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Abstract. In this article we propose a general definition for the quantization of
classical mechanics with an arbitrary phase space. We consider the case where the
phase space is a complex Kahlerian manifold. As an example we consider uniform
bounded regions in C with a Bergman metric, and also the two-dimensional cylinder
and torus.

Introduction

The term "quantization" arose over a span of twelve years in the literature of phys-

ics, and from the outset was used in two ways. The first meaning referred to the dis-

cretization of the set of values of some physical quantity. The second meaning referred

to a construction, starting from the classical mechanics of a system, of a quantum sys-

tem which had the classical system as its limit as h -» 0, where h is Planck's con-

stant( ). In this paper the term "quantization" is used in this second sense. In this

way the problem of quantization, from the point of view of physics, is fundamentally

nonunique: since quantum mechanics describes nature in so much more detail than is

done classically, it is possible to alter any quantum system without changing its clas-

sical limit.

The role of quantization, if we approach it in this way, consists in rendering help

to physical intuition in making a proper comparison of mathematical objects with natu-

ral phenomena. The purely mathematical significance of quantization is that it provides

a source of important constructs. In this connection we point to the theory of pseudo-

differential operators, at whose foundation lies the quantization of the classical me-

chanics of systems with a linear phase space, and also to the work of A. A. Kirillov,

B. Koscant and their successors who have used ideas from quantization in representa-

tion theory for Lie groups (see [3], [4], [5] and references given there).

AMS {MOS) subject classifications (1970). Primary 7OH15, 81A17; Secondary 81-02,70G99.
(l)The constant h has dimensions (equal to the product of the dimensions of energy by

time). Therefore the numerical value of Λ depends on the choice of the system of units. Letting
A tend to zero means going from a system of units in which a quantized object is described, to a
system more and more appropriate to a classical description-
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In the literature of physics, quantization is always understood intuitively. Appar-

ently, the first precise mathematical description of quantization is due to Hermann Weyl

[ll. Weyl's quantization is only applicable to classical systems which have a plane

phase space, since it is based on the use of canonical coordinates p,, q,. The quanti-

zation of systems with curved phase space (more precisely, systems possessing inter-

connections) is the subject of the well-known book [2] of P. A. M. Dirac. This problem

is an active one in contemporary quantum field theory. One should not consider that it

has been completely solved in [2].

In this article we propose a more general definition for quantization, as well as

carry out the quantization for the case where the phase space for the classical system

is a complex Kahlerian manifold. Although the construction appears to be almost uni-

versal, that it is meaningful is only established for the case where the manifold is Cn

or a uniform bounded region of C". In the latter case we find a curious circumstance:

Planck's constant cannot take on all nonnegative values, but is bounded from above:

h < c, where c is a constant which depends only on the region. This situation is in-

vestigated in detail elsewhere. For the case of C" our construction leads to the well-

known Wick quantization.

At the end of the paper we consider quantization on a cylinder and a torus, which

provides an example of Weyl quantization. The basic results of this paper were an-

nounced in [6].·

§1 . General problem of quantization

1. Classical mechanics. Let 3R be a differentiable manifold on which there is

given a second rank skew-symmetric tensor field ω, which in local coordinates has

differentiable components ω (x) and satisfies the equation

άχ* dx* dx* J

The components of the field ω will always be denoted by letters with upper indices.

Let A{W) denote the algebra (with respect to the usual operations of linear combination

and multiplication) of differentiable complex-valued functions on HR and define a Pois-

son bracket for elements of -4(3R):

dx? dx*

It is easily verified thet if the functions / j , f2, fi are twice differentiable, then (1.1)

is equivalent to the Jacobi identity for the Poisson bracket (1.2):

t/i. i/.. to) +1/». ft. /iii +1/2, v» /ji =o. (i.3)
(The latter, among other things, shows that the condition (1.1) does not depend on the

choice of coordinate system, which is not immediately obvious.)

In what follows, the manifold 35! together with the algebra A{3A) supplied with the

Poisson bracket (1.2) will be called a classical mechanics and be denoted (3R, ω).
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Examples. 1. 31 = R2n is 2n-dimensional affine space. For the coordinates x1 in

R2n we introduce the notation x' = pi for i = 1, · · · , η and x l = qi_n for i = η + 1,

··• , 2n. We set ω ' · ι + η = 1, /' = 1, · · · , η, and ω 1 * = 0 for \i - k\ ^ n. The Poisson

bracket (1.2) has the classical form

dqt dq( d,

2. Let S be a Lie algebra, e2 a basis in ®, and C'£ the structure constants which

correspond to e ' . As 31 we take the space of linear forms on ®, and let x* denote the

coordinates in 31 which correspond to the basis el (if ζ= Σ a . e ' € © and xeS! , then

•. Σ χ 'α £ ) . We set

y, (i.5)

where C^* are structure constants. The property (1.1) is equivalent to the Jacobi iden-

tity for the structure constants:

The Poisson bracket (1.2) has the form

This example was considered previously in [7].

In particular, take ® to be the Heisenberg-Weyl algebra, i.e. the Lie algebra with

basis ξ\ η\ ζ, i = 1, - · · , Β, and relations [ξ\ η>] = 8.. and [ξ\ ζ] = [ijf, ζ] =

\-ζ\ ζ1} = [*?'> ^ Ί = 0. The coordinates in 31 which correspond to the basis ζ1, η1, ζ

are denoted />;, q{, ι. The Poisson bracket (1.7) has the form

i.e. differs from (1.5) only by the multiplier «.

3. Let 31 be a symplectic manifold, i.e. a manifold of even dimension on which a

nondegenerate closed exterior 2-form ω is given. In local coordinates

In distinction from the components of the tensor field introduced earlier, which were

denoted by the same letter, the components of the form ω;.. will always be provided with

lower indices. By nondegenerate we mean that det| |w ; j t(x)j| 4 0 for all xeSJi. Conse-

quently for each χ the inverse matrix ω (χ) exists. It is easily proved that the closure
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of the form ω is equivalent to the property (1.1) of the matrix u>lk(x).(2) Therefore a
classical mechanics always exists on a symplectic manifold.

Remark. If the tensor field ωΉχ) is not degenerate, i.e. det | |ω'*(χ)| | 4 0 for all

χ € 3H, then we can consider the inverse matrix ω^(χ) and by means of it the exterior

form

Condition (1.1) is equivalent to the closure of the form ω. Thus, in this case the mani-

fold 27? is symplectic. However, there exist important mechanical systems for which the

requisite nondegeneracy of ωΉχ) is unnatural.(3)

Transformations of classical mechanics. Let (31 ,̂ cot), i= 1, 2, be classical me-

chanics where detJ|a>lj'|| 4 0 and det||o>^|| 4 0. A diffeomorphism ^ : H R j - » l 2 will

(2)In terms of the components ω.̂  the condition άω= 0 has the form

ix"

d<*ks do}tk

dx* dx%
'

(*>

By differentiating the relation Σβ ω α "ω_ = δ" we find

so that

dx" s,1

7 Ϊ 1=0·

dxfc

By inserting this expression into (1.1), we find

δω™ ak dmP v 1

5A* Jω'
dxk d/

δω,, "ks

dx*

Thus, when ω is nondegenerate, the conditions (1.1) and (*) are equivalent.
(3)See Example 2 in the case where dim &= l(mod 2). In particular, this situation arises

for the motion of a solid body about a fixed point. The algebra & in this case is the algebra of
three-dimensional rotations, and the Poisson bracket is given by the formula

The Hamiltonian has the form

g]=

X\

*L

a*i

Xz

JL
dx2

dg
dx2

Xs

df
dx3

Λ
dx3

H < h

ik hik
hki ·

The corresponding equations of motion dx-/di = I//, xA are called the Euler equations, and the
matrix h., is called the moment of inertia tensor.
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be called a mapping of classical mechanics if the conjugate mapping takes the form o>2

into ω , ; in local coordinates

«i.« W = 2 < W i / M ) - ^ ^ . (1.7)

2. General definition of quantization. We call an associative algebra with involu-

tion 21 a quantization of the classical mechanics (SS, ω) if it possesses the following

properties.

1) There exists a family Ah of associative algebras with involution such that

l j) the index h runs over a set £ on the positive real axis which has 0 as a limit

point (0 does not belong to E), and

1.) the algebra 21 is a subalgebra of the direct sum %he£ ®^h. It is convenient

to represent the elements of 21 in the form of functions f(h), h e E, with values in Ah.

In the usual way involution and multiplication in 21 are related to involution and multi-

plication in A, by / (h) = (Ρ(Λ))σ, where d" and σ denote involution in 21 and Ah,

respectively, and (/j ** f2){h) = fx{h) * f2ih), where * and * denote multiplication in 21

and A ̂ , respectively. In the following we shall denote multiplication and involution in

21 and Ah by the same symbols.

2) There is a homomorphism φ from the algebra 21 into the algebra Λ(31). This

homomorphism must have the following properties:

2j) For any two points Xj, x 2 £ SR there is a function /(x) e <£(2I) such that /(*j)

*' /2U2).

2a) <f[j(f*g-g* /)] = γΙφ (/ι). Φ

where * denotes multiplication in 21 and [ · , ·1 is the Poisson bracker in 4(5Di),

2 3) <£(/σ) = <£(/)> where /-» / σ denotes involution in 21 and the bar denotes com-

plex conjugation. The parameter h plays the role of Planck's constant.

Properties 2), 2j) and 2j) will be called the correspondence principle. For a quan-

tization 21 we shall say that it possesses the correspondence principle in weak form if

the conditions 2), 2j) and 2·,) are replaced by the following:

2') In 21 there exists a linear manifold 21 on which there is defined a mapping

φ : U -* A(W) w ] t r l t n e following properties:

*/2) = #/i> · W f o r Λ- /2· /i */2

2») Φ (j (fx*h-h* fd) - 7 ΪΨ (/ι), Ψ (/j

2j ) For any two points * j , x 2

 e ^ there exists a function /(x) € 0(21) such that

/(xj) 4 / (x 2 ) .
2'3) 0(/σ)=0(/).
We point out that from a general point of view quantization appears as a noncommu-

tative extension of the algebra /HSR).

In the classical mechanics (SB, ω) let there be given a dynamical system with
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Hamiltonian Η. For what sorts of these does there exist a quantum dynamics? From our

point of view the answer is as follows. Consider the quantization ?I of the mechanics

(Si, a>) and let f(h) denote a preimage of Η under the homomorphism φ. Fix h and con-

sider a linear representation of the algebra A^ in Hubert space. The operator / corre-

sponding to /(/>) is the Hamiltonian of the corresponding quantized system. The non-

uniqueness in the choice of the preimage f(h) reflects the great precision of the quantum

mechanical description of nature compared to the classical one, as noted in the Introduc-

tion.

We turn our attention to an important particular case of quantization.

3. Special quantization. We shall call by this term a quantization which possesses

the following additional properties:

3) The algebra Ah consists of functions f(x), χ e SK.

4) The algebra Η consists of functions f(,h, x), f(h, x) e Ah for fixed h.

5) The homomorphism φ: 21 -» A{3H) is given by the formula

The quantizations studied in this section will be special quantizations. In §5 we

shall give two examples—quantization on a cylinder and on a torus—which illustrate the

general definition.

Besides the properties 1)—5) just enumerated, the quantizations examined here have

the properties:

6) Involution in Ah is complex conjugation.

7) The algebra Ah has a unit, namely the function fo(x) = 1.

8) The algebra Ah has the trace

where άμ(χ) is some measure on Tl.( )

We point out that if the tensor field ω'](χ) is not degenerate, i.e. if there exists on

SR a closed second-degree exterior form ω = Σ ω^άχ1 Λ dx', then SS has the natural

measure άμ(χ) = ω η / 2 . ( 5 )

4. Adjoined elements. Let a special quantization be given and let fix) € A, be a

one-parameter semigroup. The function φ(,χ) = lim 0 df ix)/dt (if it exists in some

sense) will be called an element adjoined to the algebra Ah. Let Ah and A^ be the

subsets of Ah for which the limits lim^p (t*g € Ah and lim^g g * / f £Ah exist, re-

spectively. We reserve for these limits the notation φ *g and g * φ·. (In concrete cases,

(4) The trace tr / i s a linear functional which i s defined on some submanifold A, C A,.

The sets A^ and tr / should p o s s e s s the following properties:

1) If/, * / 2 * \ , then / 2 · / , eAh.

2) If /j * f2 e l h , then tr(/, · f2) = tr(/2 * /j).

It i s clear that tr / i s defined only up to a constant multiple.

(5) In case <DI i s a Kahler manifold, other natural measures are also possible. See below.
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as we shall see, the multiplication / * g in A^ is defined by means of an integral of the

form

if * g) (x) = J 0h (XV Xt\x)f (xj g (*,) άμ (χχ) άμ (χ,);

φ *g and g *φ are given by similar integrals.)

The function φ(/ι, χ) is called an element adjoined to the algebra SI if, for each

given h, φ{1>, x) is an element adjoined to A^.

We shall let *2I and 21* denote the sets of functions /(/>, x) e 21 such that, for

fixed h, f(h, χ) £φΑ/) and Af, respectively.

An element adjoined to 21 is called proper if 0(0, x) = limfc_>0 <£(A, x) exists and

the set tt C Ψ?Ι Π 21* is sufficiently rich so that for / € S

(φ* f)(h, x) = φ(0, Λ:) /(Ο, x)+ ο (Ι),

(/* φ) (h, x) = φ(0, *)/(0, Χ) + 0(1),

1 ( / * φ - φ * f) (h, x) = Λ ίΛ Φ] (0, Χ) + 0 (1).
η ι

We shall say that the adjoined element <£ has the quasiclassical property if in place of

the last relation we have the equation

1 ({p m f _ f * φ).(Α> x) = 1 [φ> ^ (Af λ . ) .

We shall not make the words "sufficiently rich" more precise, thus leaving ourselves

some extra freedom. In the case where the algebra 21 is topological, it is natural to re-

quire that 3 be dense in 21. In other cases it may be more natural to require that for any

Xj, x 2 e l an element /(/>, x) e 21 exists such that /(Ο, χ χ ) 4 /(Ο, χ 2 ) .

5. Symbols. Consider a linear representation / -» / of the algebra A^ in Hubert

space. By definition, the element / is a symbol for the operator / (with various addi-

tional indices, related to the details of its construction). The adjoined element φ will

be called a symbol for the infinitesimal operator φ = lim(_>i0 df Jdl.

6. Quantization junctor. Let Bj and S 2 be algebras constructed similarly to quan-

tizations: there exist algebras B^ , h e £ j , and B^2', h € E2, such that St- consists

of functions f(h), h € E ; , which have values in B^ . A homomorphism φ: Bj -» 932 of

such algebras is called admissible if it is generated by homomorphisms φ. of the alge-

bras Bj, • (^/)(Λ) = ΆΛ/(^). (In order that an admissible homomorphism Bj -» S 2 exist,

it is necessary that Ε^ C £ 2 . ) In the same way we define admissible homomorphisms for

the algebras δ ^

We fix a class of classical mechanics G> and a category K. of mappings of the ele-

ments of δ . Let a quantization 21 be associated with each classical mechanics (91, ω)

«δ.
We call the association (3)!, ω) ***-» 21 the quantization functor, if for any pair of clas-

sical mechanics (551 (, ω·), i = 1, 2, related in the manner

(3R2, ω 2 ) =
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there is an admissible homomorphism Φ such that the diagram

% C , )
Φ | Φ * | (1.8)

Si2 - ν A 3R

is commutative, where φ1 and φ 2 are the homomorphisms involved in the definition of

a quantization and Φ is the mapping of functions conjugate to the diffeomorphism Φ.

We denote the quantization functor by Q. If the association (Ώ, ω)νν<->21 is a func-

tor, we shall denote this by writing 21 = Q(SK, ω).

The quantization functor Q is called special if all the quantizations 21 = ζΚ^, ω)

are special.

7. The natural property. For objects associated with special quantizations there

occurs the important property of being natural. Let X be some category of mappings of

classical mechanics, and let (3!^ ω ρ and 2I; be two classical mechanics and their

quantizations.

The admissible homomorphism φ : 21 j -. U2 is called natural with respect to Κ if

there exists a mapping Φ eX, Φ(3Κ2, ω2) = (SSj, &)j), such that

(ψ/) (h, x) = f (h, Φ (χ)), χ (Ζ 3Ra. (1 ·9)

The homomorphism φ related to the mapping Φ by (1.9) will be denoted φ = φ*.

The special quantization functor Q is called natural with respect to X if in the dia-

gram (1.8) Φ = Φ*.

The special quantization 21 = Q(HS, ω), where Q is a special functor, will be called

natural with respect to the category X, if Q has this property. In §8 it will be shown

that there is no special quantization functor Q which is natural with respect to the cate-

gory of all mappings of classical mechanics.

8. Groups of actions. Let (Μ, ω) be a classical mechanics and let C be a group of

transformations of 3! which belongs to some category X of mappings of classical me-

chanics. The last circumstance means, in particular, that the transformation r in A(3):

( * * / ) ( * ) - / ( g ' 1 * ) (l-io)

is a Lie algebra automorphism with respect to the Poisson bracket. Let 21 be a quanti-

zation of the classical mechanics (9!, ω) which is natural with respect to the category

X. It follows immediately from the above definitions that the transformation (1.10) is an

automorphism for all the algebras A^.

Consider the one-parameter semigroup τ .. of automorphisms (1.10) of the algebra

A^. Suppose that these are represented in the form τ (,)/= <*,//, */*<7_t/j,> where a( €

Ah is a one-parameter group and g = lim^u da Jdt is a proper adjoined element, and the

set 21 consists of functions which do not depend on h. In this case the element g pos-

sesses the quasiclassical property. Indeed, it follows from (1.10) that

Jirn^/te"1 (t)x) = j (g * / - /* g) - i- \g, f\ |-o(l).
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For / e 2i the left-hand side of this equation does not depend on h; consequently the

right-hand side has the same property, so that o(l) = 0.

9. Equivalence of quantizations. Let SI be a quantization of the classical mechanics

(3!, ω), Ε a set of values of h, and let s some one-to-one transformation of £. The map-

ping s generates an automorphism s of the algebra 21: is f)ih) = fish).

Now let ?Ij and 2I2 be quantizations of one and the same classical mechanics

(531, ω). Hj and 2I2 are said to be equivalent if 1) there exist an isomorphism Φ : 2Ij -*

2I2

 a n < i a n isomorphism s : 2Ij -» SI2 of the sort described above such that the isomor-

phism ΦΞ' : 21 j -» SI2 is admissible, and 2) the diagram

Φ,\ / Φ , (1-11)

is commutative, where φ. are the homomorphisms which occur in the definition of the

quantizations.

In the case where a transformation group C acts on S3t, which belongs to the cate-

gory with respect to which the quantizations 21 j and 2l2 are natural, we can introduce

the concept of natural equivalence: in addition to (1.11) the diagram

%. - %
xi **ϊ* ( 1 · 1 2 )

must also be commutative, where τ is an isomorphism of the form (1.10).

10. Commentary. 1) The motivation for introducing the notion of a special quanti-

zation is as follows. According to physical notions, quantization is a linear assignment

q : fix) -> / of an operator in some Hubert space to a function.

We assume that the mapping q is one-to-one on the set A C AiW) and that the image

of A is some operator algebra A. In this case we can carry over into A multiplication

from A : (/j * /2)(x) = q~ iqifi)qif2))· The set A provided with this multiplication is pre-

cisely the algebra A^ in the definition of a special quantization.

From the viewpoint of the ideology of quantum mechanics, the manifold S! of the

classical mechanics should appear in the limit as h -» 0. Therefore the special quanti-

zation in which 3? takes part from the outset can scarcely be appropriate in all cases.

The more general definition is free from this deficiency and is, apparently, universal.

2) The algebraic and topological properties of the algebras Ah and 21, and also the

properties of the functions fix) e Ah and /(/>, x) e 21 have not been circumscribed in the

general definition in order that we may fix these properties in the most convenient way in

concrete cases.

3) The correspondence principle fixes only the asymptotic behavior of the algebras

Ah as h -» 0. The requirements of being a functor and of being natural restrict this

arbitrariness.

For the case SR = C" we prove in §7 the uniqueness up to equivalence of a natural

quantization, under several additional conditions of an algebraic and topological nature.
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§2. Quantization in Kahler manifolds

1. The algebra of covariant symbols. We shall construct the algebras A, for a

Kahler manifold with the aid of covariant symbols for the operators.

We recall some basic definitions [8].

Let Η be a Hubert space and let Μ be some set with the measure da. A system of

vectors ea e H, a e M, is called complete if for any f, g € Η Parseval's identity

(A g) = J (/, ea) (ea, g) da (2.1)

is valid.

Let daia) denote the following measure, which is absolutely continuous with re-

spect to da.:

da (a) = (ea, ea) da.

Note that a complete system generates an inclusion of Η into the space L2(M) by the

formula

/f— /(α) = (/,βα). (2.2)

Starting now, we shall assume that the space Η is realized as a subspace of L2(M).

In particular, it follows from (2.2) that

θα (β) = (ea, ββ) = (ββ, ea) = ep (α). (2.3)

Let Pa be the orthogonal projection onto ea. The covariant symbol for an operator A in

Η is the function

(2.4)

From the definition it is clear that a covariant symbol is uniquely defined for every

operator for which ea is in the domain of definition for all o. € M, and, in particular, for

any bounded operator. Note that the covariant symbol for a bounded operator is bounded:

|/4(a)| < ||Λ||. It can happen that several operators have the same covariant symbol. We

shall see below that this does not occur in cases of interest to us: there is a one-to-one

correspondence between operators and covariant symbols. Let A be a bounded operator

in Η and let A(a) be its covariant symbol. It is shown in [8] that the action of the op-

erator on a vector is defined by

V , g ) d° (P), (2.5)

where

(2.6)
(ea· ef)

is the extension of the function A(a) to Μ χ Μ.

It follows rapidly from (2.5) that if A = A^A^, and A, A^ and A2 are the covariant

symbols for the corresponding operators, then
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Α (α) = f Λ (γ, α) Λ, (α, γ) < < - « ^ ^ da (γ). (2-7)

The algebra with the multiplication in (2.7), which consists of covariant symbols for

bounded operators, is basic for the remainder of this paper. The role of the set Μ can

always be taken by the manifold 55! which is the phase space for the underlying classi-

cal mechanics. It follows from the definition of a covariant symbol that if the operator

A has the covariant symbol A(a), then the Hermitian conjugate operator A* corresponds

to the complex conjugate of the symbol, A(a).

In the general theory developed in [8], along with covariant symbols, the contra-

variant symbols for operators also play an important part. A function A{a) is called the

contravariant symbol for the operator A if this operator can be represented as the weak

integral

A = f α (A)Pada{a).

Between the covariant and contravariant symbols of a given operator we have the rela-

tion

^ ^ / » ' J ^ ( P ) . (2.8)

Note that the multiplication given in (2.7) and the relation between covariant and con-

travariant symbols are given by means of the single function

0(a, 0 - <'«-y»^>. (2.9)
<«α· eJ («0. «β)

The integral operator (2.8), for which (2.9) is the kernel, plays an important role in this

theory. We shall denote it by T.

For completeness we present formulas for the trace of an operator and the trace of

a product of operators:(6)

tr A = J A (a) da (a) = f Λ (a) da (a), (2.10)

tr (At) = J A (a) B (a) da (a). (2.11)

2. K'ahler manifolds. Let 3! be a Kahler manifold, so that in local coordinates

ι Κ \ ω = ^ g i S d

By the definition of a Kahler manifold, άω = 0 and det!|i> | ^ 0 . Consequently SR is

(6) It is shown in L81 that the existence of a kernel for A follows from the existence of
the second integral in (2.10); the existence of the first integral is a consequence of the exis-
tence of this kernel. In particular, we note that the covariant and contravariant symbols for the
operator A = I are A(a) = A(p-) = 1. Therefore the finiteness of the integral f do{a) i s equivalent
to the finite dimensionality of the space H, and dim Η — tr / = } da(ct).
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a symplectic manifold. The classical mechanics (SK, o>) always exists on 51. The Poisson

bracket in complex local coordinates has the form

(2.12)

In the following there will frequently occur functions on 5! χ 31 which are analytic

with respect to the first argument and antianalytic with respect to the second. We shall

denote such functions by / = f{z, F).

In this subsection we shall describe a general scheme for the quantization of the

classical mechanics (SO!, ω).

We recall that the potential of a Kahler metric is a function Φ(ζ, F) which satisfies

the system of equations

.· - — j k Sift \--*-JJ

dz'dz*

The Kahler condition dco = 0 is also the condition for local solvability of the system

(2.13). Equations (2.13) have a real solution and, without restriction, we shall assume

that Φ is a real function. We shall also assume that the potential Φ exists globally on

SI and that it possesses an analytic extension Φ(ζ, ν~) to some neighborhood of the diag-

onal in 31 χ Ηϋ.

Consider the Hubert space F of functions on 31 with scalar product

- i - Φ(Ζ,Ϊ)
e h άμ(ζ,ζ), (2.14)

where

Here h plays the role of Planck's constant and the function c{h) is defined below. The

integral in (2.14), as all similar integrals below for which the domain of integration is

not indicated, is assumed to extend over all 3S.

Let /fc(z) be an orthogonal basis of normalized vectors in Fh.

Theorem 2.1. 1) In each coordinate neighborhood the series

I jr(} (2-15)

is absolutely and uniformly convergent.

2) The function LJiz, F) is independent of the choice of orlhonormal basis

( 7 ) ω", η = dim Β, is one of the possible natural measures on a Kahler manifold. Another

possible variant is <1μ~ ω", where

The reason that ω" was chosen is that only in this case can one prove the correspondence prin-

ciple. See the following section.
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The proof of the first statement duplicates the standard proof of the existence of a

Bergman kernel function (see [9l, for example) and will therefore be omitted.( ) By ap-

plying the Cauchy-Bunjakovskil inequality we find as a consequence of the first state-

ment that the series

2)/*(ϋ) (2.16)

is absolutely and uniformly convergent in each coordinate neighborhood in 31 χ 31. We

shall denote by L (̂SJl) the Hilbert space of all measurable functions on 31 which are

square summable with respect to the measure c{h)e~*fhdp, and by Ρ the orthogonal

projection of LJr(3?) onto F h . It is clear that

(Pf) (z) = c (h) J / (v, ») Lh (Ζ, Ζ) e K **'"' άμ (υ, ϋ).

Hence ί-Λζ, ϊΓ) is independent of the choice of basis.

From the Cauchy-Bunjakovskil inequality we have the important inequality

I U (ζ, ϋ)1* < Lh (z, 2) Lh (υ, Ό). (2.17)

Let us set

Φ^ (ζ) = Lh (Ζ, Ό). (2.18)

We note that

c (ft) j Ι Φ ? (ζ)\*β~ Γ Φ(Ζ> 2) άμ (ζ, ~ζ) = 2 /* (f )TM = U {V, U).

Consequently Φ_ e F f t . From (2.18) and (2.16) it follows that for any / e F h

(2.1) obviously follows from (2.19), where the role of α is played by the point ν of the

manifold SI, and

- ~ Φ(Ϊ, ?)
da = c(h)e n άμ (ζ, ζ), da (α) = Lh (ζ, ζ) da. (2.20)

( 8 ) The proof of the existence of a kernel function is based on the inequality

where U is a coordinate neighborhood centered at zQ. We set

Ρ (ζ, ζ) = exp I — φ (ζ, z ) | det | i f f ( i , ij | .

It is clear that p(z, D > aQ = ao(f/) > 0 with ζ e U. Therefore from (*) we have the inequality

I f (zo)|2 < aa?) | / (*)|*P (z, z) [ ] ^ f . (**)

The first assertion of the theorem follows from (**) in exactly the same way as the existence of
a kernel function follows from (*).
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Thus the function Φ_(ζ) forms a complete system in Fh. We form the algebra A, out

of covariant symbols for bounded operators in Fh. We point out that the covariant sym-

bol A(z, F) of the operator A is the diagonal ζ = ν of the function

defined on 3! χ 81. The specialization of (2.5), (2.7) and (2.10) to the case being con-
sidered gives

(Af) (ζ) = c (A) J A (z, d) f (v) L h (Ζ, Ό) e h άμ (σ, Ζ), (2.22)

»;^ (2.23)

(2.24)tr A = c (A) f Λ (z, z) *?{*'*l φ (Ζ,5).

Remarks. 1. According to (2.22), the operator A is generated by the function A{z, tj)

which is the analytic continuation of A{z, F) from the diagonal in 3! χ 3! to all of 3! χ 3!.

Also in our case the operator A is uniquely generated by its covariant symbol A(z, F).

The correspondence between operators and covariant symbols is one to one.

2. Consider the family of Kahler metrics which differ from one another by a constant

factor λ : ds = \~ dsQ. The potentials of the metrics ds2 and dsg are connected by the

relation Φ(ζ, F) = λ~ Φ0(ζ, Έ). Thus the scale factor λ in this theory plays essentially

the role of Planck's constant.(^)

3. Auxiliary assumptions and hypotheses. We consider the function

φ (z, ~z | ν, Ό) = Φ (2, υ) + Φ (ν, ζ) —Φ (ν, ν) — Φ (ζ, ζ). (2.25)

By our general assumptions, the function Φ(ζ, ~ν) is defined in a neighborhood of the di-

agonal of the manifold 3? χ Si. Thus the function φ is also defined in a neighborhood of

the diagonal of 9! χ 9Ϊ. We shall assume in addition that φ possesses an analytic con-

tinuation to the entire manifold Si χ SB (as will be seen in due course, this is possible

without the function Φ(ζ, Ϊ7) having to possess the same property).

We shall call the point ζ € 3! proper if for any neighborhood U of the point ζ there

exists an a(U) > 0 such that φ(ζ, Έ\ν, ν) > -a(U) for ν 4 U.

The following lemma serves as the basis of the proof of the correspondence princi-

pie.

Lemma 2.1. Let zQ be a proper point, let f(v, 17) be a triply continuously differen-

tiable function and let the integral

(9) Note, in connection with this, that if 3>i is an irreducible symmetric space, then an in-
variant metric ds is defined on it up to a constant multiplier.
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0)β άμ(ν,ν) (2.26)

exist and be absolutely convergent for h = ftQ. Then i(h) exists for all 0 < ft < hQ, and

as h -» 0

5 (ft) = / (z0, ?0) + Λ (Δ/ (z0, 5.) + σ/ (z0, z0)) + ο (ft), (2.27)

where Δ is ifte Laplace-Beltrami operator on 31, a««?

σ = σ (z0> ί0) = - | - Δ In g (z0, i0), g· (z, z) = det J g« (z, 2)|.

Proof. We note that φ(ν, ΐΓ|ζ0, J Q ) < 0 and that

f = f'V . }·*"*>'*. (2.28)

Consequently e*lh < e ° for 0 < /) < hQ, and the integral (2.26) exists for 0 < h < bQ.

Now let U be a neighborhood of zQ such that for t/j, v2 € (i the function «JKî j, 17,) is

analytic with respect to Vj and antianalytic with respect to v2. We break the integral

$(h) up into the sum 3(ft) = 3j(/;) + i2(ft), where 3j(ft) extends over U and $2(ft) over

! \ U . We find from (2.28) that for 0 < ft < hQ

Thus $2(h) < i 2 ( / j 0 )c~ ( I / A " 1 / A ° ) S , and consequently $2(h) -, 0 as h -* 0 faster than any

power of /).

We turn to the integral iJj(/>). Introduce coordinates / ' into U so that the coordi-

nates of z0 are / ' = 0. We decompose φ into its Taylor series. This is conveniently

carried out by means of the operators L( = Σ tzd/dr' and L( = Σ Tld/drl:

φ (ΓΛφ-0, ϊβ) - ψ(/, 7> = Φ (0, Τ)+ Φ(ί, 0 ) - Φ (0, 0) - Φ (t, t)

here

\{LiLt + UV) + -i- LfL) + ±-(L]Lt + Ζ,,1?)]φ (τ,

|pl+|<7|=6

R (t, t ) is an analytic function in U χ U, and p and q are multi-indices. We now

make use of Lemma A.I of the Appendix. According to this lemma, in the coordinates

/' as ft -> 0 we have

i ι W = / (0, 0) + h (Δ/ (0, 0) + of (0, 0)) + ο (h),

where σ = 3Δ In g/2, Δ is the Laplace-Beltrami operator and g = det ||g | |. The lemma

is proved.

Corollary. Let the integral (2.26) exist for ft = ftQ and f(v, 37) s 1. For 0 < ft < ftQ

define the function c~(b) = ?*(ftjz, F) foy ffte equation
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~c"1(h) = ^eh ' ' άμ(ν,Ό). (2.29)

Then t(h) = t^(h)/hn, where ?"j(A) is a function which is continuous in 0 < h < hQ and

differentiable at h = 0, where

The proof is obvious.

We make the following important definition. The point z Q e 3! is called distinguished

if Φ(ζ 0, £") = 0 when ν runs over some neighborhood U of the point zQ.

Note that the potential defined by the system of equations (2.13) is not unique, but

is given only up to terms of the form ψ(ζ) + ψ(ζ), where φ(ζ) is an arbitrary analytic

function. By selecting the function ψ(ζ) in a suitable fashion, we can make any point

of 3! distinguished. Conversely, by singling out some point we determine the potential

up to an additive constant.

We now formulate the assumptions under which we shall construct a quantization on

Kahler manifolds.

Hypothesis A. There exists in R\ a set Ε having 0 as a limit point and such that

for h e Ε

_ !•»(*.-*>

Lh(z, z) = %e . (2.31)

Hypothesis B. A point hQ € Ε exists such that for 0 < h < hQ, h e E, the functions

f(z) e Fh separate points of 3! (i.e. for any Zj, z2 e 3! there is an f(z) £ Fh such that

Hypothesis C. Let zn be a sequence of points of 3! having the property that for

h0 defined under hypothesis B, for any f £ F^ the limit limn_K)0 /(z ) exists and is fi-

nite. Then the sequence zn has a limit zQ € 3!.

Hypothesis D. There exists a distinguished point on SI.

We shall deduce a number of consequences from these hypothese's. Let F^ z de-

note the space Fh constructed by means of the potential Φ ζ (ζ, F) having the distin-

guished point zQ, which is normalized by the condition Φ ζ (zQ, zQ) = 0.

Lemma 2.2. Let condition A hold for the potential Φ, and let L^z, v) 4 0 for any

ζ, ν € 3! and h e E. Then the following assertions are true:

1) For any point zQ e 3! there exists a potential Φζ (ζ, ζ") which produces the

same metric as Φ(ζ, F) and which has zQ as a distinguished point.

2) The spaces F. and FL _ are isomorphic under the isomorphism U : Fu _ -> F,

given by
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Proof. Consider a segment on the negative part of the real axis and select a single-

valued branch of the logarithm by means of the condition In 1 = 0. Set

Φ ζ , (zt z) = Φ (z, z) — h In (Lft (z, z0) L h (z0, z)) + Λ In Ln (z0, z0).

According to condition A, in a sufficiently small neighborhood of z Q

In La (z, z0) = — Φ (z, z0) + Ιηλ.

Therefore

Φ , . (z, z) = Φ (ζ, ?) - Φ (ζ, Jo) - φ (ζ0, ζ) + Φ (ζ0, ?0)

gives the same metric as Φ(ζ, ? ) . It is clear that z Q is a distinguished point for the

potential Φ ζ (ζ, Έ).

A scalar product in F^ _ is given by the formula

Z.ft(z0)20)Z,A(z, z)

By setting

we obtain the isomorphism (i : F f t z -• F, .

Remark. L,(z, v) 4 0 for any ζ, ν e SI in the case where the set Ε contains an

interval. Indeed, let A C E be an interval, a. € E. It follows from hypothesis A that

Lh(z, F) = [Lj,z, U)] . From analyticity with respect to ζ and the uniqueness of

Lh{z, U) for h £ Δ it follows that i-fc(z, F) 4 0.

Lemma 2.3. Le/ hypothesis A be valid. Then the following assertions are true:

1) For h € Ε the function c(h) which normalizes the scalar product (2.14) can be

defined uniquely by the condition

i- Φ(2,Ι)
Lh(z,z) = eh • 0.32)

2) This value of c(h) is given by the formula

*W>1> φ Μ (2.33)
Lh(z,z)Lh(v, ύ)

(the integral on the right is independent of ζ and Έ).

3) The function φ(ζ, ζ~\ν, 17) has a unique analytic continuation in the real sense

from a neighborhood of the diagonal in 31 χ 3Ϊ to all of 5J! χ US.

4) //, besides hypothesis A, hypothesis D is also valid, then (2.33) can be replaced

by the simpler expression

f, V)
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Proof. For the moment, let L^ \z, z~) denote the function Lh which corresponds

to c(/>) = 1, and let L^\z, F) denote the function which corresponds to an arbitrary

dh). It is clear that L^c>=c-1(A)L[1 ). Hence (2.32) defines dh) uniquely.

We now apply (2.23) in the case where the operators A j and A2 are unitary. In

this case A j = A2 = A j *A2 = 1. By using (2.32) we obtain (2.33). Formula (2.33') is

obtained from (2.33) with ζ = z 0 , where z 0 is the distinguished point.

Let hQ e E. According to condition A, in some neighborhood of the diagonal in

2)! χ Ϊ! we have the equation

It

— . — ρ _ — _ — -lft

The expression in brackets on the right-hand side is defined for all ζ, ν e 3! and is posi-

tive. Consequently the right-hand side of (2.34) is an analytic function in the real sense

on 31 χ Si. By taking the logarithm and multiplying by h we find the required analytic

continuation for φ. The lemma is proved.

Corollary. For h £ Ε

Φ? (ζ) = e" . (2.35)

Proof. According to (2.18), Φ_(ζ) is a single-valued analytic function on i x l ,

According to (2.32) the left and right sides of (2.35) are equal for ζ = ν.

We point out that although Φ_(ζ) is a single-valued analytic function on the entire

manifold 3? χ 31, it does not follow from (2.35) that Φ(ζ, ν) has the same property.

Lemma 2.4. Let conditions A, B, C and D be satisfied. Then 1) each point of the

manifold S! is proper, and 2) the integral (2.26) exists for f(v, T>) = 1 and h e E.

Proof. It follows from (2.34) that for h = hQ e Ε and 1=1 the integral (2.26), up

to a constant multiplier, is equal to the right-hand side of (2.23), where A j = A2 & 1,

i.e. when the operators Aj and A2 ate unitary. Hence the integral (2.26) exists for

/ = 1, h€E.

We turn now to the first assertion. Recall that Φ_(ζ) = L^z, v) £ Fh for any ν

and for any h. In particular, this is true for ν = vQ (a distinguished point) and h e E.

By hypothesis A, in this case

r- Φ(*.ο)
Φ ί Γ ( * ) = * Α = 1

(see (2.35)). Thus /0(z) = 1 e Fh for h e E.

We fix a point zQ and a neighborhood U of this point. From (2.17) and (2.34) it

follows that e * * < 1 for ζ = zQ and ν / U. Thus if the point zQ is not proper, then

there exists a point νQ 4 U such that
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,Uo) ~ ' ( 2 > 3 6 )

or there exists a sequence of points vn i U such that

lin^^ft..^aL (2.37)

Consider the first possibility. We show that in the case of (2.36) we have f(zQ) = / ( f 0)

for any function / £ F h . Let fo(z) = 1 and f(z) € Fh. We set fj(z) = | | /0 | | " H / o and

/2(z) = af{z) + β, where α and β are chosen by the condition (/j, f2) = 0 and ( ^ , ^ )

« 1. We augment the pair of functions to form a basis fk in Fh, and use this basis in

(2.16). From the properties of the Cauchy-Bunjakovskil inequality it follows from (2.36)

that fk(z0) = A/ t(v0). By applying this relation for k = 1 and k = 2, we find that λ = 1

and that f(zQ) = /(v 0 ) . According to hypothesis B, from this we have vQ = zQ, which

contradicts the condition t>0 4 U.

Now consider the.second possibility. Let Η be an arbitrary Hubert space, ζ, ηη eH,

and \(ς, JJ n ) |/ | |^ | | \\ηη\\ •* 1· Let en = ί?π/||ϊ?η|| and select a weakly convergent subse-

quence e . Let e = lim en . Then (£/| |£| | f e) = 1, whence it follows that e =

|λ| « 1. Since ||e|| = 1, the subsequence e converges, not only weakly, but also
strongly. Consider as Η the space l2, and set

ξ = if I (2b), f% (2b), · · ·>. Άη = {/ι (t-n), /, (»«), · • ·},

where fk is the basis in Fh containing the function /j(z) = const. Since /j(zQ) = /jd^)
= const 4 0, it follows from the condition e =\ζ/\ζ\ that lim||7/a Η < oo. Let ηχ be a
subsequence of the numbers «^ for which lim||r/n || exists. It is clear that as s -* eo,
lim /^(fn ) = /fc exists and is finite, and in the strong sense lim ηη = η = (/J ./J , · · · )·
EquationS(2.37) means that |(f, 7y)|/||f || ^H = 1. Thus η = λ£ i.e. *fk = A/*(*0>· B y
setting k = 1, we find that λ = 1. Let /(ζ) = Σ cj^z); then

= ϊ/ΙΓ«η-η«,Γ->ο as Λ-^*,.

According to hypothesis C it follows from this that vQ = lim νn € SO! exists, and accord-
ing to hypothesis Β v0 = zQ, which contradicts the condition that vn 4 U. The lemma
is proved.

Lemma 2.4 shows that from hypotheses A—D follow the conditions of Lemma 2.1.

4. Correspondence principle. Consider the set of functions f(h\z, z~), h > 0, which

are continuous with respect to all the arguments and which have the property that
f(h\z, Έ) e Ah for fixed h. Let Ε be the set described in hypothesis A. Let 21 denote
the algebra which consists of the values of the functions f(h\z, F) with h e E. Let S
denote the set of functions which can be represented in the form

f(h\z, ~z) =
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where f(O\z, z), /j(z, 2) and /2(A|z, z) are functions which possess analytic continua-

tions onto 31 χ ΪΙ. With respect to these analytic continuations we assume that there

exists an AQ such that for h < hQ

-,,,-Γ'Μ

where r = τ(ν) does not depend on h.

We show that the weak form of the correspondence principle holds for the algebra

21 and the set u = 21 f| 53. Thus we shall establish that the algebra 21 is a special

quantization.

Theorem 2.2, Let hypotlieses A, B, C and D be valid, and let j , g e S. Then as

/>-»0, h eE,

(2.38)

ο(1). (2.39)

Proof. Let iAh\v, Ϊ7) = f(h\z, U)^h\v, 2"), and write the left-hand side of (2.38) in

the form

| ϋ Γ Φ ( 2 * ζ | 0 > % σ ) , (2.40)

where φ is defined by (2.25) and c(h) = 2^(h) is given in (2.29).

According to the assumptions made regarding the functions / and g, the function u

can be represented in the form

u (h 10, 0) = u (01 Ό, 0) + ftuj (h I ο, ϋ),

where

u (01 y, σ) = / (012,0) g (01 U, i),

«1 (ΊΚϋ) = /(01z,0)^(0, z) + fi(z, u)g(0|o, J) + /^(Λο,ό),

«2 (Λ 1 f, 0) = /(0|2, 0jft(/l|0,Z) + /2(/l |Z, D)g(0|O, i) + ^(2, 0)^(0, Z).

From these assumptions it also follows that for h < hQ

where a = a(z, z) does not depend on h.

Now recall that according to (2.29) and (2.30) with b e Ε we have

c(h) = c(h)= *-**(&)
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with f>(0) = a. We apply Lemma 2.1 to the integral (2.40) (note that according to Lemma

2.4 the applicability of Lemma 2.1 follows from hypotheses A—D). As a consequence of

some obvious calculations and estimates we obtain

, ζ) =/(0 |z, i)g(0\z, ζ) + Λ(Δ^/(0|*, rJ)g(0|p, z)\0j.£

- V=** (2 41)
z)) + o(h)

Equation (2.38) follows immediately from (2.41). By interchanging the roles of /

and g we find, in addition, that

= Δ,.άif (01ζ, o) g (01 v, ~z) - g (0 |z, 1) f (0) (v, z))^ + o(l). (2A2)

Let us now turn our attention to the fact that the Laplace- Beltrami operator on a

KShler manifold in local coordinates has the form (as applied to functions)

(see Lemma 3 of the Appendix). By comparing (2.42) and (2.43) with the expression for

the Poisson bracket (2.22), we see that the first term on the right-hand side of (2.42) is

equal to [/, g\/i. The theorem is proved.

Theorem 2.3. Let hypothesis Β be valid. Then, for any points Zj, z2 e 31, there

exists a function f(h\z, F) e SI f) 53 such thai f(0\zv F,) 4 / (0 |z 2 , F 2 ).

Proof. Let Zj, z 2 e SO?. According to hypothesis B, for some a £ Ε there exists a

function φ^ζ) £ Fa such that ^ J ( Z J ) 4 Ψ^ζ^). We shall show that there also exists in

Fa a function φ{ζ) which has the property |"/Kzj)| 4 |i/Kz2)|. Indeed, if φ j(z) does not

possess this property, then for suitable e, |e| = 1, the function

certainly does, where fo= 1 € Fa.

Consider the function φ2{ζ)ψ2(ζ)ε~*^ζ'ζ'. In case it does not separate points Zj

and z 2 , by replacing ^ 2 (z) by t/r(z) = ψ2(ζ) + /x/0(z) with suitable μ we can arrange it

so that the function φ(ζ)φ(ζ)σ~*^ζ>ζ ) / α will separate the points Zj and zv

Consider the twice continuously differentiable function t{h) possessing the prop-

erties e(A) > 0, «(0) = 1 and ((h) = 0 for h > a. We shall show that the function

/ (A | ζ, 1) = β (Α) ψ (ζ) ψ (ζ) β α (2.44)

is the one desired. Let A be the operator in F, with covariant symbol (2.44), h < α

and h e E. Let us estimate | | J4 | | :
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(r- ~ —) Φίϊ. ΐ)—— Φ(ο, to
ψ ( ϋ ) / ( 0 ) β ν Λ α > Λ

0). (2.45)

Denote the integral on the right-hand side by i(z) and apply the Cauchy-Bunjakovskil

inequality to it:

. (r- -—)(Φ(ί.

By making use of the inequality Φ(ζ, ν) + Φ(ν, ζ) - Φ(ν, 57) - Φ(ζ, ζ) < Ο we obtain

the further estimate

— - — Ι Φ ( ί . ΐ ) Λ - — Φ(ο. "ο)

* α Ι ί ψ ω ι 1 "

Returning to (2.45), we obtain

Hence \\A\\ = ((h)clA(b)C-\a)\^f, so that /(A|2, z) e H.

We now show that / € δ . Set

A«-•»"
It is sufficient to verify that /j 6 F^ for h < a and υ fixed, and that ||/j||^ < r, where
τ = r{v) does not depend on h. Let χ(ζ, F) denote the function

χ (ζ, Ζ) = | ψ ( ζ ) | *

and let zQ be the distinguished point. In this case

where

φ (2, Ζ | 20, ?0) = Φ (2, 2"0) + Φ (20, 2) — Φ (20, 2"0) — Φ (2, J) = - Φ (2,~2)

in view of the fact that zQ i s the dist inguished point. We are now in a position to apply

Lemma 2.1. According to this lemma, as h -» 0 the function H/jH^ has the limit

from which the necessary estimate follows. The theorem is proved.

Theorems 2.2 and 2.3 mean that the correspondence principle in its weak form is

satisfied.
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5. Properties of the operator Τ h. In general, the operator Γ is given by (2.8). In

our case the measure σ and the vectors φα depend on h, and therefore the operator

Τ —T h also depends on h. By taking hypothesis A into account we see that for h € Ε

the operator Τh is equal to

(7V) (z,rz) = j / (v, v) Gh (ζ, ζ~\ Ό, υ) άμ (ν, ν), (2.46)

where

We shall consider operators Τh which belong to L·^ on S!. The Lp norm of Τ h is de-

noted by UTjp.

Theorem 2.4. 1) | |T A | | < 1. 2) As h -* 0, lim 7"A = / in the weak sense, where I

is the unit operator in L^.

Proof. The kernel Gh(z, Έ\ν, 17) has the following properties: 1) Gh > 0.

2) Ch(z, Έ\ν, ν) = Gh(v, v\z, ?). 3) fGh(z, I\v, ν)άμ(ν, ν) = 1.

(Properties 1 and 2 are obvious; property 3 follows from (2.23) with Aj = /.2 = 1.)

Therefore the first assertion of the theorem follows from the following general fact.

Let Μ be a set with measure dx, and let A be an operator in L^(M), p > 1, de-

fined by

where K(x, y) > 0 for almost all x, y e Μ and f K(x, y) dy = / K(x, y) dx = 1. Then

IHI,<i.
Indeed, by Riesz's theorem [ 10], ln||/l|L· is a convex function of p~ for 1 < p <<

Therefore it is sufficient to verify the estimate for the norm in the spaces L (M) and
L°°(M) (ll/jl^, = sup |/(x)|). These estimates are obvious:

. y)\f(y)\dydx =

M L < s u p j/C(x, y) |/ (y)\dy^sup sup |/(s)|J/C (x, y) dy = sup |/(s)\ = ||/«^

We turn now to the second assertion. First let / be a continuously differentiable

function which is equal to zero outside of some coordinate neighborhood U. In consid-

eration of hypothesis A we write Τhf in the form

C - τ-φ(ο,ό|2.ϊ)

(Tlf) (z, z)=c(h))f (υ, Ό) eh άμ (ο, ο).

According to Lemma 2.3 it follows from hypotheses A, B, C and D that each point of 3!

is proper and therefore φ < 0, so that the inequality is strict li ζ 4 ν. If ζ = ν, it fol-

lows immediately from (2.25) that φ = 0. Consequently for fixed ζ the function φ has

its maximum with respect to ν at ν = ζ. Let U1 D U be a larger coordinate neighborhood.
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Let us fix ζ € t/j and introduce coordinates / ' into f j so that the coordinates of r are

/ ' = 0. By the above, in these coordinates

φ (ζ, 21 ν, Ό) = ψ (ζ, ζ\ t, t) = 2 Φ«Λ* + R (t, t),

R(t,t)= 2
lPl+ΙϊΙ-ΐ

where R^ At, t ) is a continuous function and p and q are multi-indices. We see that

we can apply Lemma 3 of the Appendix, according to which, for ζ € U,

(z, z)-f(z,z)\<aVhmax (\ 2L
dtl

(2.47)

In case ζ 4- f j , it follows from the fact that ζ is a proper point that

b_
~ (2-47')

Let hn -* 0, let Th be a weakly convergent sequence, and set Q = lim T/, . From (2.47)

and (2.47*) it follows that if / is a continuously differentiable function and / = 0 outside

of some coordinate neighborhood, then Qf = f. Therefore Q = /. Thus Q cannot depend

on the choice of the sequence hn, and consequently Τh has a weak limit as h -> 0:

lim T. = /.

6. Discussion of the hypotheses. The basic hypothesis concerning the existence

of a potential is valid for local Kahler manifolds, i.e. for bounded regions in C having

Kahler metrics. Kahler potentials certainly do not exist globally on compact manifolds.

However, they can exist on a manifold 3! obtained from a compact manifold 3! by remov-

ing a submanifold of smaller dimension.

There follows from the hypotheses A—D a curious differential-geometric property of

the manifolds S3!.

Theorem 2.5. Let g(z, 2") = det | |g._| | . When hypotheses A—D are valid, g(z, ?)

satisfies the equation Δ In g = const, where Δ is the Laplace-Beltrami operator on SL

Proof. By Lemma 2.3, hypotheses A—D imply the applicability of Lemma 2.1 to the

function /(z, i") = 1. In this way we also have (2.30). Note that

~c\ (0) =~c; (01z, i) - lim c T w ~ c 7 ( 0 ) = lim ^ " · ' > - ' · . ( 2 . 4 8 )

Α—ο Λ h-.o η

Now let h -» 0 on the right-hand side of (2.48) by means of some sequence hn € E, where

Ε is the set involved in condition A. With h € E, t(h\z, Έ) = c(h) is independent of

(ζ, Έ) (see (2.33) and (2.33*)). Consequently ^'(0) possesses the same property, and,

in view of (2.30),
_ Q _

σ (ζ, ζ) = —- Δ In g (ζ, ζ) = const.
2

The theorem is proved.



QUANTIZATION 1133

7. Dimension of the space F,.

Theorem 2.6.

dim Fh=c (ft) J Lh (z, z) e h " ψ (ζ, ζ). (2.49)

Proof. Equation (2.49) follows from (2.24) with A = 1 (see also footnote (6)).

8. Possible generalizations. Consider the associative algebra A which consists

of those functions on Si which can be analytically continued to 21! χ Si. In analogy with

(2.23) we give the law of multiplication in A in the form

(A * Αώ (ζ. 2) = j A (2. ν) Αι (υ, ζ) G (ϋ, σ Ι ζ, ζ) άμ (σ, σ). (2.50)

It can be shown that if A contains sufficiently many elements, then necessarily

C F(z, v)F(v, 2)
= — _ . . . (2.51)

F(Z,Z)F(O,V)

where F(z, Ϊ7) is an analytic function on SI χ S! and r(i>, F) is some function of SI.

If the algebra A possesses property 8) of quantizations (regarding the trace) and

the set "X on which the trace is defined is sufficiently large, we necessarily have

F{v, F) = cF(v, U).

We shall not dwell on these statements, but merely note that in the case where the

region of Cn is bounded, but not homogeneous, it is natural to try to construct an alge-

bra by means of (2.50) and (2.51) by setting F(z, F) = K1/h(z, J), F = cF, where Κ is

the Bergman kernel function. In this case the correspondence principle would follow

from Lemma 2.1. However, even in this simple situation, if just hypothesis A is not

valid, it cannot be proved that an algebra having the law of multiplication (2.50), (2.51)

exists which contains any other function /(z, F) than /(z, ?) = 0.

§3. Quantization in homogeneous Kahler manifolds

1. Linear representations of a local group of motions in the space F^. Let S! be a

homogeneous Kahler manifold, let C be a group of motions in SI, and let Φ(ζ, F) be a

potential, invariant with respect to G, for a metric on 31. We shall assume that the po-

tential Φ exists globally on the set Si obtained from 5J! by removing a submanifold 5S'

of smaller dimension. From the invariance of the metric generated by Φ it follows that

Φ fez. gz) = Φ (ζ, ζ) + ψ fe, 2) •+· ψ fe, ζ), (3.1)

, where 4>(g, ζ) is for fixed g an analytic function of ζ defined over 3! f) gSL Relation

(3.1) defines a function ib(g, z) up to a purely imaginary term. In order to remove this

indeterminacy we select a point zQ and set

Ψ (g> Z0) =~(Φ (gZ0, Wo) — Φ (20. Z0)).

Fix an open set 3JL C 3L Consider a symmetric neighborhood U- of the unit e of the
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group G which is sufficiently small that g l 0 C 1 f) g® for g e UG. It follows from

(3.1) that for gvg2, gjg2 £ U C and ζ € Ηϋ0

R e Ψ <AA. ζ) == Re ψ (&, &*) + Re ψ (&, ζ).

In turn, from this under the same conditions we get the relation

Ψ (gig* 2) = ψ (ft, ftz) + ψ (g2, z) + ia (glt g2), ( 3 2 )

where a(gj, g2) is a real function.

We shall show that for any ζ e Μ

ψ ( β , ζ ) = 0 . (3.3)

The relation (3.3) is correct for 2 = zQ by the definition of ?he function ώ. Setting gj =

g 2 = e in (3.2) shows that i^ie, z) = —a(e, e) does not depend on z. In particular, 0 =

i/r(e, 20) =: -a(e, e), so that i/f(e, z) = -a(e, e) = 0.

Theorem 3.1. Let hypothesis A be valid and let g € Uc. Then the following asser-

tions are true:

1) // f{z) € Fh, then the function

defined originally on 3!0> can be continued analytically to Si and belongs to F,.

2) The operators in Fh

(3.4)

are unitary and define projective representations of the local group UG.

3) In the case where relation (3.2) r'ifining a is

α (A. gJ = σ ( g ^ — σ (&) — σ

ίΛε operators Τ e e form a linear representation of UG.

4) The representations Τ are irreducible.

5) Let A be a bounded operator in F,, let A(.z, Έ) be its covariant symbol, and

let (r A){z, Έ) be the covariant symbol for the operator Τ AT" . Then:

5j) the function A(z, Έ) originally defined on 501 can be continued analytically to

all of 31, and

52) for all ζ e l

M)(*, i-Aig-h,^). (3-5)

Proof. Using (3.1), we find from (2.35) with ν, ζ e$ f\ g& that

(3.6)

Let w - g~lv and use the fact that according to (3.3) and (3.2),

Ψ ig~\ g2) = — ·ψ (g, 2) — ia (g"\ g).
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As a result we have

ί^ ±- a(g-'.g)
h (3.7)

Note that the right-hand side of (3.7) for'fixed w can be continued analytically with

respect to ζ to HL Consequently the left-hand side has the same property.

Therefore the operator (4.3) is defined for the functions Φ_(ζ), υ e 2J1 f] gW. We

denote the operator (3.4) restricted to functions of this type by T' . It follows from

(3-7) that 7"β'Φ_ e Fh. By using (3.7) and (3.6) we find

,
(3.8)

= Φ& {go) e ή = Φί (ο) = (Φϊ, Φ?).

Let F/ denote the set of finite linear combinations of the vectors Φ-(ζ), ν, €

3H f) g3!. From the general formula (2.19) it follows that F'h is dense in F h·

Let Τ denote the extension, by linearity, of Τ to F, , and let Τ be the closure

of ι . It is clear that T" is defined by (3.4). The unitarity of T" follows from (3·8).
e * ^ 8 8

Let / e F, and / = lim / with respect to the norm of F,. It follows from (2.19) that

/ = lim / uniformly within any open set contained with its closure in 5L Hence it fol-

lows that T"' as also defined by (3·4), i.e. f'"= Τ . In particular, the right-hand side
8 ' 8 rj, Λ

of (3.4) is a single-valued analytic function, and (Γ /, Γ /) = (/, /). Hence the fact that

the operators Τ form a protective representation of the local group U^. follows imme-

diately from relation (3.2). Thus we have the third assertion of the theorem.

We prove the fifth assertion. Using (3.7), we obtain for ν

In particular, with A = I

(Φ?, Φ?) =

Consequently the symbol for the operator Τ At'1 with ν e S!o is

, Φ,) ( ^ g ~ , Φ ^ ) ^ ^

The left-hand side of (3-9) obviously has an analytic continuation to 3K, so that the

right-hand side has the same property. Let vQ eW = Έ\Έ, and let the element g 6 U^

possess the property that vl = gvQ e 3S.( ) The left-hand side of (3.9) is defined for

ν = I/J. This makes it possible to define the right-hand side for υ = νQ. Thus we can

define the symbol A(z, z~) over the entire manifold 3)1. It is clear that the function

A(z, z~) defined over all of 3! which is obtained in this way is analytic in the real

sense and that (3-9) has a meaning for all ν e 591.

Such an element exiscs because of the assumption that W is a manifold of smallest
dimensionality.
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We next turn to the fourth assertion. Let A be a bounded operator which commutes

with all the Τ , and let A{z, z~) be its symbol. It follows from (3.9) that A{z, F) =

A(g~lz, g~^z) for g € Uc. Since the group G is generated by any neighborhood of the

identity, the last relation is correct for all g e G. By the transitivity of the action of

G on 3! it follows from this that A(z, z~) = a = const. In view of the one-to-one charac-

ter of the correspondence between symbols and operators we therefore have that A = αϊ,

where / is the unit operator in F,. The theorem is completely proved.

2. Projective representation of the total group of motions in the space Fy

Theorem 3.2. The representation (3.4) can be extended to a unitary projective

representation of the entire group G.

Proof. Consider the algebra /i^ as a linear space, and look at the representation

of the local group Uc in Ah defined by (3-5). This representation can be extended to

a linear representation of the whole group G, since G is generated by Uc. On the same

basis, for all g e G the transformations (3.5) are automorphisms of the algebra A h. By

construction, A, is isomorphic to the algebra of all bounded operators in F,. It is well

known [11] that the automorphisms of the algebra of all bounded operators in Hubert

space are inner. Therefore for each g € G there exists a bounded operator U in F,

which generates the automorphism (3.5):

Ae = OeAUl\ (3.10)

where Λ •* Ag is an automorphism of the operator algebra corresponding to r . The

operator D is given by (3.10) up to a factor. It is clear that these operators form a

projective representation of G.

The transformation r takes real functions into real functions. Consequently the

automorphism (3.10) takes Hermitian operators into Hermitian operators. Hence the

operator U differs from a unitary operator only by a factor. Thus the operators U can
S C

be considered as unitary operators multiplied by a factor of modulus 1. The theorem is

proved.

Let G denote the group which consists of all the operators U , g e G. It is clear

that G is a central extension of G. Thus the operators U form a unitary linear repre-

sentation of G. We denote this representation by 7^. Let π: G •* G denote the homo-

morphism defined by the equation n(0 ) = g. In what follows, elements of G will be

denoted by g'.

Let LUC G be the preimage of the neighborhood UG under the homomorphism π,
and let Τ be the representation (3.4). By definition 7"^= ΘΤ with g1 e U~, g = n-(g')

8 g S G

and |f| = 1 . Consequently

where φΟ?, ζ) = ̂ Ag, ζ) + '/3(£0, β(^) being a real function defined up to a term of the

form 2nnh. This indeterminacy may be removed by setting jS(e) = 0. In this case, by

(3-3) we also have <£(e, z) = 0. In the following it will be assumed that (dtic) •--<£(c, z)--0.
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Theorem 3.3. Let fo(z) = 1 eF,, Then 1) the function e~'*'(*·*' can be extended

to G χ SB with preservation of analyticity with respect to z, and 2) a global representa-

tion T^. of the group G is given by (3.11).

Proof. From the fact that the operators (3.11) form a representation of the local

group £/—, and from the condition φ(ε, ζ) = 0, it follows that for £",, ^ , , f,?', € U~ and

ζ e S

h' ζ) = φ (gi, g2

?) + Φ (gt, z), gt = π (gz). (3.12)

Setting f{z) s 1 in (3.11), we see that f(g, z) = exp[-<^(f, z)/A] is defined on

and is an analytic function of ζ for fixed g. From (3.12) it follows that for £ j , ^ i ^

€ i/~ and ζ e l 0

β (£iit, ζ) = ε (&, ftz) β (gt, z) (g2 = 3t & ) ) . (3.13)

Now recall that the representation (3.11) can be extended to a unitary representation of

the whole group G. In particular, 7~ T~ = Tg- -g with ^ j , g2 ε t/p· By combining

these identities with (3.13), we find that f (^, z) has a unique extension to U\, χ 2)1,

which preserves analyticity with respect to z, the property (3.13), and the fact that the

operators Γ_ have the form (3.11) with g' £ LlL. By repeating this argument we find that

for any integer η > 0 there is a single-valued extension of f (£", z) to t/2. χ SR which

preserves analyticity with respect to ζ and property (3.13), and extends formula (3.11)

to UZ. This concludes the proof of the theorem, since G = l)UZ.

3. Covariant symbols of the operators Τ . By combining (3·2) and (3-12), we find

that aiglt g2) = β$χΐ2) - /3(2Ί> ~ /3(|-2)· In particular, a(g-\ g) = - β(%) -

Therefore it follows from (3.7) and (3.11) that

^Φ^ί») 3 =Lh(v,gv)eh

Hence we have the covariant symbol for the operator T^:

Let 'git) be a one-parameter subgroup of o. Represent the operator T^ in the form

Τ = exp ((///>)£). The covariant symbol £(2, ? ) for the Lie operator £ can be cal-
8 (0

culated by setting "£ = g"(t) in (3.14) and then evaluating the derivative of (3.14) at

/ = 0. It follows from hypothesis A that £(z, z~) does not depend on h:

« (?, Z) = A J e A | / = 0 = -|- ΙΦ (A gz) - φ (g, Z)] !,_„.
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Theorem 3.4. 1) The symbols for the Lie operators possess the quasiclassical

property. 2) // g"{t) is a one-parameter subgroup of G, £(z, z") is the covariant symbol

for the corresponding Lie operator, and g(t) = n(g^t)), then

?))Lo = 7^M], (3-15)

where [£, A] is the Poisson bracket in A(W).

Proof. In view of the connection between the representations τ and T_ we have

Yt-*«')Mt-o = j(Z*A-A*5e). (3.16)

Both functions i and A do not depend on h. Therefore as h -» 0 the right-hand side of

(3.16) is equal to [£, A]/i + oil), where [£, A] is the Poisson bracket.( U ) Since the

left-hand side of (3.16) does not depend on h, we must have o(l) = 0. The theorem is

proved.

§4. Quantizations in C"( 1 2 )

1. Wick quantization. This version of the quantization of a mechanics with plane

phase space is the simplest example of the two constructions in §2. In suitable coor-

dinates the Kahler potential has the form

( 4 Λ )

The distinguished point is the origin.

The space F, consists of entire functions which are square summable with respect

to the measure

(/, /) = — \ Ι/(ζ) l2e " ίίμ (ζ, ζ), (4.2)

A" J
where άμ •= άμ^π", du^ being ordinary Lebesgue measure on C n . In this case F^ is

called a Fock s p a c e . ( 3 ) One orthonormal basis in Fh consists of the vectors

/ * ( * ) = T T - - = = = . k = ku ...,kn. (4.3)

It follows from (4.3) that

(11) We omit the demonstration that the conditions of Theorem 2.2 are met.
( 1 2 ) This section contains a short survey of the known results. For a more detailed exposi-

tion see [l2], [l3], [14] or [15].· Further references to the literature are given in these places.
('3) This was introduced by V. A. Fock in [16] and \.ll\. The scalar product he used was

given not by the integral (3-2), but by a series in the Taylor coefficients of the function /. A
description of the scalar product in F, in the form (3.2) was first published in a paper by
Bargmann [ΐβ]; however, it was well known well before the appearance of this article (see the
report by R. A. Minlos, L. D. Faddeev and the author at the All-Union Mathematical Congress
in 1961 [19].)
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Consequently hypothesis A is valid. The correctness of hypotheses Β and C is clear.

The specialization of formulas (2.22), (2.23) and (2.24) is well known in the theory of

Wick quantization.

In Fh consider the operators a, and 2^ (the "annihi lat ion" and " c r e a t i o n "

operators)

(akf) (z) = h %-, (alf) (2) = **/ (*)· (4.4)
dzk

The expression of an operator Ά by means of a^ and ak [n t n e special form

(τη, η are multi-indices) is called its Wick normal form.

The term "Wick quantization" is related to the fact that the covariant symbol for

the operator A is a product of functions in Wick normal form

mzn. (4.5)

If the operator A can be expressed in reverse (anti-Wick) normal form

A = 2 Amna
m (aT,

then it can be associated with the product

A (?,z)= 2 Amnz
mzn.

Ο Λ

The function A is the contravariant symbol for the operator A.

In this case the covariant and contravariant symbols for operators are also called

Wick and anti-Wick.

The connection between the Wick and anti-Wick symbols, as well as the law of mul-

tiplication in the algebra of Wick symbols, according to the general theory, is given by

the operator T,. In the present case the kernel of this operator has the form

0 f t = — e , (4.6)
A"

i.e. is the Poisson kernel. Consequently the operator T, can be represented in the form

Th - Λ (4.7)
where Λ is the Laplace operator.

2. Weyl quantization. This version of quantization does not make use of the com-

plex structure, and therefore it is more natural to consider it as a quantization on R2"

rather than on C. As usual, we denote the coordinates in R by p = (p. , · · · , ρ ),

? = ( ? ! ! ' · · -> 1n)· Let φ(α, β)άαάβ, α = (αχ, ··• , αη), β = (β1, · · · ., βη), be a com-

plex-valued measure of bounded variation in R , and set

,4(p,q)= f
(4.8)
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We associate a function Q{p, q) with a bounded operator A in some Hubert space Η in

the following manner. Let G denote the Heisenberg-Weyl group and let S be the Lie

algebra of this group. Let Τ be an irreducible unitary representation of this group in

the space H. Let ξ^ η^ ζ be the basis in S having the standard commutation rela-

tions [ffe, 7/y] = Sfej.£ and [£k, f;.] = h]k, η{] = [ξ^ ζ] = [η^ ζ) = 0. The representation

Τ associates skew-Hermitian operators ς^, η, and ζ with the elements ζ,, η, and

ζ in Η. Let pk, qk and 2 denote the corresponding Hermitian operators pk =-z'f,,

q, = ~'Vt a n c ^ z = ~*£" Because of irreducibility we have z = hi, where / is the iden-

tity operator.^ 4) Therefore among the p, and q, we have the relations

\Pk, ?/} = * * / γ Λ (pk, PA = [qk, qi\ = 0 · ( 4 - 9 )

Let

d& (4-10)

The association of the function (4.8) to the operator (4.10) was first proposed by

Weyl [l] and is called Weyl quantization. The function u(p, q) is called the Weyl sym-

bol for the operator Λ. The operators (4.10) form a subalgebra of the algebra of bounded

operators for which j | ^ | | < $\φ\άαάβ.

Let us consider the realization of the space Η in the form L 2 (R n ) and try to ex-

press the operators p, and q, by the formulas

(Pkf)(x)=±j-f(x), &fl (*)=**/(*). (4.11)

In this realization of the algebra % the operator (4.10) is described by means of a ker-

nel K{x, y) which is associated with its Weyl symbol by the formulas

(2πΑ)η

(4.12)
tp\

The multiplication law in the algebra of Weyl symbols follows from (4.12): if A = Α Α.,

then the corresponding symbols are connected by the relation( 1 5)

— f
(1\ W ( t ) ( > " Δ

, (4.13)

where Δ is the triangle in R2n with vertices at the points ( p ( 1 \ qW), ( p ( 2 ) , qi2)) and

{p, q), while ω = Σ rfpj. Λ </̂ - The integral /Δ ω is easily calculated:

By von Neumann's famous theorem [20J, the representation Τ is defined by the num-
ber A up to unitary equivalence.

(!5) In the preceding works concerning formula (4.13), the integral f ω is replaced by the
Δ

explicit expression (4.14).
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1 1 1

lkl) q® qt . (4.14)

>P rf» Pk

For the saks of completeness we give the relation between the Wick and Weyl quantiza-

tions. For this purpose consider a representation of the algebra Φ in the space Fy Let

Pk = — — (dk — ak), qk = - — (a* + a*), (4.15)
i ] 2 1/2

where a^ and a^ are defined by (4.4).

The operator A now acts in F^. Being bounded, it has the Wick symbol A(z, F).

We see that

A(z,z) =(Τ±Λ)(ζ,~ζ), (4.16)
2

where Th is the integral operator with kernel (4.6). In applying formulas (4.16) we as-

sume that ν = (q + ip)/\J 2 and Ί7 = (q ~ ip)/\J 2 . By combining (4.16) and (4.7) we find

A(p,q) = (ThA){p,q)
2

(now ζ =(q + ip)/yj2 and F = (q - ip)/y/2 ) .

3. Projective representations of the group of parallel translations in the space F ,

The group of parallel translations acts transitively on C". According to the general

theory developed in §3, if A(z, F) is the covariant symbol for the operator A, then

A(z - ξ, ζ - ξ) is the covariant symbol for the operator T^Mfl®) , where fty is

the operator in F, defined by

(Tih)fi(z)=f(z-t)eh * (4.17)

The relation among the Τ? follows from (4.17):

= (4.18)

The relation (4.18) shows that the operators Τ1 ' form a projective representation of the

group Η and, at the same time, form a linear representation of the Heisenberg-Weyl

group G.( 6 ) From von Neumann's theorem [20] it follows that the representations Ti '

are inequivalent for different h and that every irreducible unitary representation of G" is

equivalent to one of the 'ΐ[Ρ\

§5. Quantization in homogeneous bounded regions

1. Construction of the quantization. Let Ω be a bounded homogeneous region in C",

and let K(z, z~) be a Bergman kernel. Ω is a K'ahler manifold with respect to the metric

ds2, whose potential is Φ(ζ, z~) = In K(z, F). By following the scheme described in §2,

group G is a one-dimensional central extension of the group H.
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w· consider the space Fh of analytic functions in Ω with the scalar product

if. f)=c(h) Jj/(z)i2A~1/A(2, ζ)άμ (ζ, ζ), (5.1)

where

,β*ΙηΚ
άμ(ζ, ε) = άβί'

and <fyL(z, F) is Lebesgue measure on Ω. Consider the function L^, U) defined by

(2.16) and the complete system Φ_(ζ) = Lh(z, U). We form the algebra Ah of covariant

symbols of bounded operators in F^ and the algebra 8, which consists of the functions

f(h\z, z~), 0 < h < 1, which for fixed h are elements of Ah and continuous in h, ζ andz".

Theorem 5.1. The algebra & is a special quantization with the weak correspon-

dence principle.

In view of the fact that the set Ε in this case consists of segments, according to

Lemma 2.2 and the remark made after it, it is sufficient to verify hypotheses A, B andC.

The proof of Theorem 5.1 is based on the following assertions.

Theorem 5.2. For homogeneous bounded regions Ω:

1) det H^2 In K/dz'dz* || =λΚ(ζ, ζ ) ;

2) L/Jiz, z~) = μΚ h(z, z"), where λ = λ(Ω) and μ = μ(Ω) are constants which de-

pend only on Ω;

3) for 0 < h < 1 the spaces F^ are not empty: F^ D H, where Η is the space of

analytic functions on Ω which are Lebesgue square summable.

The second assertion of the theorem shows that hypothesis A is valid.

Proof of Theorem 5.2. Let Η denote the Hilbert space of analytic functions on Ω

with Lebesgue square summable modulus, let G be a group of transitive actions on Ω,

and let bXgz)/dz be the analytic Jacobian of the transformation ζ -» gz: d{gz)/dz =

det \\dv'/dz*||, where z* are the coordinates of the point ζ and v' are the coordinates

of the point ν = gz.

It follows immediately from the definition of the kernel function that( 1 7 )

(5.2)

Now let p(z, ζ ) = det \\d2 In K{z, ζ )/dzldz *||. In turn, it follows from (5.2) that

p(z, z~) satisfies the similar identity:

d(gz) *
(5.3)

C2

Therefore the function λ = p(z, z~)/K{z, z~) is invariant with respect to G and, because

( 1 7 ) If φ (ζ) is an orthonormal basis in //, then χ^(ζ)= <j>n(gz)d(gz)/dz has the same

property. Therefore
t
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of transitivity, is a constant. This proves the first assertion. The third is an immediate

consequence. Indeed, by the first assertion of Theorem 5.2 the measure άμ in (5.1) is

equal to

άμ (ζ, ζ) = λη~ηΚ (ζ, ζ) d\iL (ζ, ζ). (5.4)

Let Η denote the space of analytic functions over Ω which are Lebesgue square

summable. Consider in Η an orthonormal basis which includes the function fQiz) =

const. By using this basis we see that K(z, z~) > | / 0 | 2 · Therefore, for 0 < /; < 1

Κ " (z,z)<\fo\ * =const
and it follows from (5-4) that Η C Fy We note that Η = Fj. We turn to the second asser-

tion.

Lemma 5.1. There exists a neighborhood U- of the identity of the group of motions

G, for which \digz)/dz - 1 | < Vi for all ζ e Ω and g e U.

Proof. First of all, consider the fact that the action of the group G can be extended

by continuity to the closure Ω of the region Ω.( 1 8 ) We define

for 2€ΞΩ.
<fcn

It is clear that the function jig, z) is continuous in the variables g € G and ζ eQ,.

Note that fie, z) = 1 for all ζ e Q,. Now suppose that there is no neighborhood U hav-

ing the required properties. If this is the case, then there is a sequence gn~> e and a

sequence ζ e Ω such that
η

1

&„
— 1

2
(5.5)

By compactness, with no loss of generality it can be assumed that ζ -» ζ e Ω. By taking

the limit in (5.5) as η ->·οο, we find that \jie, z) - 1| > 14, which contradicts the equa-

tion fie, z) = 1. The lemma is proved.

Now let oj-z) be an orthonormal system of functions in the space F^, and take

g e U. By introducing a cut along the negative real axis in the u'-plane we define a

single-valued branch of the function w h by the condition 1 = 1. Keeping this

branch in mind, we consider the function

which, in view of the definition of the neighborhood {/, is a single-valued analytic

function on Ω. It follows from (5.2) that the transformation

Actually, the action of C extends in a continuous fashion even to some complex mani-
fold which contains U [2l].
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is a unitary operator in F,. Therefore the functions Xn( 2) form an orthonormal basis in

Fy Consequently

[ζ, ζ) =
t

= ίΗ (gz, Jz)
Ϊ/Α

. '5.6)

Since the last identity is valid for all g e t/, it is automatically true for all g £ G. On

the other hand, it follows from (5.2) that the function Κ (ζ, ζ") satisfies a similar

identity. Therefore μ = LhK~ is a function invariant with respect to G, so that

μ = const. Theorem 5.2 is completely proved.

This establishes the validity of hypothesis A. That of Β and C is obvious for 0 <

h < 1. This concludes the proof of Theorem 5.1.

Remarks. 1) In the case where Ω is a circular region, the point ζ = 0 is the dis-

tinguished point for the potential Φ = 1η(Κ(ζ, z~)/K(0, 0)). In this case there exists in

Ω a complete orthonormal system consisting of homogeneous polynomials of nonnega-

tive integer degree. By using this system we find that K(z, 0) = K(0, z") = K{0, 0),(1 9)

which is equivalent to the fact that the point 0 is distinguished.

2) The space Fh is certainly not empty if 0 < h < 1. In case h > 1, the integral

(5.1) can begin to diverge. In this case it is natural to try to understand matters by

means of analytic continuation in h. For the case where Ω is a symmetric region, this

possibility has been studied in detail. It appears that for the case where Ω is the com-

plex sphere, the space Fh can be constructed for any h > 0. In all other cases the per-

missible values of h are bounded by a constant c{0) : for h > ίΚΩ) the scalar product

defined by means of analytic continuation is not positive definite.

3) A projective representation 0 of the group G acts in the space Ffc. In a suf-

ficiently small neighborhood of the identity the operator D = Τ is defined by the gen-

eral formula (3.4); the function t/Kg, z) is defined in (5.2). By taking the logarithm of

(5.2), we find that

φ (2, ζ) = Φ (gz, gz) + In / (g, z) + In / (g, z),

where j(g, z) is the analytic Jacobian. Consequently

z)illh{g-\z). (5.7)

§6. Quantization on a cylinder and torus

1. General remarks. The two-dimensional cylinder and torus are Kahler manifolds.

Their complex structure and metric can be defined in the usual way by unfolding them

onto a plane. We denote real coordinates on the cylinder and torus by p and q, where

in the case of the cylinder p runs over the real axis and q is a cyclic coordinate with

period 2π, while in the case of the torus both coordinates are cyclic with period 2π.

In either case we set ζ = q + ip. There is a global potential

(!9)= μ(Ο)~^, where μ(ΰ) is the Lebesgue volume of Q.
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Φ (Ζ, Ζ) = — - (Ζ — zf (6.1)

for the metric on the cylinder. In the case of the torus, a global potential exists on the

set 31 obtained from the torus by removing the circle q = const. Equation (6.1) can be

considered as the potential on 33i. In neither case is hypothesis A valid, and therefore

it is not clear that by the method in §2 a quantization can be constructed using the al-

gebra A , which admits the correspondence principle. In this connection we shall con-

struct quantizations on the cylinder and torus along the lines of Weyl quantization in

the plane.

2. Cylinder. Formula (4.13), which provides a law of multiplication in the algebra

Ah for the case of Weyl quantization in the plane, cannot be exactly carried over to the

cylinder. The problem is that in the plane there is a unique triangle whose vertices lie

at three given points, whereas on the cylinder there exist many such geodesic triangles.

In this connection we introduce a definition.

A set S?A of points on the cylinder Si is called admissible if when the vertices of

the triangle Δ belong to 3!^ the function

exp-^

Δ

(6.2)

does not depend on the choice of the triangle.

We begin with a description of admissible sets. Note that

ω = q fa — — p) + Ql (p _
( 6 . 3 )

By taking into consideration the fact that q is a cyclic variable of period 2π, we find

that for the function (6.2) to be independent of the sides of the triangle, but to depend

only on its vertices, it is necessary and sufficient that the differences p2 - py, pj — p

and p - p2 take on values of the form nh/2 with integer n.

Thus those sets 31 ̂  are admissible which consist of circles on 10! which are parallel

to the base and are a distance hn/2 apart.

Corresponding to this we modify formula (4.13):

ft „ f . ,

= γ 2 ·Α ΟΙ.

h
-

1 1 1
Pi Pi Ρ

h
-

qt dqlt

(6.4)

Going over to the Fourier transform, we obtain

Λ {ρ, q) = 2 f eHa"+M Φ (α- β) da< β = 0 , ± 1, ...
β Ό

(6.5)f
β Ό

(the function φ{α, β) is periodic in α with period An/h).
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A law of composition for φ follows from (6.4)'·

φ (α, Ρ) = 2 f Φι (α - ο'. Ρ - β') Ψζ (<*', β') eT'α' »Ί da'. (6.6)
β' ο

Let \\φ\\ - Σο /|<£(α, j8)|<s?a It follows from (6.6) that \\φ\\ < ||<£j|| ||̂ >211 - Consequently

the set of functions φ such that \\φ\\ < » is closed relative to the composition (6.6),

and thus the set of functions Q of the form (6.5) with |j0j| < » is closed relative to the

composition (6.4). We denote the latter set by A^.

We shall establish the associativity of the composition (6.4). In L2(0, 2π) consider

an integral operator with kernel K(x, y), which is 2»r-periodic in χ and y. To it we as-

sociate a function Q(p, q) by a formula similar to (4.12):

Γ (q — ξ, q + l)e h d%, P = ~- , η = 0 , ± 1 (6.7)

ο

Inverting (6.7), we have

The operator product A = ΑχΑ2 in L (θ, 2π) corresponds to the composition of their

kernels K(x, y) = / Kj(x, s)K2(s, y)ds. Going over to the functions Q{p, q) by formulas

(6.7) and (6.8), we find, after an obvious transformation, that the composition (6.4) is

generated by the operator product. Thus the functions &(p, q) of the form (6.5) with

||(£||< oo and with the multiplication law (6.4) form an associative algebra. Formulas

(6.7) and (6.8) describe a linear representation of the algebra Ah in L2(0, 2π).

We construct the quantization ?I out of those functions Q(h\p, q), 0 < h < oo, for

which d{h\p, q) eAh for fixed h.

The correspondence principle (in its weak form) follows from the following consid-

erations. Let the functions Uj(A|p, q) and u2(A|p, q) be defined for all (p, q) e SR and

0 < h < oo and be continuously differentiate in all variables. In this case the right-

hand side of (6.4), after multiplication by h/2, is a defining sum for the integral (4.13)

(for η = 1), extended over 5L Consequently (6.4) and (4.13) have a common asymptote

as h -> 0.

Thus the correspondence principle for our quantization on a cylinder follows from

the correspondence principle for the Weyl quantization on the plane. We shall not dwell

on this point.

3. The torus. As a starting point for the construction of a quantization, we again

consider formula (4.13). The same arguments as in the case of the cylinder show that,

on an admissible manifold 3Bft) P2> Ρχ a n d Ρ c a n t ake on only the discrete values hn/2.

In view of symmetry with respect to p and q, it follows that q^, q2 and q also take on

only these discrete values. Since, on the other hand, p and q are cyclic coordinates,

the number of distinct values accepted by p and q is finite and is given by the relation
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Nh/2 = 2π, with Ν an integer. Thus we see that h can take on only the discrete set of

values( 2 0)

ft=—. (6.9)
Ν

The lattice HR̂ : (p, q) = (m, «V;/2 on the torus is an admissible set.

We modify equation (4.13) in the following way:

*
-j- Pi Pt Ρ

ι CPi, <7ι) Λ (ft. ft) β (6.10)

Let Kh denote the lattice on the circle 0 < χ < 2π consisting of the points χ =

nh/2, and let L {K^) be the Hubert space of functions on Kh with the scalar product

(Λ*) = 7 Σ /<*>*W·

It is clear that dim L2(Kh) = Ν = 4;r/A. Every operator in the space L2(K^) is defined

by a kernel K(x, y), x, y € Ky We assign to each operator in L2(Kh) a function Q(p,q)

on 3!^ by the formula, which is similar to (6.7),

lip

Λ(Ρ, η)=Η^Κ(ς-Ις + ξ)βΗ . (6.ιΐ)

The inverse of (6.11) coincides in form with (6.8). The operator product A = A ^A2 in

L2(Kh) corresponds to the composition of kernels K(x, y) =(A/2) ΣΚ^χ, s)K2(s, y).

Thus by means of (6.11) and (6.8) we can go over to the functions 3(p, q). An obvious

calculation shows that the composition of the functions Q(p, q), which comes about in

this manner, is identical with (6.10).

In this way (6.10) defines an associative algebra. The algebra ?i is defined just

as for the c y l i n d e r , ( ) and the validity of the correspondence principle is established

exactly as in that case.

In concluding we point out that all the formulas which relate to the quantization in

the case of the torus are obtained from the similar formulas for the Weyl quantization of

the plane by replacing the integrals by their defining sums with increment h/2

§7. Questions of uniqueness

In this section we examine, on the basis of some general considerations, the unique-

ness of the Wick and Weyl quantizations in Cn.

1. Additional definitions. Let ?Ij and ?I2 be quantizations of the same classical

mechanics. We call ?Ij a subquantization of &2 ('Ij C 5I2) if an admissible homomor-

phism φ: ?tj -> SI2 exists.

(20) it will be shown elsewhere that in the case of a compact symmetric space with a semi-
circle group of actions the situation is similar.

( 2 1 ) The only difference is that h takes on values of the form (6.9), and not the half line
(0, oo).
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The quantization 21 is called maximal if SI C ?lj implies that ?X = ?lj.

Let Η be a special quantization of the mechanics (ΪΙ, ω) which is natural with re-

spect to some category Κ to which the group G of motions of the manifold 51 belongs.

As has been repeatedly noted, in this case the translations generate automorphisms

of the algebra A, by the formula

(V) (*)=/(*•**)· (7.1)

The quantization SI will be called effective if there is no natural isomorphism be-

tween algebras .4 h and A^ for h^ 4 '?2 ^ ' e · n o n e which commutes with all r ).

A quantization is called irreducible if the algebras A^ have faithful irreducible

representations as bounded operators in a Hilbert space.

A quantization is called a w*-quantization if the algebras Ah are t^*-algebras.

In particular, in the case of an irreducible w -quantization the algebras A^ ate iso-

morphic to the complete algebras of bounded operators in a Hilbert space.

2. General considerations. Consider the set Sf of *-algebras A consisting of func-

tions on a homogeneous manifold 51 which admits a group G of motions and which has

the properties:

i) The algebra A is isomorphic to an algebra of bounded operators on a Hilbert

space.

ii) The translations (r f )(x) = f {g~lx) are isomorphisms of the algebras A.

iii) The identity of A is the function /0(x) = 1.

The algebras A^ and A2 em are called naturally isomorphic if there is an iso-

morphism between them which commutes with the automorphisms τ .

We denote the set of classes of pairwise naturally isomorphic algebras A by M.

Next, let Τ denote the set of all irreducible projective representations of the

group G, and let Τ denote the set of classes of unitarily equivalent projective repre-

sentations of G. We shall construct a monomorphic mapping Μ -» Τ.

Fix an algebra Α ε Μ. Let A be isomorphic to an algebra of bounded operators L

in the Hilbert space K, and let φ denote the isomorphism A -> L. Let σ = φτ φ~ι be

an automorphism of L. Since all the isomorphisms of L are inner, there is a bounded

operator 0 , defined up to a constant factor λ, which generates σ :

OJ = OJO?. (7.2)

In view of the fact that σ is an automorphism, in particular it takes Hermitian opera-

tors into Hermitian oprrators. It therefore follows that U differs by only a constant fac-

tor from a unitary op;rator. We can therefore consider 0 to be unitary with |λ| = 1.

The operators U form a unitary projective representation of the group G.

We shall show that the D are irreducible. Let / 0 e L commute with 0 and

fo(x) = 4>-l(fo). By (7.2),

/o UTx) = (Vo) W = Φ" 1 (<yeh) = φ"1 (0g%ug) = φ-1 (/„) = /0 (*).
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Because of the transitivity of the action of G on 1, it follows that fo(x) = / 0 = const.

Because of iii), this means that fQ = fQI, where / is the identity operator in K. Thus

to each algebra A e Μ we have assigned an irreducible projective representation U of

the group G.

Theorem 7.1. The algebras A. and A~ are naturally isomorphic if and only if the

^ 0^corresponding representations U^ and 0^ are unitarily equivalent.

Proof. We shall supply the index i = 1, 2 to objects which relate to the algebras

A. Suppose that the representations U^ are unitarily equivalent, and let V: K. ->K2

be an isomorphism of the Hilbert spaces which underlies this equivalence: VU^ ' =nce: VU^ '

By means of V we construct the isomorphisms Lj -» L 2 and j 2

l ] l (7.3)

The isomorphism / -» φ^) in (7.3) is natural:

Ψ (τ?7) = ψϊ1 (VO™ φχ (/) (Of)-1 V-') = φ"1 (OfV^ (f) V-1 (£/<!>η = τ«ψ (/).

Conversely, let the algebras Aj and A2 be naturally isomorphic, and let φ : A } -*A^

be the isomorphism. In this case χ = φ2φφ^ is an isomorphism between the algebras

L. and L-. Since the L. are complete operator algebras, an isomorphism V: Hj-»K2

exists which generates y : yf = V/V"1, / e i j . The uniqueness of ι/f implies the iden-

tity Ι/ΓΤ·(1) = Γ ( 2 ) ^ . It follows from this that χ σ ( 1 ) = σ ( 2 ) χ, where ff(i) are automorphisms
8 8 8 8 8

of the L^ of the form (7.2). In more detail,

vufj (Ofr1 v~i=Ofvfv-' {OfrK (7 ·4)
From this we have

V-i (Qf^VUff = f V-i {OfpVUf. (7.5)

Since (7.5) is correct for any feL., we have V^iD^^VU^ = λ/, so that 0 ( 1 ) =

W UK ' V. This equation implies the unitary equivalence of the projective represen-

tations U^' and 0i2\ The theorem is proved.

3. Uniqueness of Wick quantization. In this subsection we shall consider C as a

uniform space with a group of actions G. which is composed of parallel translations

and unitary transformations. We denote the first of these subgroups by Η and the sec-

ond by U. We adjoin to the algebras A h, 0 < /> < °°, which enter into the construction

of the Wick quantization, the algebra C of complex numbers. For convenience we shall

assume that C = A^. The quantization formed by means of the algebras A ,, 0 < h < oo,

will be called the extended Wick quantization.

Theorem 7.2. All irreducible, effective, maximal w -quantizations in C" which are

natural with respect to the group G. are naturally equivalent. One such quantization is

the extended Wick quantization. In this way all these quantizations are naturally equiv-

alent to the extended Wick quantization.
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Proof. To each algebra which arises in the extended Wick quantization we assign

an irreducible unitary projective representation 1/ of the group Gj, as was done in

subsection 2. By Theorem 7.1, to prove Theorem 7.2 it is sufficient to verify that the

representations C*\ up to unitary equivalence, exhaust all the irreducible projective

representations of C i . Every projective representation of Gj is a linear representation

of some central extension G. with respect to a center which is no more than one-dimen-

sional. By means of standard homological algebraic methods it is easily established

that: 1) each such extension is a semidirect product Uj = U χ Η, where U is a unitary

group and Η is an extension of the group of parallel translations of H; 2) if the group

Η is not commutative, then it is the Heisenberg-Weyl group.

The group Η acts transitively on Cn. Consequently the restriction of the represen-

tation U^ ' to Η is irreducible. Hence it immediately follows that if for some h. the

group Η is commutative, then the space Fh is one-dimensional, and consequently Ah

= C.( 2 2)

In the case where the group Η is the Heisenberg-Weyl group, each of its irreducible

representations, up to projective equivalence, can be uniquely completed to an irredu-

cible representation of the group Gj.( 2 ' ) Now recall that according to §4.3 the repre-

sentations 0*", 0 < h < oo, generated by the Wick quantization, up to equivalence, ex-

haust all the irreducible unitary representations of n. Theorem 7.2 is completely proved.

Remark. Let Β h be an algebra which is naturally isomorphic to the algebra A , ot

Wick symbols. Since the isomorphism φ : Β h -» A h is a linear correspondence, it must

have the form

Α(ζΓζ) = \Χ (ζ, z\ u, u) Β (α, ΰ) φ (u, u), (7.6)

where Β eBh and A = 0β e Ah.

The requirement that it be natural leads to the fact that

{g,g\g,g) K(z,z\u,u) for

Therefore we have

Formula (4.16), which relates the Wick and Weyl quantizations, is a particular case of

(7.6) and (7.7).

( ) It is natural to consider the unit representation f as 0 ° . Note that ( =1ϊη>ι^ί/

__ see 13J). This circumstance is the basis for the

notation A^ - C.

(23) Let Τ and /- be irreducible unitary representations of C, whose restrictions to ff

coincide: T~ = L- for ξ £ //. Since // is a normal divisor of G., we have

~ Τ T = T L ~whence L~ Τ Te = TCL~ Τ . Because of the irreducibility of Te it follows that Τ = \L , i.e.

Τ d L i l i l
8 g ? f S < !

Τ and L are projectively equivalent.
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4. Uniqueness of the Weyl quantization. Let G2 denote the group of all linear non-

homogeneous canonical transformations in R , i.e. the group of all linear nonhomo-

geneous transformations which leave the form ω = Σ dp. Λ dq. invariant. In the com-

plex coordinates z fc = (qk + ip^/yjl we have ω = (l/«) Σ dzk Λ dzk, so that the group

Gj considered above, which preserves the metric ds = Σ dz^dz^, is a subgroup of G2-

We adjoin to the algebras Ah, 0 < h < <χ>, which compose the Weyl quantization, the

algebra Aeo = C, and call the quantization constructed by means of the algebras A ̂ ,

0 < h < oo, the extended Weyl quantization.

Theorem 7.3. The extended Weyl quantization is the unique maximal, irreducible

and effective w*-quantization which is natural with respect to the group G2.( )

In order not to obscure simple ideas with complicated details, we shall restrict

ourselves to giving a heuristic proof of this theorem.

First step. By repeating in full detail the proof of Theorem 7.2, we see that the

extended Weyl quantization is, up to natural equivalence, the unique quantization having

the properties enumerated in the conditions of Theorem 7.3.

Second step. Let B, be the algebra of Weyl symbols in A^. Write the isomorphism

φ : Βh -»Ah in the form (7.6). The requirement that it be natural with respect to G 2

leads to the fact that K(gx\gy) = K(x\y), where χ = {ζ, F), y = (v, v~) and g e G2.

Thus K(x|y) is an invariant pair of points. However, in R there is no pair of

points invariant under G 2 . Consequently K(x|)/) = S(x - y), where δ(χ) is the Dirac

δ-function, and A = B.( 2 5 )

§8. Concluding remarks

1. Nonexistence of a universal quantization. Let § denote the group of all one-

to-one transformations of the space R2n which leave invariant the form ω = Σ dp.Adq.,

i.e. the total group, including nonlinear canonical transformations. A quantization

which is natural with respect to the group § will be called universal.

Theorem 8.1. There exists no irreducible universal w -quantization.

Before proving this theorem, we note that it provides a negative solution to the

question of the existence of a quantization which is natural with respect to the category

of all morphisms of classical mechanics.

Proof of Theorem 8.1. Let Q be a universal quantization. With no loss of gener-

ality we can assume that it is maximal. It must therefore coincide with the Weyl quanti-

zation. In fact, since the group of all linear canonical transformations is a subgroup of

*f5, the quantization Q satisfies the conditions of Theorem 7.3- Consequently the law

of multiplication in the algebras Ah is given by (4.13). Thus for a universal quantiza-

tion Ο it is necessary that

0 ) A similar result in another context is proved in L22J.
(2 5) The basis for a rigorous proof of Theorem 7.3 is the irreducibility of the representation

of C2 in L2(R2n) defined by the formula (r /)(*) = f(g~lx).
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Ρ (g*i. gXi, Sxs) = Ρ (*1. X*

where

F (Xv Χ* XS) = ^ ω,

and A(xj, * 2 , x,) is a triangle with vertices Xj, x 2 , * ι · Κ c ^ e transformation g e §

does not take straight lines into straight lines, i.e. is not affine, then (8.1) is impossi-

ble (since the sides of A(xj, * 2 , x,) are straight line segments).

The theorem is proved. Its proof can be summarized by saying that the group §

does not leave a triple of points invariant.

2. Remarks concerning terminology. Let £(3K) denote the Lie algebra with respect

to the Poisson bracket which consists of infinitely differentiable functions on a sym-

plectic manifold SR. The term "quantization" is sometimes applied to a linear represen-

tation of this algebra. To me this usage seems incorrect because of the fact that the

quantization used in physics cannot in any of its mathematical interpretations be con-

sidered as a linear representation of the algebra £(3ί). In this connection we shall prove

the following theorem.

Let £ 0 denote the Lie algebra with respect to the ordinary Poisson bracket which

consists of polynomials in two variables φ(ρ, q)·

Theorem 8.2. There exists no representation T, of the algebra £ Q in L 2 ( R M with

the following properties:

1) A Schwartz space S forms a part of the region of definition of all the T. and is

invariant with respect to all the Τ φ.

2) Tpf = ipf = i — - f , Τqf = iqf = ixf. (8.2)
ι dx

Proof. We shall break the proof up into several steps.

1) Let Τφ be a representation with the property (8.2). We shall show that the

operator Τ can be represented as a polynomial in the operators p and q whose

degree is no higher than m with respect to f> and no higher than η with respect to "q.

But first we note that from the equations

it follows that Τ n = f (§). Similarly, Τ = g (p). From the invariance of the space 5

under Τ η, Τ and the Fourier transformation it follows that the functions of a real

variable / (x) and gn(x) are infinitely differentiable

Next, if /(x) is an infinitely differentiable function, then

lP,F(q)] = r(q). [Λ /(?)]= - 7 f'(q) ' (8.3)

(in the first equation we have the Poisson bracket; in the second, the commutator).
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By applying (8.3) η + 1 times, we find that

where /^n+1)(x) = dn+1fn(x)/dxn+K Consequently /^(x) is a polynomial of degree no

higher than n. gj.x) has the same property. Now note that

p " > q n
p m J r l

Consequently

By making use of the commutation relation [p, 'q] = hl/i, we find from this, after an ob-

vious transformation, that the operator Τ m „ can be written as a polynomial in p and

q of degree no higher than m in p and η in q.

2) Let £ϊ ,(p, ^) denote the Weyl symbol(26) of the operator 7\. We shall show

that( 2 7 )

Λ> (ρ, q) = /Λφ (-L·, J-\ + c, c = c (φ) = const. (8.4)

We make use of the following general formula [15]· Let /j and f2 be any operators,

and let f^ip, q) and f2(p, q) be their Weyl symbols. In addition, let g = [/j, /2] and

g(p, q) be the Weyl symbol for g. Then

g (P. Φ-— ΙΛ. /al

' 2

where

U v Τύ ~ dp dq dq dp

is the Poisson bracket.

The Weyl symbol for a differential operator with polynomial coefficients is obtained

from the general formula (4.8), where φ(α, β) is a linear combination of S-functions and their

derivatives. For these operators one can provide an independent definition of the Weyl symbol

as follows. Let A and Β be any noncommuting operators. The symmetrized product (AmBn) of

these operators is the coefficient of (m + n)ci"βη/mx-n\ in the expansion

(aA + $Bf *= J> — am β" (AmB").
*"· m\n\

(For example, (4S) ·= l/2(AΒ + ΒΑ).) By using the relation [p, q] =/Λ'2, we can write every

operator which is a polynomial in ρ and q in symmetrized form: A = Σ α (ρ"^"). The Weyl

symbol for the operator A in terms of the coefficients is a : <J(p, <j) — Σ a _pmqn.
mn τηττ

( 2 7 ) It will also be shown that the constant c in (8.4) is equal to 0. However, this stronger

version of (8.4) is not needed here.
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For the following it is essential that if /j is a polynomial of no higher than second

degree and f2 is an arbitrary polynomial, then all the terms in (8.5) beyond the first are

equal to zero.

By the conditions of the theorem, formula (8.4) with the constant c = 0 is valid with

φ = p and φ = q. Let us find U 2 (p» ?)· &Y t n e above, U 2{p, q) - f^(q) j s a polyno-

mial of at most second degree. Applying (8.5), we find

2iq = A[p.q.} (p, q) = ft[p,/2(<7)]=/i/i (?).

Hence f^q) = iq2fh + Cj. Similarly, g 2 ^ = ip

Next, we have p? = Ktp2» q2]· Therefore 2 ·

^ w = — Jliwfaq) = — — [g2 (p), /,(?)] = -̂ -p(7.

Thus (8.4) is valid if φ is a polynomial of no higher than second degree.

We now turn to the general case. Let φ be a polynomial of at most second degree

and let / be any polynomial. By (8.5),

^ ( P < 7 ) t ^

By setting φ = p and φ = q in (8.6), we obtain

, , Αν · (8.7)
SS d d

Let %f{p, q) = &ft,ph, qh). It follows from (8.7) that

@df=-r-L, S3df = " t - · (8.8)
Tq <?? Tp dp

Let L denote the linear operator / -»iB .. As was noted above, d., and consequently

also ίο,, is a polynomial whose degree in p and q does not exceed the degree of /.

Let £ denote the space of polynomials of degree at most η in p and q. The space

£ is invariant with respect to L; and, in addition, it follows from (8.8) that L com-

mutes with d/dp and d/dq. Therefore

a«=const. (S.9)

(The series in the first equation of (8.9) is a formal series. It is meaningful only inso-

far as L can be only applied to polynomials.)

We make use of (8.6) for the case where φ is a homogeneous second degree poly-

nomial:

®[Φ.Π (P. ? ) = Α ν , η (ΡΛ, qh) =— [Av, Λ,] (ph, qh) = [φ, J,{[ (ph, qh)

= 19, »/] (Ρ, q).

Consequently L commutes with the operation of taking the Poisson bracket with φ,

i.e. with the operators
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pl·' gT' pT> 1-Γ' ( 8 · 1 0 )

aq dp dp dq

Note that commutation with the operators (8.10 ) does not change the order of a homo-

geneous differential operator with constant coefficients. Consequently each operator

Ln commutes with the operators (8.10). In particular,

dpkdql

Hence a ^ = 0 for k 4 0, / 4 0, i.e. L n = 0 for η 4 0. Thus L = LQ, %Ap, q) =

LJ(p> q) and 2,(p, q) = LJ{p/h, q/h). From the condition &Λρ, q) = ip we find that

L o = zA. This proves (8.4).

3) According to (8.4),

= 16 JPw = 16 —p'if + c,.
" " A» 3

Applying (8.5), we find

i Λ

Λ5 ' ί
(8.11)

V l 6
\ 2 / 31 dp» df /,

Equation (8.11) is inconsistent. Therefore the theorem is proved.

Appendix

1. The asymptotic behavior of some integrals. Let <£(/, Γ) be 4 times and u(t, Γ)

3 times continuously differentiable in the region D C C defined by the conditions

|i;.| < e. In addition, suppose that the function φ(ΐ, Γ) has a local maximum at t = 0

and that det \\d2<f>/dt.dTk\\ 4 0.

Let L( be the operator L( = X td/dz^ and let L be the operator Σ Td/dz'.. Let

Λ be the function

* = 2 Ί. ··· V7. ···'/,&, /,// /,('.o.

where κ(- _ ...%ip\j,l ... ,/ ('> ' ) is a function continuous in the closure of D. From this

point on it will be implicitly assumed for simplicity that
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Finally, let

g ( ) | , Yif .

Consider the integral

Ctk (μ) = bTn J u (t, 1) g (t, Γ) e~ "S"W·"° dial,

where

Q (t, 1) = Ζ,,Ζ,φ + 4r Uftt + LtLt) φ + 4 " *·£* Φ + 4 " ^'Γ< ̂  Z 'L '> Φ (A J>
2 4 b

+ /?(/,7).
Lemma 1. For e sufficiently small the integral $^(u) has as h -» 0 iAe asymptotic

behavior

where Δ is the Laplace-Beltrami operator for the metric

Proof. Let

— (VSLt + ΠΜ φ + 4 " ί-ϊΏφ + 4 " (L'31' + Ο/.ί)φ+ /?. (A.2)
2 4 ο

and expand φ in powers of h :

= - -γ[γ (LlZ, + VtLt) φ + -L L?E? φ

1 - _ τ <

ο J 4 n a

Corresponding to (A.2) and (A.3) the integral i^(") can be represented in the form 3fc(«)

= i°h(u) + Vh(u), where

\(l +%)ge'^Lll'<f dtdt, (A.4)

4 [ R8 ~LiLfi'dtdl. ( A · 5)

The standard saddle-point methods show that ifc(u) = o(A). Therefore it is sufficient for

our purposes to limit ourselves to considering the integral $h(u)·
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In the neighborhood of the point / = Γ = 0 we have

u (t, t) g (t, 1) = «(0, 0) g (0, 0) + Lt (ug) + Lt (ug) + LiLt {ug) + Τ (t, t), (A.6)

where

T(t,i)= 2 *,,... t l p r h . . . r,9ft ,„„·, ,,

and Τ, ,- I,· .· is a continuous function.

Corresponding to (A.6), the integral $°h(u) breaks up into the sum of two terms which

it is convenient to discuss separately. We begin with the first:

j " ( u ) = u ( 0 , 0 ) g ( 0 , 0 ) — \(1 + ψ ο ) β Α <#di. (Α.7)

We insert φΰ from (A.3) into (A.7) and investigate the resulting integrals.

dtdl = f LiL*ye h ' ' d/d7 = 0. (A. 8)

Indeed, by making the change of variables t -» θί, Τ -» 0/, |0 | = 1, we find that the first

of these integrals is multiplied by θ and the second by β- But since, on the other hand,

they do not depend on Θ, they both must vanish. In the same way we establish the

equation

^ < Γ / < ' d t d l =

2) Consider the following formal identity

where e x p [ 4 * ' L ( L ^ + μLt + y.L ] denotes the operator which acts on a function

φ(ζ, Έ) by the formula

Τ Υ

By completing the square in the exponent on the right-hand side of (A.9) and integrating

"with respect to / and Γ, we find that

a_ . - CA.iO)

* φ (ζ, ϊ



1158

where

F. ABEREZIN

d π d ~

and Φ= ||<^J| is the matrix inverse to ||d φ/dz d

3) Note that

L*Lt(f · Ζ,,Γ'φ

and for simplicity introduce the notation

*-" ovi

ι ) — ν F, a

(A.ll)

d

By a transformation similar to the preceding one we get

\ L? (Zi'V (Lff (Ιί)φ (ν, ν) φ (ay, w) e~ dtdt

Χ φ (ο, t>) φ (ay, w).

We extend the transformation of the integrals (A.10) and (A.12). We write for brevity

dzfik

and

Using these abbreviations we find that the integral (A.10) for ζ = ζ - 0 is equal to

Similarly, (A.12) with ν = ν = w = w = 0 is equal to

2ft jf
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Thus we find the following final expression for (A.7):

(d<fil dVls , o

dVll df»ts\\]

,f^-—+2 ——jj j .+2

We turn our attention to the second integral:

ί Μ («) = — f Lt (ug) (1 + ψ0) e-Ltlt<tdtdt. (A.14)
Λ

First of all we find that

J L, (atf) e~ A ' ' Φ Π ΛΛ = J U (ug) (L

= j L, (ug) (LiLtp) e~~*Lt ^ J ] dtdl = 0.

Equation (A.15) is established by the same calculation as (A.8). Thus

3 ft

ot (u) = — f L/ («i) (IjL/φ) e~ Τ L'Ζ'Φd^7. (A. 16)
οΐ,η+i J

As above, we introduce operators L^\ L^\ L^ and L^2' as in (A.11) and consider

the auxiliary integral, which differs from (A. 16) by the fact that the factor before the

exponential has been replaced by

By using the argument by which we calculated the integral ί , we find that

if"1 d*

ίΓ(α) — i ^ ^ "

x e \ dv dwj \ * °W'u(v,O)g(V,v)(f(w, W)

Hence

V, w)

DMkO

_χ~ ~ fte J _ i u (z " - ( Α · 1 7 )

The integral

2=2=0

is calculated similarly. It is equal to

= J - r z., ( B i ) ( 14- ψ ο ) β ϊ L / Lt<fdtdi.
hn J
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I ft («) = — hg'1 ψίΜψ/ι —— ~r~ (ug)

Turning to the integral

(u) = -L J (Ltltug)(l 4- %) e~^h Lt<fdtdt.

the usual considerations show that

Therefore

-~ j (LtI(ug) % e~ A" h Lt<9dtdt = ο (h).

By using the method used above, we find from this that

Lastly, by an obvious calculation,

Fzk

e~ $ Lt Zi"

Finally we obtain

31" (u) •= hTn j Te~ $ Lt Zi" f j dtit = ο (h).

= u(0, 0) + hUifr 0) + o(h),

where

{ 1

T

d ez) *

dZj d2. d-2.

-̂) + Σ^-ί-Σ^" —

(A.I 8)

(A.19)

(A.2

(A.21)

*~ dzidzk

We shall transform this result. For this purpose we use the easily proven identities
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where χ denotes either of the variables za or 5^. By (A.24) we find that

whence we have the vanishing of the coefficient of du/dz.. The vanishing of the coef-

ficient of du/dz. is shown similarly.

Let us turn to the coefficient of u. It follows from (A.24) that

By using this identity, and also the fact that θφ^/θζ'. = 3φι-/θζ~{ (which is a conse-

quence of the definition φ^ = 32φ/3ζt dz\), we see that the coefficient of u is equal to

Next, combining (A.23) and (A.24), we find

-5^ + 2
dz,dzk *

Hence we have

'"Λ
Now note that

Thus the coefficient of κ is equal to

3 r,-
2 ^ 9zfizk

It will be shown below (see Lemma 3) that the Laplace-Beltrami operator for the metric
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<f>ik = θ2φ/θζ{dz~k when applied to functions is equal to

Therefore our result can be reformulated:

3% = Δα-\ uA\ng.

The lemma is proved

Let u(t, T) be a continuously differentiable function, let φ = Σ txfr.jT,, i, k = 1,

· · · , « , be a positive definite quadratic form, and let R be a function of the form

'pi/. ft CO»

where the R,· ... ,- j;· ... · are continuous functions. V/e denote by git, T^ a continu-

ously differentiable function such that g(0, 0) = det |l^>t/fe|j·

Consider the integral

-i- f uit (A.25)

Lemma 2. For sufficiently small e

\ik{u)-u(0,0)\<cYhmax(\2j- ^ - Π + «(0,0) . o(l), (A.26)

where c and o(l^ do not depend on u.

Proof. In the integral (A.25) make the change of variable t •* t\Jh, t ->~t\J h. We shall

show that following this we can take the limit under the integral sign. We decompose φ

into the sum φ = φΰ + φ, where φϋ and φ are positive definite quadratic forms, with

φ' > \R\ for | i . | < £ (it is this condition which determines e). Thus

g-fft*» ^ - Τ * · a n d e-*+wVT.7yT)<e-w/.0i

Consequently the integral ί^(«), after the substitution t -» ty/h, t -» iV'7 ' is boundedly

convergent, so that we can take the limit under the integral sign, whereupon we find

that
Hm J * ( ( * ) = 11(0,0).
ft—ο

In particular, if " = const, it follows that $h(u) — u = u · o ( l \ where oil) does not de-

pend on u.

Now let uiO, 0) = 0 and uit, Τ) = Σ tu. + lu1. , where M(. and ft. are bounded func-

tions. A repetition of the above argument shows that
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X g ((Vh, tyh) β~φ> JT max ( | U/ (/, F) |, | Z, (/, F)|).
|'il<6

Now a ; and u. can be chosen so that

Ι ;ζ c max Ι ΰί I < c max

Let " 0 ( i , / ) = K(0, 0) = const. By combining this result with the previous one, we find

that

so that

I 5A(«) — a (0,0) | < cYh max ( —
du_

dl
] + α (0 ,0) . 0(1).

The lemma is proved.

2. The Laplace-Beltrami operator on a Kahler manifold. Let a metric

ds2 = (A.27)

be given in some region D C C". A necessary and sufficient condition for (A.27) to be

a Kahler metric, and also for the local existence of a function ψ such that ι//.. =

d φ/dz -dz,, is that the identities

(A.28)

be satisfied. We have the following general assertion.

Lemma 3. The Laplace-Beltrami operator for the metric (A.27) when applied to

functions^·8) has the form

Δ 2 *

where \4> it^ is the inverse of the matrix | | 0 i ; t | | .

Proof. By our general formula,

— ι d ~ d . —i d — d

(28) But not to tensor fields!
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By (A.23) and (A.24)

so that, according to (A.28), 3φ5^/θζ. = βψsi/dz^. In the same way one can show that

the coefficient of du/dz'. also vanishes.
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