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ABSTRACT

We consider the difference operator HW = U + U−1 + W, where U is the self-adjoint Weyl operator U = e−bP, b > 0, and the potential W is
of the form W(x) = x2N + r(x) with N ∈ N and ∣r(x)∣ ≤ C(1 + ∣x∣2N−ε) for some 0 < ε ≤ 2N − 1. This class of potentials W includes polynomials
of even degree with leading coefficient 1, which have recently been considered in Grassi and Mariño [SIGMA Symmetry Integrability Geom.
Methods Appl. 15, 025 (2019)]. In this paper, we show that such operators have discrete spectrum and obtain Weyl-type asymptotics for the
Riesz means and for the number of eigenvalues. This is an extension of the result previously obtained in Laptev et al. [Geom. Funct. Anal. 26,
288–305 (2016)] for W = V + ζV−1, where V = e2πbx, ζ > 0.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093401

I. INTRODUCTION
The mirror manifolds of toric Calabi–Yau manifolds can be described by algebraic curves and recently2 it was observed that quantization

of these curves leads to functional-difference operators. For local del Pezzo Calabi–Yau threefolds, the simplest example yields the opera-
tor HCY = U + U−1 + V + ζV−1 on L2(R).5 Here, U and V denote the self-adjoint Weyl operators U = e−bP and V = e2πbQ for b > 0, where
(Pψ)(x) = iψ′(x) and (Qψ)(x) = xψ(x) are the quantum mechanical momentum and position operators on L2(R).

In a recent paper,8 the authors proved that for ζ > 0, the operator HCY has a self-adjoint extension with purely discrete spectrum con-
sisting of finite multiplicity eigenvalues tending to infinity. In addition, Weyl-type asymptotics for the Riesz means and for the number of
eigenvalues were established. These results prove that H−1

CY is trace-class, which confirms part of a conjecture in Ref. 2. In this short note, we
consider the difference operator

HW = U + U−1 + W = H0 + W,

where W ∈ C(R) is a continuous, real-valued potential satisfying lim∣x∣→∞W(x) = ∞ that is of the form W(x) = x2N + r(x) with N ∈ N and
∣r(x)∣ ≤ C(1 + ∣x∣2N−ε) for some 0 < ε ≤ 2N − 1. This class of potentials includes polynomials of even degree with leading coefficient 1, which
have recently been considered in Ref. 3. We will prove that such an operator admits a self-adjoint extension with discrete eigenvalues λj of finite
multiplicity converging to infinity. Subsequently we will prove Weyl-type asymptotics for the Riesz mean ∑j≥1(λ − λj)+ and for the number
of eigenvalues below a given value λ as λ→∞ (note that the Riesz means for the negative spectrum of Schrödinger operators with decaying
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potentials are associated with Lieb–Thirring inequalities10). These results prove that, if HW is invertible, the inverse H−1
W is trace-class, as

claimed in Ref. 3. Our proof method also applies to the previously considered potential V + ζV−1.

II. MAIN RESULTS
Since W ∈ C(R) with lim∣x∣→∞W(x) = ∞, we can conclude that W is bounded from below. As a consequence, the symmetric operator

H = H0 + W is bounded from below on the common domain of H0 and W. We can thus consider its self-adjoint Friedrichs extension, which
we continue to denote by HW . The following proposition was proved in Ref. 8.

Proposition 1 (Ref. 8, Proposition 2.1). Let W(x) be a continuous, real-valued, bounded below function such that lim∣x∣ → ∞W(x) = +∞.
Then, the operator HW = H0+W has purely discrete spectrum consisting of finite multiplicity eigenvalues tending to +∞.

In Ref. 8, we considered the potential W(x) = 2 cosh(2πbx) and proved the following result.

Theorem 2 (Ref. 8, Theorem 2.2). For the eigenvalues λj of H0 + 2 cosh(2πbx), it holds that

lim
λ→∞

∑j≥1(λ − λj)+

∬R2 (λ − 2 cosh(2πbk) − 2 cosh(2πbx))+ dk dx
= lim
λ→∞

∑j≥1(λ − λj)+

1
(πb)2 λ log2 λ

= 1

with a lower order term of the form O(λ log λ).

Here, a+ = (a + ∣a∣)/2 denotes the positive part of a real variable. We also obtained the asymptotics for the number of eigenvalues smaller
than λ.

Corollary 3 (Ref. 8, Corollary 2.3). For the number of eigenvalues N(λ) = #{j ≥ 1 : λj < λ} of H0 + 2 cosh(2πbx) smaller than λ it
holds that

lim
λ→∞

N(λ)

∬λ−2 cosh(2πk)−W(x)≥0 dk dx
= lim
λ→∞

N(λ)
1

(πb)2 log2 λ
= 1 .

In this short note, we will prove the following analogous result for potentials growing polynomially.

Theorem 4 Let N ∈ N and let r ∈ C(R) be a function such that ∣r(x)∣ ≤ C(1 + ∣x∣2N − ε) for some C > 0, 2N − 1 ≥ ε > 0 and all x ∈ R. For the
eigenvalues λj of H0 + x2N + r(x), it holds that

lim
λ→∞

∑j≥1(λ − λj)+

∬R2 (λ − 2 cosh(2πbk) − x2N − r(x))+ dk dx

= lim
λ→∞

∑j≥1(λ − λj)+

∬R2 (λ − 2 cosh(2πbk) − x2N )+ dk dx
= lim
λ→∞

∑j≥1(λ − λj)+

2
πb

2N
2N+1λ

2N+1
2N log λ

= 1

with a lower order term of the form O(λ
2N+1

2N ).

Corollary 5. Let N ∈ N and let r ∈ C(R) be a function such that ∣r(x)∣ ≤ C(1 + ∣x∣2N − ε) for some C > 0, 2N − 1 ≥ ε > 0 and all x ∈ R. For the
number of eigenvalues N(λ) = #{j ≥ 1 : λj < λ} of H0 + x2N + r(x) smaller than λ, it holds that

lim
λ→∞

N(λ)

∬λ−2 cosh(2πbk)−x2N−r(x)≥0 dk dx

= lim
λ→∞

N(λ)

∬λ−2 cosh(2πbk)−x2N≥0 dk dx
= lim
λ→∞

N(λ)
2
πbλ

1
2N log λ

= 1.

Remark 6. Let H0 + x2N + rN (x) satisfy the assumptions of Theorem 4. If the operator is invertible, as is, for example, the case if
x2N + rN (x) ≥ c > −2, then we can repeat the argument of Ref. 8 to prove that (H0 + x2N + r(x))−1 is trace-class. Assuming for simplicity
that λ1 > 0, this follows from

∑
j≥1

1
∣λj∣
= ∫

∞

λ1

1
λ

dN(λ) =
N(λ)
λ
∣

∞

λ1

+ ∫
∞

λ1

N(λ)
λ2 dλ < ∞.
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Remark 7. The total symbol of the operator H0 + W is given by

σ(x, k) = 2 cosh(2πbk) + W(x).

Theorems 2 and 4 as well as Corollaries 3 and 5 are Weyl-type results that link the asymptotic behavior of quantum mechanical expressions
to classical phase space integrals.

In Sec. III, we will give a Proofs of Theorems 2 and 4. It follows our arguments in Ref. 8, where the special case of W(x) = 2cosh(2πbx)
was considered. In Sec. IV we will prove Corollaries 3 and 5. Before we proceed with the proofs, we compute the explicit asymptotics of the
phase space integrals. This will prove equality between the limits in the results above.

A. Leading order terms for hyperbolic cosine potential
In Ref. 8, we computed that for any C, D > 0,

∬R2
(λ − 2D cosh(2πbk) − 2C cosh(2πbx))+ dk dx =

λ log2 λ
(πb)2 + O(λ log λ) (1)

as λ→∞ and similarly

∬
λ−2D cosh(2πbk)−2C cosh(2πbx)≥0

dk dx =
log2 λ
(πb)2 + o(log2 λ) (2)

as λ→∞.

B. Leading order terms for polynomial potential
Let N ∈ N. By the min-max principle, it is sufficient to consider r(x) = C(1 + ∣x∣2N−ε) with C ∈ R and prove that the asymptotic behavior

of the phase space integrals is independent of C as λ→∞. For later reference, we will also include an additional multiplication factor D > 0
in front of the term 2 cosh(2πbk) and prove that the asymptotic behaviour does not depend on D.

Using the symmetry of the integrand as well as 2 cosh(2πbk) ≥ e2πbk for k > 0 together with the substitution u = De2πbk, we can compute
that

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≤ 4∫
∞

0
∫

∞

0
(λ −De2πbk

− x2N
− C(1 + x2N−ε))+ dk dx

=
2
πb∫

∞

D
∫

∞

0

(λ − u − x2N
− C(1 + x2N−ε))+

u
dx du.

Substituting v1λ = u and v2λ1/(2N)
= x, we obtain

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≤
2λ

2N+1
2N

πb ∫

∞

D/λ
∫

∞

0

(1 − v1 − v
2N
2 − Cλ−1

− Cv2N−ε
2 λ−

ε
2N )+

v1
dv2 dv1.

Note that the domain of integration can be restricted to v2 ≥ 0 and 1 − v1 − v
2N
2 − Cλ−1

− Cv2N−ε
2 λ−

ε
2N ≥ 0. We now use that (a − b)+ ≤ a+ + ∣b∣

for any a, b ∈ R to split the integral into two parts

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≤
2λ

2N+1
2N

πb

⎛
⎜
⎝
∫

1

D/λ
∫

∞

0

(1 − v1 − v
2N
2 )+

v1
dv2 dv1

+ ∣C∣∫
∞

D/λ
∫
v2≥0,1−v1−v

2N
2 −Cλ−1−Cλ−

ε
2N v2N−ε

2 ≥0

λ−1 + v2N−ε
2 λ−

ε
2N

v1
dv2 dv1

⎞
⎟
⎠

.
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The first integral yields the correct leading order term. To prove this, we first compute the inner integral explicitly

2λ
2N+1

2N

πb ∫

1

D/λ
∫

∞

0

(1 − v1 − v
2N
2 )+

v1
dv2 dv1 =

2
πb

2N
2N + 1

λ
2N+1

2N ∫

1

D/λ

(1 − v1)
2N+1

2N

v1
dv1.

Using partial integration, we then observe that

∫

1

D/λ

(1 − v1)
2N+1

2N

v1
dv1 = log(

λ
D
)(1 −

D
λ
)

2N+1
2N

+
2N + 1

2N ∫

1

D/λ
(1 − v1)

1
2N log v1 dv1.

It remains to note that

∣∫

1

D/λ
(1 − v1)

1
2N log v1 dv1∣ = ∫

1

D/λ
(1 − v1)

1
2N log(

1
v1
) dv1 ≤ (1 −

D
λ
)

1
2N
(1 −

D
λ
−

D
λ

log(
λ
D
))

to establish the asymptotic behavior

2λ
2N+1

2N

πb ∫

1

D/λ
∫

∞

0

(1 − v1 − v
2N
2 )+

v1
dv2 dv1 =

2
πb

2N
2N + 1

λ
2N+1

2N log λ + O(λ
2N+1

2N )

as λ→∞. For the second integral, we use that for sufficiently large λ,

1 − v1 − v
2N
2 − Cλ−1

− Cv2N−ε
2 λ−

ε
2N ≤ 2 − v1 −

1
2
v2N

2

and that

∫

∞

D/λ
∫
v2≥0,2−v1−

1
2 v

2N
2 ≥0

λ−1 + v2N−ε
2 λ−

ε
2N

v1
dv2 dv1 ≤ λ−

ε
2N ∫

2

D/λ
∫

21/N

0

5
v1

dv2 dv1

≤ 10λ−
ε

2N (log λ − log D + log 2)

since λ−1+ ε
2N + v2N−ε

2 ≤ 5 on the domain of integration for sufficiently large λ. Putting everything together and using that
limλ→∞(λ

2N+1−ε
2N log λ)/λ

2N+1
2N = 0 since ε > 0, we obtain that

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≤
2
πb

2N
2N + 1

λ
2N+1

2N log λ + O(λ
2N+1

2N )

as λ→∞. Similarly, we can use the fact that 2 cosh(2πbk) ≤ 2e2πbk for k > 0 together with the substitution u = 2De2πbk to obtain the lower
bound

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≥ 4∫
∞

0
∫

∞

0
(λ − 2De2πbk

− x2N
− C(1 + x2N−ε))+ dk dx

=
2
πb∫

∞

2D
∫

∞

0

(λ − u − x2N
− C(1 + x2N−ε))+

u
dx du,

and by similar arguments as above

∬R2
(λ − 2D cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

≥
2
πb

2N
2N + 1

λ
2N+1

2N log λ + O(λ
2N+1

2N )
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as λ→∞. Together with the upper bound, we obtain that

∬R2
(λ − 2 cosh(2πbk) − x2N

− C(1 + ∣x∣2N−ε))+ dk dx

=
2
πb

2N
2N + 1

λ
2N+1

2N log λ + O(λ
2N+1

2N ). (3)

Similarly, we can show that as λ→∞,

∬
λ−2D cosh(2πbk)−x2N−C(1+∣x∣2N−ε)≥0

dk dx =
2
πb
λ

1
2N log λ + o(λ

1
2N log λ).

III. THE PROOF OF THEOREMS 2 AND 4
To establish upper and lower bounds on the sum of the eigenvalues, we will employ ideas from Ref. 6, with the Fourier transform replaced

by the coherent state transform, which we will introduce below.
Let gβ be the Gaussian function gβ(x) = (β/π)1/4e−

β
2 x2

with some β > 0, fixed for the moment. Clearly gβ satisfies ∥gβ∥2
= 1 in L2(R). For

ψ ∈ L2(R), the classical coherent state transform is given by

ψ̃(k, y) = ∫R
e−2πikxgβ(x − y)ψ(x) dx = ⟨ψ, ek,y⟩, (4)

where ek,y = e2πik gβ(x − y). Following the computations in Ref. 8, we can show that

∬R2
dβ2 cosh(2πbk)∣ψ̃(k, y)∣2 dk dy = ∫R

(H0ψ)(x)ψ(x) dx,

where dβ = e−βb2
/4
< 1. A standard computation furthermore shows that

∫R2
W(y)∣ψ̃(k, y)∣2 dk dy = ∫R

(W ∗ g2
β)(x)∣ψ(x)∣2 dx.

For convenience, we set Wβ ∶=W ∗ g2
β . Note that Wβ ∈ C(R) with infx∈RWβ(x) ≥ infx∈RW(x) since gβ is non-negative and ∥gβ∥2

= 1. Further-
more, lim∣x∣→∞Wβ(x) = ∞ and thus the statements above on the self-adjoint extension and discreteness of the spectrum also hold for the
operator H0 + Wβ.

We now establish results for the special case of a hyperbolic cosine potential as well as monomial potentials. In Ref. 8, Sec. 2.1, we proved
the following.

Proposition 8. Let b > 0. Then,

(2 cosh(2πbx) ∗ g2
β)(x) =

1
cβ

2 cosh(2πbx),

where cβ = e−(πb)2
/β. Conversely,

2 cosh(2πbx) = (cβ2 cosh(2πbx) ∗ g2
β)(x).

An analogous result holds for monomials.

Proposition 9. Let N ∈ N. Then,
(x2N
∗ g2

β)(x) = x2N + pN (x),

where pN (x) = ∑N−1
j=0

1
βN−j aN,jx2j is an even polynomial of order 2N − 2 with coefficients aN,j ∈ R+ independent of β. Conversely,

x2N
= ((x2N + qN ) ∗ g2

β)(x),

where qN (x) = ∑N−1
j=0

1
βN−j bN,jx2j is an even polynomial of order 2N − 2 with coefficients bN, j independent of β.

Furthermore, for 0 < ε ≤ 2N − 1, it holds that

(∣x∣2N−ε
∗ g2

β)(x) ≤ cε,N (1 + ∣x∣2N−ε)
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with some constant cε, N ≥ 0 depending on β and conversely

∣x∣2N−ε
≤ (∣x∣2N−ε

∗ g2
β)(x).

Proof. Writing

∫R
(x − y)2N gβ(y)2 dy =

2N

∑
k=0
(

2N
k )xk

∫R
y2N−kgβ(y)2 dy

and noting that the integral vanishes for odd k, we compute that

∫R
(x − y)2N gβ(y)2 dy =

N

∑
j=0
(

2N
2j )x2j

∫R
y2N−2jgβ(y)2 dy = x2N +

(2N)!
22NβN

N−1

∑
j=0

4jβj

(N − j)!(2j)!
x2j,

which yields the first result. The second statement then follows by induction from the observations that by the first identity

x2
= (x2

∗ g2
β)(x) −

1
2β
= ((x2

− 1/(2β)) ∗ g2
β)(x)

as well as

x2N
= (x2N

∗ g2
β)(x) − pN (x) = (x2N

∗ g2
β)(x) −

N−1

∑
j=0

1
βN−j aN,jx2j.

Since g2
β ≥ 0 and

∣x − y∣2N−ε
≤ max (2∣x∣, 2∣y∣)2N−ε

≤ 22N−ε(∣x∣2N−ε + ∣y∣2N−ε),

we obtain the bound

∫R
∣x − y∣2N−εgβ(y)2 dx ≤ 22N−ε

(∣x∣2N−ε + ∫R
∣y∣2N−εgβ(y)2 dy)

which yields the claimed inequality. Finally, since x ↦ ∣x∣2N−ε is a convex function for 0 < ε ≤ 2N − 1 and ∥gβ∥2
= 1, we can apply Jensen’s

inequality to obtain

∫R
∣x − y∣2N−εgβ(y)2 dy ≥ ∣∫R

(x − y)gβ(y)2 dy∣
2N−ε
= ∣x∣2N−ε.

A. Lower bound on the Riesz mean
In Ref. 6, a lower bound on the eigenvalues of a general class of operators on sets of finite measure with Neumann boundary condition

was proved by means of an argument that relied on the Fourier transform. Here, we use a similar approach, with the coherent state transform
replacing the Fourier transform.

Let ψW
j denote the orthonormal eigenfunctions corresponding to the eigenvalues λW

j of the operator H0 + W satisfying the assumptions
in Proposition 1. They form a complete set of the Hilbert space L2(R), and by Plancherel’s theorem, it holds that

∬R2
∣ψ̃Wβ

j (k, y)∣2 dk dy = ∥ψWβ
j ∥

2

2
= 1. (5)

We can thus write

∑
j≥1

(λ − λW
j )+ = ∑

j≥1
(λ − λW

j )+∬R2
∣ψ̃j(k, y)∣2 dk dy,

and inserting the definition (4)

∑
j≥1

(λ − λW
j )+ =∬R2

∑
j≥1

(λ − λW
j )+⟨ψW

j , ek,y⟩⟨ψW
j , ek,y⟩ dk dy

=∬R2
∑
j≥1

(λ − λW
j )+⟨⟨ek,y,ψW

j ⟩ψ
W
j , ek,y⟩dk dy.
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We can replace the sum by an integral with respect to the projection-valued measure dEW
μ for H0 + W on R as

∑
j≥1

(λ − λW
j )+ =∬R2

∫R
(λ − μ)+⟨dEW

μ ek,y, ek,y⟩ dk dy.

By the spectral theorem,

∫R
⟨dEW

μ ek,y, ek,y⟩ = ⟨ek,y, ek,y⟩ = ∥g∥
2
2 = 1,

and thus we can apply Jensen’s inequality with the convex function x ↦ (λ − x)+ to obtain the lower bound

∑
j≥1

(λ − λW
j )+ ≥∬R2

(λ − ∫R
μ⟨dEW

μ ek,y, ek,y⟩)
+

dk dy. (6)

Finally, by the spectral theorem, the inner integral is

∫R
μ⟨dEW

μ ek,y, ek,y⟩ = ⟨H0ek,y, ek,y⟩ + ⟨Wek,y, ek,y⟩.

Following Ref. 8, we know

⟨H0ek,y, ek,y⟩ =
1
dβ

2 cosh(2πbk)

and we compute

⟨Wek,y, ek,y⟩ = ∫R
W(x)gβ(x − y)2 dx =Wβ(y).

Combining these two results with (6), we arrive at

∑
j≥1

(λ − λW
j )+ ≥∬R2

(λ −
1
dβ

2 cosh(2πbk) −Wβ(y))
+

dk dy.

B. Lower bound for hyperbolic cosine potential
Let λj be the eigenvalues of H0 + 2 cosh(2πbx). In this special case, which was considered in Ref. 8, one obtains from the computations

above with W(x) = 2 cosh(2πbx) and from Proposition 8 that

∑
j≥1

(λ − λj)+ ≥∬R2
(λ −

1
dβ

2 cosh(2πbk) −
1
cβ

2 cosh(2πby))
+

dk dy.

By (2), the asymptotic behavior of this lower bound does not depend on cβ, dβ and is of the desired form.

C. Lower bound for polynomial potential
Let λj be the eigenvalues of H0 + x2N + r(x). By the min-max principle, we obtain a lower bound on the Riesz mean if we replace x2N + r(x)

by the larger potential x2N + C(1 + ∣x∣2N−ε). Using the computations above with W(x) = x2N + C(1 + ∣x∣2N−ε) together with Proposition 9 and
the fact that for some 0 < δ ≤ ε both ∣pN (y)∣/(1 + ∣y∣2N−δ) and (1 + ∣y∣2N−ε)/(1 + ∣y∣2N−δ) are bounded yields

∑
j≥1

(λ − λj)+ ≥∬R2
(λ −

1
dβ

2 cosh(2πbk) − y2N
− CN (1 + ∣y∣2N−δ))

+
dk dy

for some constant CN depending on β. By (3) the asymptotic behavior of this lower bound does not depend on CN , dβ and is of the desired
form.
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D. Upper bound on the Riesz mean
Again, we will use a similar approach to Ref. 6, where an upper bound on the eigenvalues of a general class of operators on sets of finite

measure with Dirichlet boundary condition was proved.
Let W be a potential that satisfies the assumptions of Proposition 1. Consider the eigenvalues λWβ

j of H0 + Wβ where Wβ =W ∗ g2
β and let

ψWβ
j be the corresponding orthonormal eigenfunctions. Using the coherent state representations established at the beginning of this section,

we can write

∑
j≥1

(λ − λWβ
j )+ = ∑

j≥1
(λ − ⟨(H0 + Wβ)ψWβ

j ,ψWβ
j ⟩)+

= ∑
j≥1
(λ −∬R2

(dβ2 cosh(2πbk) + W(y))∣ψ̃Wβ
j (k, y)∣2 dk dy)

+
.

By (5), we can apply Jensen’s inequality with the convex function x ↦ (λ − x)+ to obtain

∑
j≥1

(λ − λWβ
j )+ ≤∬R2

(λ − dβ2 cosh(2πbk) −W(y))
+∑

j≥1
∣ψ̃Wβ

j (k, y)∣2 dk dy.

The eigenfunctions ψWβ
j form an orthonormal basis in L2(R) and thus for all k, y ∈ R,

∑
j≥1
∣ψ̃Wβ

j (k, y)∣2 = ∑
j≥1
∣⟨ek,y,ψWβ

j ⟩∣
2
= ∥ek,y∥

2
= 1,

which yields the upper bound

∑
j≥1

(λ − λWβ
j )+ ≤∬R2

(λ − dβ2 cosh(2πbk) −W(y))
+

dk dy.

E. Upper bound for hyperbolic cosine potential
Let λj be the eigenvalues of H0 + 2 cosh(2πbx). In this special case, which was considered in Ref. 8, we can choose W(x) = cβ 2 cosh(2πbx)

such that Wβ(x) = 2 cosh(2πbx) by Proposition 8. The computation above then yields

∑
j≥1

(λ − λj)+ ≤∬R2
(λ − dβ2 cosh(2πbk) − cβ2 cosh(2πby))

+
dk dy.

By (2), the asymptotic behavior of this upper bound does not depend on cβ, dβ and is of the desired form.

F. Upper bound for polynomial potential
Let λj be the eigenvalues of H0 + x2N + r(x). By the min-max principle, we obtain an upper bound on the Riesz mean if we

replace x2N + r(x) by the smaller potential x2N
− C(1 + ∣x∣2N−ε). Applying again the min-max principle together with the last statement in

Proposition 9, we may further decrease this potential to x2N
− C((1 + ∣x∣2N−ε) ∗ g2

β)(x). By Proposition 9, this potential coincides with Wβ for
the choice W(x) = x2N + qN (x) − C(1 + ∣x∣2N−ε). The computation above and the fact that for some 0 < δ ≤ ε both ∣qN (y)∣/(1 + ∣y∣2N−δ) and
(1 + ∣y∣2N−ε)/(1 + ∣y∣2N−δ) are bounded yields

∑
j≥1

(λ − λj)+ ≤∬R2
(λ − dβ2 cosh(2πbk) − y2N + CN (1 + ∣y∣2N−δ))

+
dk dy

with a constant CN depending on β. By (3), the asymptotic behavior of this upper bound does not depend on CN , dβ and is of the desired
form.

IV. THE PROOF OF COROLLARIES 3 AND 5
In Ref. 8, we provided two proofs of Corollary 3. The first one made use of an observation in Ref. 7 that allows us to obtain asymptotics

of the traces of convex functions of self-adjoint operators from the behavior of their Riesz means. The result is then a consequence of the
Karamata–Tauberian theorem (see, e.g., Ref. 12, Theorem 10.3) in a version that allows for logarithmic factors (see, e.g., Ref. 11). The second
proof used a more direct approach in estimating the number of eigenvalues below a given value by Riesz means. Here, we present a proof that
is in spirit very close to the latter argument, but emphasises the role of convexity. The proof method has been used in Ref. 1 in a similar context
to our work, but has also been applied previously in a nonlinear setting by Lieb and Simon,9 who give reference to Griffiths4 for emphasising
its use in mathematical physics.
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Again, assume that W satisfies the assumptions of Proposition 1 and let λW
j denote the discrete eigenvalues of H0 + W. Note that for any

h > 0,
∑
j≥1

(λ − λW
j )+ ≤ ∑

j≥1
(λ + h − λW

j )+ − hNW (λ),

where NW (λ) denotes the number of eigenvalues λW
j below λ. As a consequence, we obtain the upper bound

NW (λ) ≤
1
h
⎛

⎝
∑
j≥1

(λ + h − λW
j )+ −∑

j≥1
(λ − λW

j )+
⎞

⎠
. (7)

To obtain a lower bound, we observe that similarly

NW (λ) ≥
1
h
⎛

⎝
∑
j≥1

(λ − λW
j )+ −∑

j≥1
(λ − h − λW

j )+
⎞

⎠
. (8)

A. Proof for hyperbolic cosine potential
The result can be proved analogously to the case of polynomial potentials, for which details are presented below.

B. Proof for polynomial potential
Let λj be the eigenvalues of H0 + x2N + r(x). By Theorem 4, there are constants C1, C2 such that

∑
j≥1

(λ − λj)+ ≤
2
πb
(

2N
2N + 1

λ
2N+1

2N log λ + C1λ
2N+1

2N )

and

∑
j≥1

(λ − λj)+ ≥
2
πb
(

2N
2N + 1

λ
2N+1

2N log λ + C2λ
2N+1

2N )

for all sufficiently large λ. Inserting these bounds into (7) and noting that due to the convexity of the function f (x) = x
2N+1

2N log x for x > 1
necessarily f (λ + h) − f (λ) ≤ hf ′(λ + h), we obtain the upper bound

N(λ)
2
πbλ

1
2N log λ

≤
(λ + h)

1
2N log(λ + h) + 2N

2N+1 (λ + h)
1

2N

λ
1

2N log λ
+

C1(λ + h)
2N+1

2N − C2λ
2N+1

2N

hλ
1

2N log λ
.

Choosing h = (ρ − 1)λ with ρ > 1 and letting λ→∞ yields

lim sup
λ→∞

N(λ)
2
πbλ

1
2N log λ

≤ ρ
1

2N

and since ρ > 1 was arbitrary

lim sup
λ→∞

N(λ)
2
πbλ

1
2N log λ

≤ 1 .

Similarly, we can use the convexity of f (x) = x
2N+1

2N log x for x > 1 to conclude that f (λ) − f (λ − h) ≥ hf ′(λ − h) and thus obtain the lower
bound

N(λ)
2
πbλ

1
2N log λ

≥
(λ − h)

1
2N log(λ − h) + 2N

2N+1 (λ − h)
1

2N

λ
1

2N log λ
+

C2λ
2N+1

2N − C1(λ − h)
2N+1

2N

hλ
1

2N log λ

from (8). Choosing h = (1 − ρ)λ with ρ < 1 and letting first λ→∞ and subsequently ρ→ 1 yields

lim inf
λ→∞

N(λ)
2
πbλ

1
2N log λ

≥ 1.
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