, has no homology with respect to the
second index, except in degree zero, namely we want

~ Sp(M) q = 0

Hy(Sp(Ne(U — M))) = Io q> 0,

for the 3” homology. In this case we say th8}, , resolvesS,(M) and one has the
isomorphism

Ho(M,Z) = Ho(Se(M)) = H,(TOtS, ,).

This isomorphism is induced by the augmentation mapTotS — S,(M), which
assigns to any chailx of total degree: in TotS the chaine(X, o), whereX, o is

the component 18, o. It is easy to see that this map is a chain map, it sends cycles
into cycles and induces the above isomorphism. Details can be found, e.g., il [28].
Observe that this situation is realized for both the examples of an©pei cover and

of a regular coverind/ — M (cf. the appendix). For completeness, in the appendix
we briefly analyze the implications of the requirement that the double conlexs
acyclic with respect to the first index, and their relations with good covers.

4 A detailed calculation along these lines can also be found in the appendix of [2].
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2.4.2 For a topological manifold/ of dimensiorn:, we need to represef/] with a
total cycleX of degreen in TotS, .. It has the form

n
T =To+ Yy (-HZ0 Dy,
k=1

whereX; € S, x and
X0 =0"21,...,0 41 =9"%,...,9'Z, =0.

The choice of signs ensuréx = 0, whered is the total differential in ToS, . By
definition, ¥ is a “lift” of M considered as a chain 3 (M), i.e.e(Zg9) = M, where
M =), o; for a suitable collection of singular simplices e S, (M). The existence of
the elementXy, ..., &, follows from thed”-exactness assumption and the fact that
lifts M. Indeed, we have & M = de(Xo) = €(3'Zp), sothatthere exists; € S;,—1.1
such that’>q = 9” ¥4, and so on.

Specializing to the case whéii = X is a Riemann surface, the representative of the
fundamental clasfX] is the cycleX = ¥p + X1 — X, with component&y € Sy «
satisfyingd’Zo = 9" X1, 9’21 = 9" X2, andd” o = 9'Z2 = 0. This cycle is explicitly
constructed in the appendix for the case of an orditi2egh covel/ = Uy and in [2]
for the case of the universal covr— X.

Here we present the basic formulas for @ech case, which also gives the flavor of
the general procedure which carries over to the other coverings unchanged.

Following [21,38], introduce the symba;,_ ... i, 1o denote th&q + 1)-fold inter-
section thought of as a generatoidp 4, so that a generic element can be written in the

form:
o= Z Oig...iq * Dig...ig>»

iQ...iq

whereo;, ;, are arep-simplices forU;, N --- N U,,, i.e. continuous mapa?” —
Ui, N ---N U, . Itis immediate to verify that

Nio..ig = Z (G sl i

Q

where thé sign denotes omission. Then

where the summation goes over ordered sets of indices (it is assumédkthatordered
set). Thus with the convention thEuc i) is the sum over sets of indicé®, . . . , iy}

seenlg

with ip < --- < i,, we can rewrite the last equation as
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Now, consider the problem of constructing the total cyEle= Yo + 1 — X2
representingX]. Representing the componerisas:

20=20i~Ai, 21=20ij~Aij, 22=20ijk~Aijk,
i (ij)

(ijk)

we first construczg as follows. Starting from the nerve of the covéy consider a
triangulation ofX by ¢/-small simplices, i.e. each simplex comprising the triangulation
has support in some open g€&tbelonging to the cover (cf. the appendix for the detailed
procedure). Thei = )", o;, where each chaisy; is a sum of simplices whose support
is contained inU; for eachi, and one immediately writeSg = >, o; - A;. The other
components are determined by tHeexactness condition of the complex. Namely, from
the above expression adtdxy = 9”X1, 8’21 = 3” X, one gets the equations

Zaldi A= <Z‘7ji - Z%‘) A,
i {i.J)

(i.j)

Zalaij' ij = < Z Okij — Z Oikj + Z 01]k> l]k
(i,))

(k,i,j) (i,k,j) (i,j,k)

for components;; ando;;,. Explicit expression for these components in terms of the
barycentric decomposition is given in the appendix.

2.4.3 In order to discuss the evaluation pairing, we need to address the issue of the
index shift in the Deligne complex. One way is to explicitly use the exponential map
described in 2.2 to revert the indexing to the familiar form without a shift, at the cost
of introducing an explicit multiplicative structure via the exponential. Another way is to
introduce arad hocindex shift in homology to mirror the one in the Deligne complex,
i.e. to consider singulay-simplices to be of homological degrget+ 1. The resulting
pairing will be additive, but only defined mdd(p). The two approaches are in the
end the same.

We start with the second approach. L&, 3) be ahomologicalcomplex. The

canonical way to shift it is to introdudé€[1], def Ke—1, with 3;1; = —9, cf. [28]. We
require instead that the new differential be simplwhile retaining the index shift. Thus
we replaces, ; = S, (Ny,(U — M)) by the new double complex

\Sr’_y = rfl(NS(U e M))’

with differentiald = 3" + (—1)"9”, whered’ is the usual singular boundary, as before.
If 2 = (2o,..., %), with X € S;_i «, is ag-chain in TotS, ,, then it maps to the
(¢ + D-chain': = ((-1)7%o, ..., (=197 %%, ..., %,,0 in Tot'S, ., and'T is a
cycle if and only ifZ is a cycle.

Let C** be aCech resolution of the Deligne compl&(p)J, with respect to the
coveringU — M. The pairing betwee"™* and'S, ; is defined as follows (cf. [21,
38]). Tothe pail¢, o), wherep is a collectior{¢;,, ... ;, } of (r —1)-forms onN, (U — M)
forr > 0, orinteger<Z(p) forr = 0 ando = Y_ 0iy.. i, * Nig....i; € 'Sr.s We assign

($,0) = (2.4.1)

0 r=20.
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To extend this pairing to TaE** and TotS, ., let'c = (00, 01, - -+ , op—1, 0), with
ok € 'Sp_i.k, and® = (¢o, P1, ... , Pn), With ¢ € C" %k, Then we define

n—1

(@,'0) =) (. on), (2.4.2)

k=0

where,¢, = 0 for allk < n — p, if, of course,n > p. Note that so far the pairing
was defined to have values @ However, the fundamental fact is treawvay from the
truncation degregi.e. when the total degreeis strictly less tharp, and therefore the
form degree is strictly less thgm — 1, the total differentialdD anda are transpose to
each other modul@(p):

(D®,'T) = (®,3'E) modZ(p) (2.4.3)

forall ® € TotC**,'% € Tot'S, ,. This readily follows from the very definition of the
Deligne complex. Equation (2.4.3) means that the paifingconsidered modul@(p),
defines a pairing betweeH*(TotC**) and H,(TotS, .) away from the truncation
degreep — 1.

Formula (2.4.3) would not hold for degrees bigger than or equal to1, unless
dmM = p — 1 — the case where the truncation becomes unimportant. This is the
situation we will be interested in in Sect. 3. Therefore in this case the pairing (2.4.2)
descends to the corresponding homology and cohomology groups and is non degenerate.
It defines a pairing betwedti® (Tot C*-*) andH, (Tot S, ,) which we continue to denote
by ().

Let us show how these formulas work in the case of a Riemann sukfaaed a
Deligne cocycle? = (w;, a;j, fijk, miji) Of total degree 3. (Recall that the individual
elements are subject to the relations (2.2.2). )L et (X, X1, —X2) be arepresentative
in TotS, , of the fundamental clag(]. Then the corresponding element in the shifted
complex will be

‘s = (X, — X1, — X, 0).

Omitting the indices, the evaluation of the classobver[X] will be computed by the
expression

(Q,'%) = (0, Zo) — (a, T1) — (f, Ta), (2.4.4)

where each term in (2.4.4) should be expanded according to (2.4.1). This evaluation
takes its values ifC/Z(3) and does not depend on the representative cocycle of the
Deligne cohomology clagf2] € H3 (M, Z(3)).

Another way to define the pairing is to use explicitly the quasi-isomorphism

| _
Z(pyp = (A%, 228 4, 4 an Y,

induced by the exponential map (see 2.2). In this way a cocycle representing a class of
degreek in Hl’g(M, Z(p)) becomes a cocycle of degree- 1 in the double complex

é'(U—> M, Ay, —>A%,[—> --~—>A11‘71).
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In particular, ifQ2 = (w;, a;j, fijk, mijx), subject to the relations (2.2.2), is a cocycle
of total degree 3 iC* (U — M, Z(3)},) representing a Deligne class of total degree 3,

the element
1 1 Sijk
v = iy — ijs -
<<2m'>2‘” @iz exp( <2m>2>)

is the corresponding cocycle of total degree 2.

As in the previous discussion, we will consider only the case whenMiis p — 1,
wherep is the length of the Deligne complex, so that the truncation becomes irrelevant.
Denote byC** the double complexX*(U — M, A}, — A}, — --- — A%)), with
n=p-1

Then there exists a natural pairing betwer and S,.s which assigns to the pair
(¥, ¢) the evaluation of the-form overachaim = Y oi,..._i - Aig
M)):

..........

(¥, c) =/ _ Yig,...is»

with the understanding that for = O this is just the pointwise evaluation of an in-
vertible function, defined through the exponential map. To define a multiplicative pair-
ing between To€** and TotS, o, let C = (co,c1,...,cn), With¢; € S,_;;, and

W = (Yo, Y1, ..., ¥,), with y; € C*~>. Then we define

n—1

(W, ) = [ [ @Xp(Wi, i) - (Yn, ca) € C*. (2.4.5)

i=0

By the very construction of the double complext® ands, ,, the total differentials
D andd are transpose to each other, namely

(DW,C )y = (W, 0C);,

forall W e C**,C € S.... The pairing (2.4.5) descends to the corresponding homology
and cohomology groups and is non-degenerate. It defines a pairing betiwert C**)
andH,(TotS, ) which we continue to denote ky ),,.

It is easy to describe the relation between the multiplicative paifing, and the
C/Z(p)-valued additive pairing introduced earlier. Namelydet TotC**),C € S, ,
and let¥ be the corresponding element@*-*. Then we have

(W, C ) = expl(®,\ C)/@ri)P ).

It what follows we will use freely both forms of the pairing, multiplicative and
additive, depending on the context.
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3. Construction of theAction

3.1. General remarksThe next sections will be devoted to the detailed construction of
the action functional — or rather its exponential — by specifying the following:

(a) Aresolution of the Deligne compléX(3),.

(b) Arepresentative fora classng(X, Z.(3)) that “starts” from a collectiofw; [ f1}ics
of “local Lagrangians densities” — top forms an- defined with respect to a given
coveringlly = {U;};c; of X.

The latter data come from Polyakov’s ansatz, with dynamical field given by a deformation
map f : X — X and with external field given by a smooth projective connectiok of
Before doing so, we make some remarks of general character.

— The Deligne comple¥(3)7, is especially convenient for treating various logarithmic
terms produced in descent calculations, while keeping additivity.

— The“local Lagrangian®2[ f] appears as a total cocycle of total degree 3 in the Deligne
complexZ(3)3,, and we define the action functional by evaluating this cocycle over
the representativE of the fundamental class of the Riemann surface

SLFT=(QLf], ),
described in 2.4. According to 2.8[ f] € C/7Z(3), so that the functional

ALf] = (QUS], T)m = exp{S[f1/(2mi)?)

is theexponentiabf the action.

— A similar approach was taken in [3,20] in order to describe certain topological terms
arising in two-dimensional quantum field theories. In our case the field is a deformation
f : X — X and the procedure differs in that we construct the whole representing
cocycle starting from one end of the descent staircase.

— According to [18,13] the exponentials of action functionals should be more properly
regarded a€*-torsors rather than numbers. This is most apparent when dealing with
manifolds with boundaries. A similar situation occurs in our case, vihisra compact
Riemann surface: the definition of the local Lagrangian coc§lg] depends on the
trivialization of the tame symbd@Il’ X, T X], described by anf(-independent) element
of H2(X, C*) = C*. As a result, the multiplicative action functiondl /] is a C*-
torsor.

— The action functionali[ f1], defined through hypercohomology admits the following
geometric interpretation. According to Sect. 2.2, the grﬁgn(X, Z(3)) classifies
isomorphism classes of gerbes equipped with connective structure and curving [10,
9]. Since dimX = 2, these are necessarily flat, therefore they are classified by their
holonomy via the isomorphismg(x, 7(3)) = H?(X, C*). ThusA[ f] can be inter-
preted as the holonomy of an appropriate higher algebraic structure.

3.2. Setup for regulaéech coveringsLetUy = {U;};<; be an open cover of, which

..... i, = Ui,N---NU
are contractible. Therefore, we are iach—de Rham situation [7,38], and the double
complexC2? def é‘l(L{X,Z(3)PD) computesH? (X, Z(3)). Let {z; : Ui — Clies be
holomorphic coordinates for the complex structureXofand letz;; : z;(U; N U;) —
zi(U; N U;) be coordinate change functions:= z;; o z; onU; N U;.

ip
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Remark 30One could also use coordinate functions witthinstead ofC.

More generally, forU,»OM,-q there are holomorphic coordinateg, . s 2y with
Zie = Zigiea @)y k = 0,...,¢ — 1. If ¢ € CI71(Ux, A) is a Cech cochain,
ie. ¢ = {big.....ig1}> where the components, .. iy1 arep forms onUj,, .., ig1 its
Cech differential is defined as

8io....., —Z( Do ity + D Gigaiy) Pion iy

,,,,, _, of aCech cochaim is expressed in the
coordinate; 41 i.e.the one determmed by the lastindex, and we will use this convention
throughout the paper.

Given a quasi-conformal map : X — X denote bWy = {V;}ics, whereV; =
f(Uy), the corresponding good open coverX)rLet{w, V; — C};¢; be holomorphic
coordinates for the complex structure of and letw;; : w;(V; N V) = w;(V; NV))
be the corresponding coordinate change functiens= w;; o w; on V; N V;. Let
fi = wjo fly, o zfl, i € I, be local representatives of the mgp satisfying the
transformation law

Jiozij = wijo fj. (3.2.1)

Denotedf; % af:/9z; andd; f; = 8 f; & 8f:/9z;, and introduce local representa-
tives of the Beltrami differentigh by u; = 3 f;/9f;.
It follows from (3.2.1) that

afi o zij - zl] wuof/ afj, (3.2.2)
dfiozij -2, =wj;o f-3f), (3.2.3)
and
7
2
Wi©Zij = M (3.2.4)
13

[
Sinceé;; oef zj; o zj = dz;/dz; are transition functions for the holomorphic tan-

gent bundleT X, and&; oef w;; ow; = dw;/dw; are the transition functions for

TX, it follows from (3.2.2) thatdf is a section of the bundl#*X ® f~1TX, or
af € ALO(f~1TX). Here f 71T X is the pull-back of the tangent bundle ov&rby f.
Similarly, d f € A%X(f1TX).

IntheC™ categoryf 1T X = T X, sothatl *X ® f ~17 X is isomorphic to the trivial
bundle. This is also implied directly by the transition formula (3.2.2), sﬂfce;é 0,f
being a diffeomorphism. Thusf is an explicit trivializing section fof * X ® f~ rx,
that establishes the isomorphism betw@&X @ f~1T X and the trivial line bundle.

Introducing representatives andc; ;. for the first Chern classes(7 X) = cl(TX)
we have

cije = 8({logz/ Pijr, (3.2.53)
Gk = 3({logw. o fDijk, (3.2.5b)
bij = logw;; o f;j —logz;; —logdf; o zi; + logdf;, (3.2.5¢)
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and, obviously§ ({b..));jx = &jx — ciji- All the numbersy;, c;jx andé; x are inZ(l).

Although one can gdt;j; = ¢;jx andb;; = 0 through a suitable redefinition of the
logarithm branches, there is no additional complication (except, perhaps, the notation)
in keeping the general situation.

3.3. Thelocal Lagrangian cocycldn order to construct the action functional, one needs
an ansatz forits top degree part. Following [2], we promote the standard Polyakov’s chiral
actiorp,
02 f;
w; = ?81‘“ dzj Ndz; + 2pih; dzi Adz;, (3.3.1)
L

to an elemen{2r v/ —1w;}ies € C%O. Hereh = {h;}ic; is aC*> coboundary for the

Schwarzian cocycle
a3z 3(d?%z\°
zinzjl=—= 35| == | -
dzj 2 de

relative to the coveily (see[23]). In other words, it satisfies the following transformation
law:

{zizj) =hj—hiozj- (g, (3.3.2)

onU; NU;. Clearly, such ark exists, since the Schwarzian cocycle is already zero in
the holomorphic category [23]. The spa@¢éX) of all suchi includes the holomorphic
projective connections, and is an affine space over the vector $p&ce (A%;O)@z).
Let us call such an asmoothprojective connection (even though that we do not relate
it to projective structures).

Following the usual strategy [17] of descending the staircase in the double complex
C%’, starting with the 0-cochaifw;} of 2-forms onX, we find a 1-cochain of 1-forms
{6;;} and a 2-cochain of function®;} satisfying

5(6&)1’]‘ = do;j,
8(0.)ijk = dOijk.

Imposing the conditiod® = 0 modZ(2) ensures that the total element

Q L' 2r V=1 ({wi}, (67}, {=Oiji), (—mijua),

wherem = §©, is a cocycle in the total complex.

Solvability of the descent equations is proved in the standard way using the acyclic
property of the good coveéfy and Poincaré lemma on differential forms. Namédyy =
0 implieséw = df and 0= 5d6 = d56 impliesso = do. Finally, fromdd® = d3® =
0 one concluded® e Z3(Uy, Cx). From de Rham theore ? (X, C) = R(X) it
follows for dimensional reasons th&® = 0, after possible rescaling of constants.

The foregoing shows that one can get a “minimal” cocycle with the conditign =
0, albeit not in explicit form. However, our goal is to have a cocyelg] with “good”

5 More precisely, Polyakov’s chiral action has no second term in (3.3.1), which, in fact, is not necessary in
genus zero.
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dependence on the dynamical figldi.e. with the same variational properties as in the
genus zero case). Itis most remarkable that such co&fofg can in fact be computed
explicitly, allowing for a geometric interpretation as to wb@ = 0 modZ(2). This
computation is accomplished in the following steps.

3.3.1.5w = d6. We find, using the transformation rules (3.2.2)—(3.2.4),

Swi./ =w;j — Wi
T
= d(z[l/j Z#dzj — (log(w;; o f}) +logz;;) dlogdf; + log(w;; o fj)dlogzﬁj)
ij
—I—Z[,Lj hj de /\dz_j —2ui hidz; /\dz_,- —Z/Lj{Zi,Zj}de /\dZ_j.

(3.3.3)
In light of (3.3.2), Eqg. (3.3.3) reads
Sw = do,
with 6 given by the first two terms on the RHS of (3.3.3), that is,
Gj , ,
0ij = 2u; Zjdz,- - (Iog(wij o fj) + log Zij) dlogaf; (3.3.4)

+ log(w;; o f}) dlogz;.

3.3.2.50. The first term on the RHS of (3.3.4) is a cocycle, as it hasGbeh cup
product of two terms which are cocycles themselves. We can ignore it from now on. The
term on the second line of (3.3.4) is also cup product, so its coboundary is computed by
applyingd(a U b) = §(a) U b + (—1)9€%4 U §(b). For the remaining term the cocycle

is computed directly. The final result is

5(0); = — logw;; dlogw’, + logz}; d log 'y,
— (Gijk + cijr) dlogdfi — d (logz); logw'y) (3.3.5)
+ Gijr dlogzjy,

where we suppressed tiiedependence. To restore it, notice that on the triple intersection
U; NU; N Uy everything is evaluated with respect to the coordinratso that Iogulfj o

filu, =.Iog wlfj o fjozj = log wl/.j owjk o f{(. We shall use this convention in the
sequel, in order to keep some of the expressions less cumbersome.

3.3.3.50 = d®. Here we are using Deligne tame symbols in holomorphic category,
introduced in 2.2 in order to fin@ satisfying the equatiof¥ = 4® and to check that
30 =0 modZ(2). 5

Consider the tame symb@TX, TX], which is represented i@ech cohomology by
the element

(—logz}; d10g ;. ciji 1092, cijkcum) € CA(QY) & C3(Ox) & CHZ2)x),
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where{c; ¢} represents the first Chern classTot. As we mentioned in Sect. 2.2,
HYX, Z(D% pop) = H3(X,C*) =0,
so that the total cocycle representi(‘ng, TX] is a coboundary:
(—logz;; dlogz’y, ciji 1092y, cijkcrim) = D(tij, dijks nijr)s

where(z;;) € CHUx, Q%), (ijx) € C?Ux, Oy) and(n;ju) € C3Uyx, Z(2)x). Com-
puting the RHS yields the relations

—logz;; dlogz)y = (0)ijk + doijk, (3.3.6a)
cijk10gzyy = —(d)iju + nijur, (3.3.6b)
CijkCrim = (8n)ijkim - (3.3.6¢)

There is an entirely similar situation for the deformed Riemann Surfa@nd the
corresponding symbq(T X, T X], for which we introduce the corresponding objects

Tij, q?ijk andi; ;. Using these results we rewriié as

8(8),; =3/ *ENijk + df*(Biji) — 3(ijk — depiji
— (Gijk + ciji) dlogdfi — d (logz;; logw'y)
+ Gijr dlogzjy,

where f*(7;;) and f*(q?,-jk) are pull-backs of forms;;’ and&ijk on X. Now, perform
the shift:

A def -
0ij — 01 = 0 — ¥ (&) + .

This is possible since;; and7;; are holomorphic relative to the respective complex
structures, implying/t;; = 0 anddf*(%;;) = 0, so that

déij = dgij = S(w)ijv

without affecting the 2-form part of the action.
From now on we assume tht has been redefined in this way, that is

0ij = 009 — f*Ej) + 1ij. (3.3.7)
where@fj’.'d is given by formula (3.3.4), and we can finally put
30 = dO,
with

Oijk = f*(Pijr) — bijk — Cijk + ciji) logdfi

- 3.3.8
— logz;; logw'y + &iji l0gzjy. (3:38)
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3.3.4.50. Using the relations (3.3.6) we compute:
8Oiju = fiijir — niju — Cijk + ciji)bu + ciji€iu — cinéiji,
so thati® € C3(Uy, Z(2)x). Setting
mijkl & (5®)ijk1,
we can summarize the foregoing in the following

Proposition 1. The total cochain
def
Q = 27 —1(w;, 0ij, —Oijk, —miji),
with w; given by the Polyakov forif8.3.1) represents a class iH%(X, Z(3)).

Proof. All the preceding computations amount to show that

DQ = 2nv/—1(~wj + w; + db;j, (50)ijk — dOjjk, 6O)iju — mijui, (Sm)ijklp)
=0.

ThenQ represents a class since the double complgkcomputes the hypercohomology.
i

Now that we have constructed the Lagrangian cocycle from the Polyakov top form
in (3.3.1), we can finally give the

Definition 2. Let u € B(X) be a Beltrami coefficientf be the associated deformation
map, and?[ /] be the local Lagrangian cocycle constructed fr(818.1) ThePolyakov
action functional onX is given by the evaluation

SL1 % @rr1. 2). (3.3.9)

over the representativE of the fundamental class &fgiven in 2.4 and in the appendix.

Remark 4As it follows from the definition, Polyakov’s action is well-defined modulo
7(3), so that only its exponential[ /] = exp{S[f1/(27i)?} is well-defined. It also
follows from the definition of the pairing in Sect. 2.4 that the functioapf] actually
depends only on the cohomology cIasg-lﬁ(X, 7.(3)) of the local Lagrangian cocycle

QLf]

By construction, the cocycl®[ /] depends also on a smooth projective connection
h € Q(X), so that the exponential of the action defines the ma@(X) x B(X) —

C*, where the dependence on the first factor is that of an external field.

Here we analyze the dependence of the action functiasigi$ and A[ /] on the
choice of the logarithm branches. We also study the trivializing coboundary for the tame
symboI(TX, TX], analyze the dependence of the action on this trivialization, and show
thatA[ /] should be in fact considered as taking its values @t &orsor.
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3.3.5. Dependency on logsiere we prove the following

Proposition 2. The functionalA[ f] is independent of the choice of the logarithm bran-
chesin(3.2.5)

Proof. It is sufficient to show that changing the definition of the various logarithm
branches irf2 amounts to change it by a coboundary. First, we change these branches,
|ng;j — |ng;j + kij,
logw;; —> logw}; + ki;.,
logaf; — logaf; + pi,

wherek;;, /El-,-, pi € Z(1). The effect of these changes on the representatives of the Chern
classes of X andT X is

bij —> bij +kij —kij + pj — pi.
Cijk — cijk + 8(k)ijk,
Cijk — Cijk +0(k)ijk.
While the termw; is obviously invariant under these changgsand®;;;, by descent
theory, transform as follows:
bij — 0ij + dvij,
00— 0 +<§w — Fijk,
wherey € CY(Ux, AY) andr € C2(Ux, C). Note that ifr;jx € Z(2) for anyijk, then
Q — Q4+ DA, wherex = (0, v;;, rijr), and we are done.

To prove thatr < éz(ux, 7Z(2)), we actually compute the shift fad. First, we
explicitly determine

Vij = —(kij + kij) 109 df; + kij logz};.

Next, we explicitly compute the shift of the total cocycle represen@iﬁg, TX]. This
is a straightforward calculation, using relations (3.3.6), with the result:

Tij — Tij,
A
Pijk —> Pijk — kij 1092y,
Nijkl —> Nijki + kijcjx + Cijikis + (8k)ijrkir .

Similar formulas are valid for the shift c(f]"f(, Tf(]. Putting everything together, we
get

rije = (kij + kipbj + (Eije + ciji + Gk)iji + 6k)ije) p
+ kijkji — Cijikix — Gk)ijikix + kjiciji + kijeiji € Z(2). (3.3.10)



328 E. Aldrovandi, L.A. Takhtajan

3.3.6. A more detailed analysis of the vanishing tame syniete we analyze the
condition(TX, TX] = Oasanelement &*(X, Z(2)p o) in more detail. In particular,

we investigate the possibility of putting the trivializing cochaing, ¢;;«, nijx) and

(T, J),-jk, i1;jk1) into some specific forms. This analysis is based on the relations (3.3.6),
which we rewrite here:

—logz}; dlogz, = (51)ijk + deijk.
cijr 109zl = —(8)iju + niji,

CijkChkim = (én)ijklm~
The first equation above calls for the differential equation
- |ngl/~j 0 Zjk d |ng;k = dLijk. (3.3.11)

Its solutionL; x(zx) can be considered as a Bloch dilogarithm associated to the symbol
(z;]., z’jk], which is the cup-product in Deligne cohomology of the two invertible func-

tion3z§j andz/jk and is a trivial element oH%(Uijk, 7Z(2)) (see [16] for more details).
The consistency condition on quadruple intersectigpg is obtained by applying the
Cech coboundary to the differential equation satisfied.hy. One gets

) .
cijklogzy; = —BL)iju + ijki,

wherey; 1, is aC-valued cochain —an integration constant. By takingvlbeh cobound-
ary of the last relation we get

CijkChkim = (Sa)ijklm-
Therefore,
S(a —n) =0,
thatis, the element—n is a 3-cocycle. By dimensional reasons, it must be a coboundary,
a=n++ 5,3,
with 8 being a 2-cochain with values @. It follows that
cijklogzy = —3(L — Bijxt + nijki-

As aresult, we effectively obtained aftrivializing cocycle for the tame syl 7 X]
which does not include a 1-form:

(—logzj; dlogz’y, cijk 1092y, cijkckim) = D(0, Lijk, nijur),

where we relabeled — 8 — L.
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3.3.7. Relation withC*-torsors. Notice that the trivialization of the tame symbol
(TX, TX] is defined up to a cocycle representing an elemeiifiax, L% o) =

H?(X,C/Z(2)) = H?(X,C*) = C*. Thus there is &*-action on the functional[ /]
which simply is the shift of the total trivializing cochai;;, ¢;j«, nijxi) by a cocycle
representing a class Hi(X, Z(Z)'D’hol). From this it is clear that, keepinfj fixed, the
functionalA[ /] does not simply take its values@, but rather in &*-torsorT. From
this perspective, choosing a specific total cochain to trivialize the sylfﬂbm TX]

amounts to choosing an isomorphigm— C.

TheC*-action can be described explicitly if we make use of the cOakI&; i, n; k),
obtained by choosing a dilogarithin;, for the symbol(zgj, z/jk]. Namely, as it follows
from the discussion in the previous section, we can ady; tpa cocycle(B;jk, pijki)
representing an element in

H3(X, Z(2) - C) = H%(X, C*).

Note that, by definition§8 = p € Z(2).

Since the action functional is defined using trivializationteb tame symbols,
(TX,TX] and (TX, TXl the above argument should be applied to both cochains
(Tij, bijk» nijk) and (T, é;jk, fiijr), SO that we have in fact tw@*-actions. From a
Teichmiller theory point of view, these two actions refer to very different structures.
One is defined in terms of the complex structirevhich is fixed throughout (a base
point in Teichmdller space), while the other is relative to helependent complex
structureX. The latter action depends on the dynamical figld

Thus it is appropriate to speak of(&*, C*)-action, in the sense that the spdte
where the action takes its values carries two simultaneous (and comp@tikde}ions.

3.4. Other covering — a dictionary. In this section we set up a dictionary connecting

the generalize@ech formalism developed in 2.3 and 2.4 with the formalism used in [2]
for the universal cover ok. Besides comparing the two formalisms, by applying the
dictionary to the formulas in 3.3, we also clarify the explicit form of the Lagrangian
cocycle constructed in [2]. Specifically, we treat the “integration constants” arising from
solving the descent equations via Deligne complexes and analyze explicit dependence
of the action functional on background projective structures.

3.4.1 Start from the universal covér — X, which we specify as the upper half-plane
H. Then DeckH/ X) = 71(X) = T, a finitely-generated, purely hyperbolic Fuchsian
group (a discrete subgroup of PSR)), uniformizing the Riemann surfack. The
groupI" acts onH by Mébius transformations.

Geometric objects oiX correspond td -equivariant objects oftl: a tensorp €
AP4(X) corresponds to an automorphic fognfior I" of weight(2p, 2¢9), i.e. a function
(indicated by the same namg). H — C such that

poy- (Y)Y =¢,yel.

Clearly, an automorphic form is just a zero cocyclelowith values inA?-9 (H). Ex-
amples of automorphic forms of geometric origin are provided by Beltrami differentials
on X, that correspond to forms of weight 2, 2), by abelian differentials oX — global
sections of2y —that correspond to holomorphic forms of weight0), and by quadratic
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differentials onX — global sections 0@?2 — that correspond to holomorphic forms of
weight (4, 0).
The deformation mayf is realized as a quasi-conformal map

fH—D
satisfying ont the Beltrami equation

Jz=nfz (3.4.1)

whereu is a Beltrami differential fof" onH such thaf| || .o < 1. The Beltramiequation
on H should be supplemented by boundary conditions that guarantee the following:

1. D = f(H) is aquasi-diski.e. a domain if?! bounded by a closed Jordan curve and
analytically isomorphic tdf,

2.T = fol'o f~ c PSLy(C) is a discrete subgroup, isomorphicltas an abstract
group, acting oD, i.e. a so-calledjuasi-fuchsiargroup. The isomorphisfi — T"
intertwinesf.

These boundary conditions are specified by extengirig the whole complex plane,
where the Beltrami equation has a unique solution up to a post-composition with Mébius
transformation [1,34]. The following two types are of particular importance.

(@) Extension ofu by reflection to the lower half plang: 1 (z) def w(z) for z € H.
ThenD = H andT is also a Fuchsian group.

(b) Extension ofx by settingu(z) = 0 for z € H. In this caséD is a quasi-disc and the
dependence of the mappirfgon i is holomorphic.

The formalism developed below will be independent of a particular boundary condition
chosen.

3.4.2 Here we address a minor normalization problem caused by the fact that the
action of PSk(R) — and therefore of andI” — by Md&bius transformations is on the
left instead of on the right, as we assumed in 2.3. Assuming a right action yields all
the standard formulas in group cohomology. On the other hand, a left actibrisof
more convenient in view of the fact thititself is the quotient of a principal fibration:
H = PSLy(R)/ SO2).5 As a result, the surface itself is presented as a double coset
spaceX = I'\ PSL(R)/ SO2).
For a left actionG x U — U for aG-spacell — M there is the isomorphism
Uxy - xuyU=GT xU,
e e

q+1

sending the-tuple (xo, . . ., x4) to the tuple(gs, .. ., g4, x) such that

(X0, ..., Xg) = (81...8¢%,82-.-8¢%, ..., 8%, X).

This arrangement makes the face madpappear in backward order, that is

do(g1, ... 84, %) = (g2, ..., 84,%) ... dg(g1,...,84,%) = (81, ..., 8g—1, &gX)-

6 In general, we prefer to consideght principal fibrations.
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As a result, the action on the coefficients would be on the right and the coboundary
operatois in group cohomology should actually be read from right to left, as in

g—1
prt (3.4.2)
+ (=D bg....50-1>

for ¢ a(¢g — 1) cochain. Observe that the pull-back action on the coefficients is a right
one.

The familiar formulas in group cohomology can be retrieved by turning the left action
into a right one using the standard trick

x~gd:efg_1x, geG,xel,

which at the level of nerves amounts to performing the sw@p..., g, x) —

(x, g;l, ce, gl_l) in degreegq. It follows that one has to evaluate all cochains over
inverses of group elements. This is the convention we followed in [2].

On the other hand, given the actionofon H as a left one, keeping the non stan-
dard form (3.4.2) parallels more closely thech framework if we consider the pair
(y(z),z) e Hx xH, forz € Handy € I', as a change of coordinates, much like the pair
(zi,zj) € Uiy xx U = U; N U;j with z; = z;5(z;). More generally, fot;, N --- N U;,
there are coordinates,, .. ., Zi, with z;, = Zigie1 Qi) kK = 0,...,9 — 1, and if
¢ € C1~ YUy, AP) then we have

qg—1
8ig.....ig = Z(—l)kfﬁ,-owi; ,,,, i T (=D (ziy_1i))* Pig....ig-1» (3.4.3)
k=0

where the convention is that each component is expressed in the coordinate determined
by the last index. This is the formula we used when performing explicit computations
with Cech cochains for the calculation of the local Lagrangian cocycle. Thus (3.4.3)
becomes formally equal to (3.4.2) when we interpret the last pull-back, s the
restriction isomorphism expressing everything in terms of the last coordinate.

3.4.3 The translation of the constructions in 3.2 and 3.3 to the upper-half plane is now
done according to the following table:

Cechidy Upper-half planéd
Uy,N---NUj, ' x H
Zigs ++ + 5 Ziyy 2 P VA
Zip = Zigipsr Qigp), k=0,...on =1 | ra=wn), k=1,...,n,z, =z
Pio, ...in (23, )dz] dZ], Pyr,....yn (2)dzP 7
(3.4.3) (3.4.2)

Similar provisions of course relate the deformed coordinateand elements of the
deformed groud". Any construction explicitly involving the mag must take into
account the equivariance properfyo y = 7 o f foranyy € I', wherey is the
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corresponding element in the deformed grdupNVe have relations entirely similar to
(3.2.2) and (3.2.3) which can be found in [2]; for example

y'of
Y/

fo=fov. (3.4.4)

In order to handle the logarithm of (3.4.4) in the same way as we just did {Deble case

(see (3.2.5)) we depart from [2]. The problemis to relatéjegp)’ and logy; oy2+log v,

for any y1, y2 € T, and similarly forT". Instead of directly analyzing the branch-cuts
(thus introducing an element of explicit dependence on the choice of the branches) we
set

Cyry, = 10gy; —109(y1y2)" +10g ¥y © y2, (3.4.5a)
5.7, = log 7, — log(7172)" + log 7 o 72, (3.4.5b)
b, =logy o f —logy’ —log f; oy +log f, . (3.4.5¢)

The numbers,, ,,, ¢35, andb, belong toZ(1), andc, ¢ are cocycles witld = ¢ + b.
Sincey’ is the automorphy factor fof X, the geometric interpretation is that again
c represents1(7 X) [24]. Alternatively,c represents the Euler class of th&bundle

M\ PSLL(R) — X ([33,39,8], see also [30]). Indeed, the first of Egs. (3.4.5) can be
written in terms of rotation numbers:

Sy = —2(w(y2) — w(ay2) + wy1) o y2),

wherew (%) = arg(cz + d). More precisely, this is the Euler class of tR&*-bundle
obtained by letting PSK(R) act on the real projective line realized as the boundafy of
(see [39] for details). Again, a similar discussion holdslforith the obvious changes.

As was shown in Sect. 2.8ech cohomology with respect to the coler— X is the
same as group cohomology of (X) = T" with values in the appropriate coefficients.
Also it was noted there thdl — X is a good covering acyclic for fine sheaves, so
that H? (m1(X), C) = Hé’R(X) = HP(X, C). Similar arguments show that the double
complexC?(T', Z(3)%,) computesHz, (X, Z(3)).

The choice of the coverinffl — X — or, more generally) — X — contains more
information than simply using an abstract universal coveringbhap X:itincludesthe
choice of a projective structure. Indeed, since the Schwarzian derivative of any Mébius
transformation vanishes, any local section of the canonical projection would precisely
be a system of projective charts for it.

It follows that when working witHH — X the explicit inclusion of projective con-
nections becomes — strictly speaking — unnecessary. Indeed, these were not considered
in [2]. However, it is known [2,40] that the effective action (that is, the class of the
local Lagrangian cocycle) in higher genus is determined — say, by the Universal Ward
Identity — only up to holomorphic quadratic differentials. Interpreting the latter as lifts
of projective connections, the precise statement is that the effective action is determined
up to the choice of a projective structure. In light of this observation, and also to keep a
strict parallel with theCech formulation, we make this dependence on a generic projec-
tive connection explicif. In this way we obtain a unified formalism consistent with the
treatment of variations in Sect. 4, where conditions on the projective connections will
be enforced by the variational process.

7 Here the term projective connection is to be understood in the same way as in 3.3, i.e. as not necessarily
holomorphic one.
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Now we set out to write the correspondence:

Ux H
3,0 | wi(z) w(2)
2, | 6z 0, (2)
(L, 2) | Ojr(zr) | Opyn(2)

©.3) | miji | My
For the first two lines we start by translating (3.3.1) and (3.3.4), respectively:
a2f _ _
wy(2) = W&udz/\dz—i—Zuhdz/\dz, (3.4.6)

"

0,(2) =21 %dz_— (log(7" o f) +logy’) dlogdf + log(7' o f)dlogy’, (3.4.7)

whereh is a smooth quadratic differential. In this way the last term of (3.4.6) is au-
tomorphic of weight(1, 1), hence it is killed by the coboundary operator. This would
be consistent with a translation of (3.3.3). We stress (3.4.7) is a direct translation of the
expression for th€2, 1) componenprior to the computation afd = d®. As before, the
existence 08, ,, is guaranteed by the vanishing of the analog of the syr(ﬂim’l, TX]
in holomorphic Deligne cohomology. This time, the tame symbol is represented by the
cocycle

(—logy{ o y2d10gy;, ¢y1,, 1093, Cy1,y5Cys,s)

e C3(I, @'(H)) @ C¥(I', O(H) & C*(T", Z(2)).

SinceH — X is a good cover, the quasi-isomorphism

L)y oy > (07 (H) 2% QL)) [-1] > C/Z(2) = C*

is still in place by holomorphic Poincaré lemmalBnHence
HAT, Z(Q% po) = H3(I', C*) =0,
again, by obvious dimensional reasons. It follows that we can still introduce e
CLT, QL(H)), (¢yy,y,) € CAT, O(H)) and (1, y,.,,) € C3(T, Z(2)) such that
(— logy; o y2d 109y, .y, 10gy3, Cyl,yzcys,m) = D(fyv Gy1.y25 ”yl,yz,ys)’

where varioug;’s are used as place-holders for added clarity. Obviously, the treatment
for the corresponding quantities dependinglois entirely similar. As a result, we can
either compute the coboundary of (3.4.7) or simply translate (3.3.5) and repeat step by
step what was done in Sect. 3.3 to arrive at

0, =099 %, + 1, (3.4.8)
with 691 given by (3.4.7) and, finally:

Oyrys = Py1,y2 — Byrye — Cprya + Cy,p0) 1093f

, [N , (3.4.9)

—l0gyy 0 y2 1097, + Cyy,y, 109(y1 0 ¥2)

My yoys =Nyiy2.3 — Mynyas — (Cyrye + Cyryn) byg (3.4.10)
+ Cy1,v2013Cy2,73 — Cyr0y2,¥3CyL 72"

Therefore the analog of Proposition 1 holds
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Proposition 3. The total cochain

def
21/ — (“) Oy, =Oyy,, _myl,yz.ya)’

with w given by the Polyakov fori§8.4.6) represents a class iH%(X, Z(3)).

The action functionalS[ /] is computed by evaluatin[ f] over the appropriate
representative diX], which in this case would be a total cocycleSp(H) ®zr B, (T)
whose(2, 0) component can be taken as a fundamental dorfdor I' in the form of
a standard g¢-gon, as detailed in [2].

4, Variation and Projective Structures

4.1. Variation. Here we compute the variation of the action functio$igf ] with respect

to the dynamical fieldf, i.e. we compute its differential in field space. We denoté by
the variational operator —the exterior differential in field space [37,41,13]—and we will
use coordinates with respect to a gddech covet/y whenever a local computation is
required.

Since the dynamical fielg is a deformation map o, we can either choose to
allow variations that effectively deform the complex structure or restrict ourselves to the
“trivial” ones — deformations corresponding to vertical tangent vectors in the Earle—Eells
fibration over the Teichmiller space.

From (3.2.1) we get

8fi

f (Klj)_ 3f/

Loz @i (4.1.1)

ﬁ

where

(SU)' .
= {""f' = /.l.]}
t

is the standard Kodaira—Spencer deformation cocycle Jarie; ;) = «;; o f/0f; is
its pull-back. The conditiofik] = 0 in HY(X, ®), where® is the tangent sheaf of,
selects variations that leave the complex struckifixed. Specifically, ifx] = O thenit
follows from (4.1.1) thas f; /0 f; represents a smooth, 0)-vector field onX — possibly
after redefining it by a holomorphic coboundary §tit(«;;). Furthermore, the variation
du of the corresponding Beltrami differential as a tangent vectdt(fo) at u is

5f

so the clas$du] € Hai_l’l)(X) corresponds tfx] under the Dolbeault isomorphism.
y7s

In the sequel we shall confine ourselvewéstical variations that is, to those with
[«]=0. Then‘;—JfJ defines a smooth vector field an

We start to éompute the variation of the Lagrangian cocyzleith respect tof.
From a purely formal point of view, the calculation for the variation of the top form part
proceeds as usual, where in each coordinate patch we have

S =0, 4.1.2)

dw; = a; +dn;
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with (a;) € COUyx, A%) and(n;) € COUx, A%), where

- S f; _
ai(f, 8.) = —28 (hi — {fi Zi})a—;dz,- A dF.

Using the well-known identity

oulf 2t =%,
whereu = u(f) andz is a local coordinate oX (the indexi is omitted here), we get
02y —h) =@ —pd =20 f, 2} —h)
=% — (0 —pnd—20wh
=33 +2hou+ dhpu — dh
= Dy — dh.

Here, for any smooth projective connectibre Q(X), D;, is the following third order
differential operator:

Dy = 83 4 2hd + h. (4.1.3)
Itis well-known (see, e.g., [22]) that it has the property
Dy : Ay — A%

for all Z; in particular,D;, maps global forms of weighit-1, /) to global forms of weight
2, 0).
Thus the final expression for the variation of the top form term is,

ai(f,8f) = —2(9hi — Dyi) ‘;—?da AdZ. (4.1.4)

Thanks to (3.3.2) and to the fact thay is a well defined mapy; (f, 8 f) is a well defined
global 2-form onX. The 1-formn; has the expression

8 fi _
i = 810gf; dlogaf; + 20(10gaf )z 8ui — 2k — {fir 2 2 (dzs + pid),

afi
(4.1.5)

where_ is the interior product between 1-forms and vectors.
The main point is that the term (4.1.4) alone constitutes the variation ofitiode
Lagrangian cocycle. Namely, we have

Theorem 1. The variation of the total cocycte[ f | = 27 v/—1(w;, 6;j, —Oijk, —mijki)
under vertical variation is given by the 2-for(4.1.4)up to a total coboundary in the
Deligne complex. The variation of the action functioSaf] is

§S[f] = 27v/—1 /X alf.81).

giving the following Euler-Lagrange equation

D — dh = 0. (4.1.6)
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We can give two different proofs of this theorem. One is more in keeping with the spirit
of this work and uses the explicit form &f. The other is based only on Takens’ acyclicity
theorem [37] for the variational bicomplex and the formal machinery of descent equa-
tions. Although we present both, the second one will only be sketched here, as providing
details for it would lead us far afieft.

Proof (First proof).The procedure is to compute the variation of the various components
of © by applyings to the descent equations. Start wilw; ;, that can be computed in two

different ways: from equatiofw = d6, and from the variational relatiof = a + dn.
Sincea; = a;j, we have

d(86;; — nij) =0,
and we deduce, using the Poincaré Lemma, that
86i; — dnij = dij,

for (1) € ClUy., Ay). An explicit calculation using (3.3.7) and (4.1.5) confirms this
relation with

4

rij = zw—fj o fi8f; — (logwj; o f; +logz;;)8logdf; — Tij o fi8f;.  (4.1.7)

tj

The last term in this formula is obtained by varying the differeff¢er;;) — ;;, that
enters Eq. (3.3.7). Clearly, the variationmf is zero and for the variation of*(%;;) we
have

8f*(%ij) = 8(Tij o fidfj) = 8(Tij o f) dfj + Tij o f; 8df;
= %i/j o ijfJ' dfj + ‘E,‘j o fj dej
=d(%ij o fi8))

sincet;; € Q1(U; N U;) (see Sect. 3.3.3).
Computing the coboundary of (4.1.7) yields

8xijk = —(Cijk + cijx)8logaf
— (logwj; o fj +logz};) 8logw’y o fi — §%)ijk o fi fi-
On the other hand, the variation of (3.3.8) gives
80 = (El{jk o fi8 fi — (Ciji + cijr)810gdfi —logz;; §logw’y o fi
= Shijx +logwj; o f; 8ogw’y o fi) + @] © fid fi + $E)ijk o fid fi.
Using the first equation in (3.3.6):
dgijx + (51)ijx = —log wy; dlogw’y,
we get
80k = Shijk -

8 We plan to return to the topic from a more general point of view elsewhere.
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Finally, putting it all together, we obtain
0Q = (a;)) + D(n + 1),
as wanted.

Proof (Second proofllhe 2-forma; in the relatiow; = a; +dn; is asourceform [41],
hence it is uniquely determined by the de Rham class; oMoreover, given a specific

w;, the formdn; is also determined (sg; is determined up to an exact form). Since
w; = w; +db;j, we must have; = a; as boths; anda; are source forms for theame
Lagrangian problem. Here the requirement that the variation be vertical is crucial in
order to ensure thatf/df glue as a geometric objee a \ector field onX. Therefore,

from §6w;; = §8w;;, we get

80;; = Snij + dAij

by the Poincaré lemma. Proceeding in the same fashion we also get
d(80;jx — S)»,'jk) =0.
Now, bothd©; j« andSAijk are forms of degree one in the field direction, i.e. they contain
one variation. Takens’ acyclicity theorem [37,41,13] asserts the variational bicomplex
is acyclic in all degrees except the top one in the de Rham direction, provided the degree
in the variational direction is at least one. Hence,
80k = Shijk,

and we reach the same conclusion as in the previous praof.

4.2. Relative projective structuresiere we interpret of the Euler—-Lagrange equation
from the previous section through the princigalX )-bundle over the universal family
of projective structures. First, we reformulate Theorem 1 as follows

Theorem 2. The Euler—-Lagrange equation
dhi = Dy i

for the vertical variational problem is the condition that the push-forward of the projec-
tive connectior{;} onto X by the mapf is holomorphic.

Proof. Indeed, the push-forward df is fi(h) = {ho f - (3f1/8w:)?}, where

~ o i
h; = h; —{f;, z;}. It is a projective connection ok because of the transformation law

hj = hi 0 2ij(2)? = {wi, wj) o f;(3f)>.

The Euler-Lagrange equation is equivalent to the equa_;jén =0, vyhich is precisely
the condition that the projective connectigp(h) is holomorphic onX. 0O
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Itis well-known (see, e.qg. [23]) that a holomorphic projective connectiok deter-
mines a projective structure dn, and vice versa. The space of all projective structures
on X is an affine space modeled ovEP (X, Q;‘?Z) — the vector space of holomorphic
quadratic differentials oX.

For any holomorphic famil¢ — S of Riemann surfaces parameterized by a complex
manifoldS, there is the holomorphic familps(C) — S of relative projective structures
on C [25]. The fiber overs € S is the affine space of all (holomorphic) projective
structures foiCy. We will be interested in the universal case= 7 (X) and denote by
P(X) the universal family of relative projective structures. Following [34], consider the
following pullback diagram:

SX) —— BX)

l l (4.2.1)

PX) —— T(X)
where the vertical arrows are princigalX)-bundles, and the horizontal ones are affine
bundles with spaces affine ovéro(Xu,Q?f) as fibers,u € B(X). (The curveX,
depends only on the class pfmoduloG(X) and so do its holomorphic objects.) Here
S(X) is the space of all projective structures &rholomorphic with respect to some
complex structure determined e B(X), without considering the quotient igj(X).
Since every projective structure determines a complex structure, there is an obvious
projectionS(X) — B(X). As it follows from Theorem 2,

S(X) = {(h, p) € Q(X) x B(X)| Dy = dh),

so thatS(X) is the critical manifolds for the mapping : Q(X) x B(X) — C* (as
well as for the mags : Q(X) x B(X) — C/Z(3)). The projectionS(X) — B(X) is

now just the projection on the second factor, and every fiberpvwerS(X) is indeed an
affine space over the vector spakt@(xu, Qi’f) (or rather its pull-back by). Indeed,

if (h, w) and(h’, u) are two projective structures subordinategitdhen we have
Dyuw=0h and Dyu =k,
which using the identityD, u — ah = 8_M({f, z} — h) imply that
3, (k' —h) =0,
concluding that — 4’ is au-holomorphic quadratic differential.

The local meaning of the Euler-Lagrange equation — the condRjqn = dh —is
the following.

Lemmal. The operatorQ_,L andD;, commute if and only if the Euler-Lagrange equation
is satisfied.

Proof. Let v be a local section OA)}LO. As a result of a direct calculation we have
(omitting the coordinate inde)

Dyd,v — 8, Dp v = Ly(Dpju — oh), (4.2.2)

whereL, = vd + 24dv is the Lie derivative operator ogi’l. Thus the “if” part is
clear. For the “only if” part, assume the RHS of (4.2.2) is zero fowallherefore, if
we considerf v for any local f, then we must have(f) - (Dyu — dh) = 0, implying
(4.1.6). O
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We conclude thaS(X) is the geometric locus where the commutativity condition
Dy, = 9, Dy is satisfied. Then we can considey as a map between two augmented

Dolbeault complexes (where,, andggf are actually pull-backs of the corresponding
sheaves fronX , to X by the mapf (n)):

10 I —11

th J',DII lD;z (4.2.3)

Q% — - A0 —— A —— 0
" 1

e

0O ——

where the morphism®,, D, Q®2 is now the usual third ordgr-holomorphic opera-

tor [22,25], also fam|I|ar from the theory of the KdV equation [29]. It fits into the exact
sequence

0 —— Vyth) —— ©, —> 0f 0, (4.2.4)

whereV y (h) is a rank three local system depending on the projective struktura
locally constant sheaf oki. Actually, it is the sheaf of polynomial vector fields of degree
not greater than two in the coordinates adaptethtq:). Passing to cohomology, we
get:

0— HO(X,L,Q‘)X(’E) — HY(X, Vy(h) - HYX,,©,) — 0. (4.2.5)

According to the theorem of Hubbard [25], sequence (4.2.5) is isomorphic to the tangent
bundle sequence for the relative projective struc®(&) — 7 (X) at(h, ). Further-
more, the usual machinery of local systems shows HatX, V , (h)) is isomorphic
to the Eichler cohomology groufi 1(m1(X, p), V(h)p), whereV (h), is the stalk of
V x(h) over the pointp. The proof that this coincides with the classical Eichler coho-
mology (see [26]), can be obtained by lifting everything to the universal déivefr X
and using factors of automorphy (see [25] for further details).

On the other hand, from our description®fX) we have

T SX) = {(h, 1) € A20(X) x A™21(X) | Dy = 3,h) (4.2.6)
and the RHS can be written as the fiber product
AZO0(X) X go1(x) ATHHX)

with respecttothe pairofma15§ andD;,. For vertical—along the fiber &f(X) — B(X)
— tangent vectors t§ (X) at (h, u) we have

(h, 1) = (Dyv, v),
wherev € A~19(X) isthe infinitesimal generator. This pair clearly satisfies the condition

in (4.2.6), sinceS(X) is the geometric locus of the commutativity condition. Thus the
map sending — (Dyv, 3, v) describes the vertical tangent bundleSglX) — B(X).
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Therefore, ifiz, 1] denotes the class 6k, 1), we have for the vertical tangent space to
P(X) at[h, ul:

Tv ihuP(X) = (A20(X) X 42105 A7V1(X)) / (D, 3,)(A7E0(X)), (4.2.7)

which obviously projects ontoH L 1(X) = Hl(X,L, ©,). Now, this is just theC*>

image ofthe Eichler cohomology descrlptlon ofthe tangent sheafto the relative projective
structureP(X) — 7 (X) and we have the following

Proposition 4. The differential geometric description of the tangent spacB (&) at
the class of#, 1) as given by(4.2.7)coincides with the algebraic description given by
the Eichler cohomology grou (X, Vx(h)).

Proof. Consider the cone @b, : Ay "* — Ai"
weDy
O—>A_10ﬁ> llEBA A 1 o

Its cohomology sheaf complex equdls; (), thus by standard homological algebra
arguments (see, e.qg. [28]) one &g X, CcY) = H(X, V x(h)) and from the canonical
sequence

0—>A -1 — CYy — Ay e L0

one gets (4.2.5). On the other hand, the RHS of (4.2.7) is the first cohomology group of
the complex

;t@ h

0— A 20x) 225 A YY) @ A%20(X) Dt g2, 1x)—0

which is equal to the first term

\EPY = H9(x,Ch) = C X0 ¢=0
q >0,

of the spectral sequence computiig(X, C%). O

4.3. Geometry of the vertical variatiorHere we consider the functiondl /] as as
mapA : Q(X) x B(X) — C*, whereQ(X) is the affine space of all'™® projective
connections orX andB(X) is the total space of the Earle—Eells fibration.

By Theorem 2, the critical manifold foA[ f] coincides withS(X). Considering
critical values ofA ("on shell” condition) leads to the functioA : S(X) — C*,
whereA(h, n) = (Qh, ul, L), SinceS(X) is a principalG (X)-bundle overP(X),
it is interesting to analyze the behavior 4funder theG(X)-action. It is given by the
following

Lemma 2. The directional derivative of the action functionalfor the vertical tangent
vector(Dyv, 9,v) to S(X) at (h, ), wherev € A~L0(X), is given by

47'(\/—1/ wDpv - A. (4.3.2)
X
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Proof. We just repeat the computation of the vertical variation with the additional term
2u8hdz Adz, whereSh = Dyv. Since the main term, given by@h — D) vdz Adz
vanishes “on shell”, this proves the resulta

Formula (4.3.1) defines a functien: S(X) — (Lie G(X))" by assigning to the pair
(h, ) a linear functional on Lig(X) = A~10(X) as follows:

V> 2/ uDpv. (4.3.2)
X

Equivalently,c is a 1-cochain over Li& (X) with values in functions ovef (X) with
left Lie G(X)-action.

Proposition 5. The 1-cochain is a 1-cocycle.
Proof. Forv, w € A~19(X) = Lie G(X) we have
Sc(v,w)=v-c(w) —w-c)—c(v, w)),

wherec(u) : S(X) — Cis the function

c(w)(h, n) = Z/X uDhu.

Using the infinitesimal action,

v-c(w)h, p) = ZA(guthw + [LLU(th),
we get
(Sc)(h, 1) = Z/X(a_ﬂthw + Ly (Dpw
—3,wDpv — Ly (Dyv) — w Dy Lyw),

whereL, = vd + 29v is the Lie derivative om?(X), and the Lie bracket i ~1-0(X)
is the usual vector field Lie brackét:, w] = L,w = (v 9w — w dv). Using the identity

Ly(Dpw) — Ly(Dpv) — DpLy(w) =0,
we are left with
Sc)(w, w)th, u) = 2/X(8_uv’th — 5Mw th)
= 2/ v (Dhgﬂw — 5Mth)
=0, )

because of the commutativity condition and the skew-symmetry of the op@&ratom
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A. Appendix
A.1l. Cones.Recall [28] that for a map : A®* — B* theconeC;, of u is the complex:
C.=A[l]eB*
with differential
d(a,b) = (—da,u(a) +db).
The cone fits into the exact sequence:
0—B*—C;, — A°[1] — 0.

If the mapu is injective, this is the same as the cokernel {dip to a shift in the resulting
exact cohomology sequence).

For the Deligne complex, we often find that the equivalent definition [15,13] of
Z(p)3, is

Z(p)} = CondZ(p) ® FP(A)}, —> A},)[-1l, (A1)

where; : FP(A)5, — Aj, is the Hodge-Deligne filtratiorfi{tration bétg), that is, the
n'" sheaf of F?(A)3, is A", if n > p, and zero otherwise.
Briefly, the equivalence is shown as follows. The cone in (A.1.1) is equal to

CongZ(p) —> CondF(A)}; — A3p)[—1l.

The inner cone can clearly be replaced by the cokernel of the inclusion map, namely the
(sharp) truncationfl"léjw of the de Rham complex. Thus we have

CondZ(p) — t=P~1A%,)[-1],

which equalsZ(p)%, as defined in the main text.

A.2. Fundamental classWe want to collect here some technical facts and computations
related to the construction of a representative of the fundamental[sfgsthat are not
strictly necessary in the main body of this paper.

Recall that we work with the double complex

Spg = Sp(N,(U = X)),

whereN, (U — X) isthe nerve of the covering — X, andS, is the singular simplices
functor.

A.2.1 We saw in the main text, Sect. 2.4, that wigy), resolvesS, (M) for any fixed
p, the total homology o8, , is equal toH, (M, Z). By definition, this condition is that
Ho(S,(N.(U))) = Sp(M) andH,(S,(N.(U))) = 0forg > 0. Then the isomorphism
H,(M,7) = H,(TotS) can be easily obtained by carefully lifting a cocycleSgtM)
to a total cocycle irS.,..9 More concisely, we hav\eE;ﬂ = H,(S,(N.(U))) = 0 for

9 See, e.g., [28]. Details for this calculation can be found in the appendix of [2].



Generating Functional in CFT on Riemann Surfaces Il: Homological Aspects 343

g > 0 (the spectral sequence collapses) and at the next step ohéﬁllg& ‘E;f’o =
H,(S.(M)) = H,(M, Z), as wanted.

These requirements are met fo€ach covering{y;, where a contracting homotopy
for S,(N«(Un)) can be constructed explicitly [38] (see also [21], the appendix on the
de Rham theorem). Indeed, one can easily show My&s, (N, (Un)) = S,(M) by
applying S, (—) to the sequence. - N1(Uy) = NoUUy) — M. The resulting maps
are[[,o00 —> >, 0i and]_[,.j oij — ]_[,.(Zj(aji — 0ij)), SO the composition is zero.
Moreover, if) ", o; = 0, for any pair of indices;, we must have:,-|U,.j +0ojlu; =0,
so thato;|y,; [ [ ojlu; = oilu,; 11 —oilu,; = 3"aily,;, proving the claim.

Similarly, if U — M is a regular covering witl; = Deck(U/M) acting on the
rightonU, thenS, o = S,(No(U)) = S,(U) is a free (right)G-module [28], so that
Sp(Ne(U)) = S,(U) ®z6 Be(G) resolvess, (V) ®zg Z = S, (M), hence

~)SpM) q=0
Hq(Sp(N.(U — M))) = 0 g0,
as wanted.

A.2.2 SinceS, , is a double complex, it is well known that its associated total complex
can be filtered in two ways — with respect to eitheor ¢. Filtering over the second
index ofS, , = S,(N,(U)) yields the second spectral sequence with

“Ellhq = HI?/(S'»q) = Hp(Se(Ny(U)).

Although not required in the following it is interesting to see when and whether this
latter sequence also degenerates, like the other one. In other words, we want to consider
the case when for fixeg the complexs, , is acyclic in degree- 0.

Assumption. The covering/ — M is good, thatis, eachWV,(U) = U xy --- xy U
is contractible, hence is acyclic for the singular simplices functor.

Remark 5The assumption oY — M guarantees the de Rham complex is a resolution
of C, so the second cohomological spectral sequénteC? (U; A*)) degenerates and
the total cohomology equalg4 (U, C).

By virtue of the assumptioN\E?® is computed as

Z < NyRy > p=0

Wl A~
E
0 p >0,

where N, Ry is the set of connected componentsf(U) andZ < N,Ry > is

the abelian group generated by Ry . This follows from the fact thaHy gives us a
factorZ for every connected componentgf (U). These connected components arrange
into a simplicial setV, Ry;, where the face maps are induced by the face maps of the
nerveN,(U), specifying where every component goes. TMJR ; expresses the pure
combinatorics of the covering. Since the spectral sequence collapses, the total homology
is equal to

“qu_ ‘Eg%9 = Hy(Z < NeRy >)
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and (see [31])
Hq(Z < NeRy >) = Hq(lNoRUD,

where|-| is the geometric realization d&¥, Ry, namely, the CW-complex obtained by
putting in a standarg-simplexA¢ for each element i, Ry and gluing them together
according to the face maps. Therefore, for a good covering the three homologies are
equal:

H,(TotS,..) = H,(M,Z) = H,(INsRy)).

In our concrete examples, an ordinabgch covering is good if alli, N--- N U,

are contractible. In this case, to comptHé’(S.(Nun)) we must assign & factor
to eachU;, N --- N U;,. Following [38,21], denotd/;, N --- N U;, as a generator in
this group by the symbaﬁ,-ow,iq, so thatZ < NyRy >= @; iy Z - Ni,...i, and
NgRy = {Ajy,...i,}- Therefore N, Ry represents the abstract nerve of the open cover
and|N,Ry| is the CW-complex obtained by replacing eatly . iy~ in other words,
each non-void intersection — by a standarsimplex and gluing them according to the
face maps oV, Ry .

On the other hand, i/ — M is a G-covering, then according to 28,(U) =
U x G1,anditis good ifU is contractible. Thu& < NeRy >= Z Q7 B.(G), so that

H,(Z < N.Ry >) = H,(G; Z) = H,(BG, 7),

whereBG = |N,Ry| is the classifying space @, where in this cas&, Ry = G4 for
g > 1andNoRy = point.

A.2.3 Letus return to the main problem of representing the fundamental class®f
a total cycle in the double comple, ,. If the sequence B— S,(X) < S,(N.(U))

is exact, then there exists a splitting S,(X) — S,(N.(U)), i.e. the mapr satisfies

€ o T = idg,(x). In other wordsgy is the first step of an explicit contracting homotopy
for S, (N.(U)). Then a cycle representing ] can be produced by liftin via r and
completingz (X) to a total cycle using the standard descent argument.

In the concrete examples we have been looking at, this can be done as follows. The
case wherd/ is a regularG-covering can be handled by starting from a fundamental
domainF for the action ofG on U, where we regard’ as an element of degrég, 0)
iNS, 0= 5,(U) @z Bo(G) = S,(U). Full details are spelled out in [2]. T comes
from an ordinaryCech covering/y, we first replaces, (X) by Ux-small simplices:

0« S?(X) < Sp(NouX)s

where thd/x-small simplices are those whose support is contained in the open cover
Ux = {U;}. Second, writeX = ), o;, where allo; arel/x-small, and set(X) =

Yi0i- A def Yo € Sp,0. Since
€(0'S0) =0eTog=0€er(X)=09'X =0,

by the standard argumentthere eXist >, ..., X, ,WithX € S, x, k=1,..., p,
such that

L0=9"%1,...,08,1=09"%,,...,0'S, =0.
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PSR
i

Fig. 1. Intersections and their nerve

This schema can be implemented in a fairly explicit way using a magV,R;; —
SU(X) constructed in [7] (Th. 13.4, proof) to realize the nerve of a covering. Of course,
our case of interest here js= 2. .

In order to describé we shall need the barycentric decompositiyR;; of N, Ry,
(see [36] for a more complete explanation). For any finite subs#tthe index set
denotelU; = N;e:U;, and let:

NoRy = | J{U:),

tCl
NiRy= [] Uy CUg},
T0CT1CI
NoRy= [ (U, C- Uy
TC-C1yCI

In order to construct the mappirig assign to eacl/; a pointv, € U, to any inclusion

U;, C Uy, a path fromuv,, to vy, and toU,, C Uy C Uy the cone fronu,, to the

path fromuv,, to v.,, which is of course a 2-simplex. Denote BY(vy,), A(vy,, vr;)

and A (vq,, vy, Vr,) the 0, 1 and 2-simplices so obtained. Observe how the simplices
constructed in this way inherit an orientation from the natural one on the barycentric
decompositionV, R;4; this is the main reason for using, R, in place of Ny Ry;. So,

for example,A (v, vy, v-,) has the orientation induced by the ordey < vy, < v,
associated to the inclusiag C 71 C 2. The typical situation for the indices j, k
looks as in Fig. 1: to the index setsij andijk correspond the points, v;; andv; jx

in U;, U;; andUjji, respectively. Them (v;, v;;) is the 1-simplex joining; andv;;,
A(v;j, viji) the one joiningy;; andv; ., and so on. After these preparations, define an
elementXg in Sy 0 as

To =) stw) - A,
iel
where

st(v;) = Z €iji (A i, vij, vijr) — A, Vik, vijk))
Jik:Aijr#0
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is the star of the vertey;, ande;;; = +1 according to whether the order of the triple

i, j, k agrees with the orientation or not, namely whether the oifleis the same as

the cyclic (counterclockwise) order around the venigx. Recall thatA; is the symbol
corresponding td@/,, when considered as a generator in the abelian group generated by
the nerve, as in A.2. Rewritingg as

ZSt(Ui) AVES Z €ijicf (A, vij, vijr) — A, vik, vijK)) - A

iel (i,.k)
— (Aj, vij, vijK) — AWj, vjk, vijr)) - Aj
+ (A k. vik, vijr) — A(vk, vjk, vij)) - Axl,

where}_; . ,, means the sum over triples of indicesinits first differential is:

3'To = Z €iji{ AQik, vijr) - (A — Ay)
(i,j,k)
— Aij, viji) - (Aj — A) — Ak, vije) - (Ax — Aj)}
+ Z €iji{ Ai, vij) - Aj — Avi, vi) - Aj — Avj, vij) - A
(i,,k)
+ A(j, vjp) - Aj + Ave, vik) - Ak — Avg, vje) - Ae

The last sum is easily seen to be zero, while the first can be rewrittétdasfor the
following element inSy 1:

1= Z €iji{ Aik, vijr) - Aix — Aij, vije) - Aij — AQjk, vijr) - Aji
(i,.k)

Again, computing the first differential gives

O%1= Y €fvijr - (Aix — Aij — Ajo)}
(i, ], k)
+ Z Gijk{vij “Ajj = Vik - Ajk + Vjik - Ajk}’
(i, ], k)

with the last sum being identically zero. The first term can be rewritteé¥{ s, where

Yo =— Z €ijkVijk - Aijk -
(i.j.k)
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Finally, the total chairE = Xp+ X1 — X2isacyclegT = 0, and we have the following
expression for the representative of the fundamental claXsiothe double complex:

¥ = Z €ijif (A i, vij, vijr) — A, vik, vijr)) - A
(i,7.k)
— (A@j, vij, vijK) — Aj, vjk, vijk)) - A
+ (A vk, vik, vijr) — Ak, vjk, vijr)) - Ax}

+ Z €iji{ Ak, vijk) - Aik — Aij, vijr) - Aij — Ajk, vijk) - Aji}
(i,.k)

+ Z €ijkVijk - Nijk -
(i,.k)

Remark 6By taking the second augmentation, the total cyelmaps to:

Z €ijkAijk

(i,j.k)

which is the 2-cycle in the CW complex representing the combinatorics of the &over
and therefore the homology &f, in degreep = 2.
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