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CHAPTER 1

Classical Mechanics

We use standard notations and basic facts from differential geometry. All
manifolds, maps and functions are smooth (that is, C∞) and real-valued,
unless it is specified explicitly otherwise. Local coordinates q = (q1, . . . , qn)
on a smooth n-dimensional manifold M at a point q ∈ M are Cartesian
coordinates on ϕ(U) ⊂ R

n, where (U,ϕ) is a coordinate chart on M centered
at q ∈ U . For f : U → R

n we denote (f ◦ ϕ−1)(q1, . . . , qn) by f(q). If U is
a domain in R

n then for f : U → R we denote by

∂f

∂q
=

(
∂f

∂q1
, . . . ,

∂f

∂qn

)

the gradient of a function f at a point q ∈ R
n with Cartesian coordinates

(q1, . . . , qn). We denote by

A•(M) =

n⊕

k=0

Ak(M)

the graded algebra of smooth differential forms on M with respect to the
wedge product, and by d the deRham differential — a graded derivation of
A•(M) of degree 1 such that df is a differential of a function f ∈ A0(M) =
C∞(M). Let Vect(M) be the Lie algebra of smooth vector fields on M with
the bracket [ , ], given by a commutator of vector fields. For X ∈ Vect(M)
we denote by LX and iX , respectively, the Lie derivative along X and the
inner product with X. The Lie derivative is a degree 0 derivation of A•(M)
which commutes with d and satisfies LX(f) = X(f) for f ∈ A0(M), and
the inner product is a degree −1 derivation of A•(M) satisfying iX(f) = 0
and iX(df) = X(f) for f ∈ A0(M). They satisfy Cartan formulas

LX =iX ◦ d+ d ◦ iX = (d+ iX)2,

i[X,Y ] =LX ◦ iY − iY ◦ LX .

For a smooth mapping of manifolds f : M → N we denote by f∗ : TM →
TN and f∗ : T ∗N → T ∗M , respectively, the induced mappings on tangent
and cotangent bundles. Other notations, including those traditional for
classical mechanics, will be introduced in the main text.

1



2 1. CLASSICAL MECHANICS

1. Lagrangian Mechanics

1.1. Generalized coordinates. Classical mechanics describes systems
of finitely many interacting particles1. A system is called closed if its par-
ticles do not interact with the outside material bodies. The position of a
system in space is specified by positions of its particles and defines a point
in a smooth, finite-dimensional manifold M , the configuration space of a
system. Coordinates on M are called generalized coordinates of a system,
and the dimension n = dimM is called the number of degrees of freedom2.

The state of a system at any instant of time is described by a point
q ∈ M and by a tangent vector v ∈ TqM at this point. The basic prin-
ciple of classical mechanics is Newton-Laplace determinacy principle which
asserts that a state of a system at a given instant completely determines its
motion at all times t (in the future and in the past). The motion is described
by the classical trajectory — a path γ(t) in the configuration space M . In
generalized coordinates γ(t) is (q1(t), . . . , qn(t)) and corresponding deriva-

tives q̇i =
dqi
dt

are called generalized velocities. Newton-Laplace principle is

a fundamental experimental fact confirmed by our perception of everyday’s

experience. It implies that generalized accelerations q̈i =
d2qi
dt2

are uniquely

defined by generalized coordinates qi and generalized velocities q̇i, so that
classical trajectories satisfy a system of second order ordinary differential
equations, called equations of motion. In the next section we formulate the
most general principle governing the motion of mechanical systems.

1.2. The principle of the least action. In Lagrangian mechanics, a
mechanical system with a configuration space M is completely characterized
by its Lagrangian L — a smooth, real-valued function on TM × R — the
direct product of a tangent bundle TM of M and the time axis3. The motion
of a Lagrangian system (M,L) is described by the principle of the least
action (or Hamilton’s principle), formulated as follows.

Let

PM(q0, t0, q1, t1) = {γ : [t0, t1] →M, γ(t0) = q0, γ(t1) = q1}
be the space of smooth parametrized paths in M connecting points q0 and
q1. The path space PM = PM(q0, t0, q1, t1) is a infinite-dimensional real
Fréchet manifold, and the tangent space TγPM to PM at γ ∈ PM con-
sists of all smooth vector fields along the path γ in M which vanish at the
endpoints q0 and q1. A smooth path Γ in PM , passing through γ ∈ PM is

1A particle is a material body whose dimensions may be neglected in describing its
motion.

2Systems with infinitely many degrees of freedom are described by classical field
theory.

3It follows from Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.



1. LAGRANGIAN MECHANICS 3

called a variation with fixed ends of the path γ(t) in M . A variation Γ is a
family γε(t) = Γ(t, ε) of paths in M given by a smooth map

Γ : [t0, t1] × [−ε0, ε0] →M

such that Γ(t, 0) = γ(t) for t0 ≤ t ≤ t1 and Γ(t0, ε) = q0,Γ(t1, ε) = q1 for
−ε0 ≤ ε ≤ ε0. The tangent vector

δγ =
∂Γ

∂ε

∣∣∣∣
ε=0

∈ TγPM

corresponding to a variation γε(t) is traditionally called an infinitesimal
variation. Explicitly,

δγ(t) = Γ∗( ∂∂ε)(t, 0) ∈ Tγ(t)M, t0 ≤ t ≤ t1,

where ∂
∂ε is a tangent vector to the interval [−ε0, ε0] at 0. Finally, a

tangential lift of a path γ(t) in M is the path γ′(t) in TM defined by
γ′(t) = γ∗( ∂∂t) ∈ Tγ(t)M, t0 ≤ t ≤ t1, where ∂

∂t is a tangent vector to
[t0, t1] at t. In other words, γ′(t)is the velocity vector of a path γ(t) at time
t.

Definition. The action functional S : PM → R of a Lagrangian
system (M,L) is defined by

S(γ) =

∫ t1

t0

L(γ′(t), t)dt.

Principle Of The Least Action (Hamilton’s Prinicple). A path
γ ∈ PM describes the motion of a Lagrangian system (M,L) between the
position q0 ∈ M at time t0 and the position q1 ∈ M at time t1 if and only
if it is a critical point of the action functional S,

d

dε

∣∣∣∣
ε=0

S(γε) = 0

for all variations γε(t) of γ(t) with fixed ends.

The critical points of the action functional are called extremals and
the principle of the least action states that a Lagrangian system (M,L)
moves along the extremals4. The extremals are characterised by equations of
motion — a system of second order differential equations in local coordinates
on TM . For given local coordinates on M equations of motion have the most
elegant form for the following choice of local coordinates on TM .

Definition. Let (U,ϕ) be a coordinate chart on M with local coordi-
nates q = (q1, . . . , qn). Coordinates

(q,v) = (q1, . . . , qn, v1, . . . , vn)

4The principle of the least action does not state that an extremal connecting points
q0 and q1 is a minimum of S, nor that such an extremal is unique. It also does not state
that any two points can be connected by an extremal.
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on a chart TU on TM , where v = (v1, . . . , vn) are coordinates in the fi-

bre corresponding to the basis
∂

∂q1
, . . . ,

∂

∂qn
for TqM , are called standard

coordinates.

Standard coordinates are Cartesian coordinates on ϕ∗(TU) ⊂ TR
n '

R
n × R

n and have the property that for (q, v) ∈ TU and f ∈ C∞(U),

v(f) =

n∑

i=1

vi
∂f

∂qi
(q) = v

∂f

∂q
.

The tangential lift γ′(t) of a path γ(t) in M in standard coordinates on TU
is (q(t), q̇(t)) = (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)), where dot stands for the
time derivative, so that

L(γ′(t), t) = L(q(t), q̇(t), t).

Following a centuries long tradition5, we will denote standard coordinates
by

(q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n),

where the dot does not stand for a time derivative. Since we only con-
sider paths in TM that are tangential lifts of paths in M , there will be no
confusion6 .

Theorem 1.1. The equations of motion of a Lagrangian system (M,L)
in standard coordinates on TM are given by the Euler-Lagrange equations

∂L

∂q
(q(t), q̇(t), t) − d

dt

(
∂L

∂q̇
(q(t), q̇(t), t)

)
= 0.

Proof. Suppose first that an extremal γ(t) lies in a coordinate chart U
of M . Then a simple computation in standard coordinates, using integration
by parts, gives

0 =
d

dε

∣∣∣∣
ε=0

S(γε)

=
d

dε

∣∣∣∣
ε=0

∫ t1

t0

L (q(t, ε), q̇(t, ε), t) dt

=

n∑

i=1

∫ t1

t0

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt

=

n∑

i=1

∫ t1

t0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt+

n∑

i=1

∂L

∂q̇i
δqi

∣∣∣∣
t1

t0

.

The second sum in the last line vanishes due to the property δqi(t0) =
δqi(t1) = 0, i = 1, . . . , n. The first sum is zero for arbitrary smooth functions

5Used in all texts on classical mechanics and theoretical physics.
6We reserve notation (q(t),v(t)) for general paths in TM .
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δqi on the interval [t0, t1] which vanish at the endpoints. This implies that
for each term in the sum the integrand is identically zero,

∂L

∂qi
(q(t), q̇(t), t) − d

dt

(
∂L

∂q̇i
(q(t), q̇(t), t)

)
= 0, i = 1, . . . , n.

Since the restriction of an extremal of the action functional S to a coordi-
nate chart on M is again an extremal, each extremal in standard coordinates
on TM satisfies Euler-Lagrange equations. �

Remark. In calculus of variations, the directional derivative of a func-
tional S with respect to a tangent vector V ∈ TγPM — the Gato derivative,
is defined by

δV S =
d

dε

∣∣∣∣
ε=0

S(γε),

where γε is a path in PM with a tangent vector V at γ0 = γ. The result of
the above computation (when γ lies in a coordinate chart U ⊂ M) can be
written as

δV S =

∫ t1

t0

n∑

i=1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
(q(t), q̇(t), t)vi(t)dt

=

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
(q(t), q̇(t), t)v(t)dt.(1.1)

Here V (t) =

n∑

i=1

vi(t)
∂

∂qi
is a vector field along the path γ in M . Formula

(1.1) is called formula for the first variation of the action with fixed ends.
The principle of the least action is the statement that δV S(γ) = 0 for all
V ∈ TγPM .

Remark. It is also convenient to consider the space P̂M = {γ : [t0, t1] →
M} of all smooth parametrized paths in M . The tangent space TγP̂M to

P̂M at γ ∈ P̂M is the space of all smooth vector fields along the path γ in
M (no conditions at the endpoints). The computation in the proof of The-
orem 1.1 yields the following formula for the first variation of the action
with free ends

(1.2) δV S =

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
v dt+

∂L

∂q̇
v

∣∣∣∣
t1

t0

.

Problem 1.1. Show that the action functional is given by the evaluation of a
1-form Ldt on TM × R over a 1-chain γ̃ on TM × R,

S(γ) =

Z

γ̃

Ldt,

where γ̃ = {(γ′(t), t); t0 ≤ t ≤ t1} and Ldt
`

w, c ∂
∂t

´

= cL(q, v), w ∈ T(q,v)TM, c ∈ R.
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Problem 1.2. Let f ∈ C∞(M). Show that Lagrangians systems (M,L) and
(M,L+ df) (where df is a fibre-wise linear function on TM) have the same equations of
motion.

Problem 1.3. Give examples of Lagrangian systems such that an extremal con-
necting two given points (i) is not a local minimum; (ii) is not unique; (iii) does not
exist.

Problem 1.4. For γ an extremal of the action functional S, the second variation

of S is defined by

δ2V1V2
S =

∂2

∂ε1∂ε2

˛

˛

˛

˛

ε1=ε2=0

S(γε1,ε2
),

where γε1,ε2
is a smooth two-parameter family of paths in M such that the paths γε1,0 and

γ0,ε2
in PM at the point γ0,0 = γ ∈ PM have tangent vectors V1 and V2. For a Lagrangian

system (M,L) find the second variation of S and verify that it does not depend on the
choice of γε1,ε2

.

1.3. Examples of Lagrangian systems. To describe mechanical phe-
nomena it is necessary to choose a frame of reference. The properties of the
space-time where the motion takes place depend on this choice. The space-
time is characterized by the following postulates7.

Newtonian Space-Time. The space is a three-dimensional affine Eu-
clidean space E3. A choice of the origin 0 ∈ E3 — a reference point, estab-
lishes the isomorphism E3 ' R

3, where the vector space R
3 carries Euclidean

inner product and has a fixed orientation. The time is one-dimensional —
a time axis R, and the space-time is a direct product E3 × R. An inertial
reference frame is a coordinate system with respect to the origin 0 ∈ E3,
initial time t0, and an orthonormal basis in R

3. In inertial frame the space
is homogeneous and isotropic and the time is homogeneous. The laws of
motion are invariant with respect to the transformations

r 7→ g · r + r0, t 7→ t+ t0,

where r, r0 ∈ R
3 and g is an orthogonal linear transformation in R

3. The
time in classical mechanics is absolute.

The Galilean group is the group of all affine transformations of E3 × R

which preserve time intervals and which for every t ∈ R are isometries in
E3. Every Galilean transformation is a composition of rotation, space-time
translation, and a transformation

r 7→ r + vt, t 7→ t,

where v ∈ R
3. Any two inertial frames are related by a Galilean transfor-

mation.

Galileo’s Relativity Principle. The laws of motion are invariant
with respect to the Galilean group.

7Strictly speaking, these postulates are valid only in the non-relativistic limit of special
relativity, when the speed of light in the vacuum is assumed to be infinite.
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These postulate impose restrictions on Lagrangians of mechanical sys-
tems. Thus it follows from the first postulate that the Lagrangian L of
a closed system does not explicitly depend on time. Physical systems are
described by special Lagrangians, in agreement with the experimental facts
about the motion of material bodies.

Example 1.1 (Free particle). Configuration space for a free particle is
M = R

3, and it can deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

L = 1
2mṙ2.

Here m > 0 is the mass of a particle and ṙ2 = |ṙ|2 is the length square of
the velocity vector ṙ ∈ TrR

3 ' R
3. Euler-Lagrange equation gives Newton’s

law of inertia,
r̈ = 0.

Example 1.2 (Interacting particles). Closed system of N interacting
particles in R

3 with masses m1, . . . ,mN , is described by a configuration
space

M = R
3N = R

3 × · · · × R
3

︸ ︷︷ ︸
N

with a position vector r = (r1, . . . , rN ), where ra ∈ R
3 is the position vector

of a-th particle, a = 1, . . . , N . It is found that the Lagrangian is given by

L =

N∑

a=1

1
2maṙ

2
a − U(r) = T − U,

where

T =

N∑

a=1

1
2maṙ

2
a

is called the kinetic energy of a system and U(r) — the potential energy.
The Euler-Lagrange equations give Newton’s equations

mar̈a = Fa,

where

Fa = − ∂U

∂ra
is a force on a-th particle, a = 1, . . . , N . Forces of this form are called con-
servative. It follows from homogeneity of space that potential energy U(r) of
a closed system of N interacting particles with conservative forces depends
only on relative positions of the particles, which leads to the equation

N∑

a=1

Fa = 0.

In particular, for a closed system of two particles F1 + F2 = 0, which is the
equality of action and reaction forces, also called the Newton’s third law.
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The potential energy of a closed system with only pair-wise interaction
between the particles has the form

U(r) =
∑

1≤a<b≤N
Uab(ra − rb).

It follows from the isotropy of space that U(r) depends only on relative
distances between the particles, so that the Lagrangian of a closed system
of N particles with pair-wise interaction has the form

L =

N∑

a=1

1
2maṙ

2
a −

∑

1≤a<b≤N
Uab(|ra − rb|).

Example 1.3 (Universal gravitation). According to the Newton’s law
of gravitation, the potential energy of the gravitational force between two
particles with masses ma and mb is

U(ra − rb) = −G mama

|ra − rb|
,

whereG is the gravitational constant. The configuration space ofN particles
with gravitational interaction is

M = {(r1, . . . , rN ) ∈ R
3N | ra 6= rb for a 6= b, a, b = 1, . . . , N}.

Example 1.4 (Particle in an external potential field). Here M = R
3

and

L = 1
2mṙ2 − U(r, t),

where potential energy can explicitly depend on time. Equations of motion
are Newton’s equations

mr̈ = F = −∂U
∂r

.

If U = U(|r|) — a function only of the distance |r|, the potential field is
called central.

Example 1.5 (Charged particle in an electromagnetic field8). Consider a
particle of charge e and mass m in a time-independent electromagnetic field
with scalar and vector potentials ϕ(r) and A(r) = (A1(r), A2(r), A3(r)).
The Lagrangian has the form

L =
mṙ2

2
+ e

(
ṙ A

c
− ϕ

)
,

where c is the speed of light. Corresponding Euler-Lagarange equation is
Newton equation with the Lorentz force,

mr̈ = e
(
E +

r

c
∧ H

)
,

8This is a non-relativistic limit of an example in classical electrodynamics.
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where

E = −∂ϕ
∂r

and H = rotA

are electric and magnetic fields.

Example 1.6 (Free particle on a Riemannian manifold). Let (M,ds2)
be a Riemannian manifold with the Riemannian metric ds2. In local coor-
dinates x1, . . . , xn on M ,

ds2 = gµν(x)dx
µ ⊗ dxν ,

where following tradition we are assuming summation over repeated indices.
The Lagrangian of a free particle on M is

L(v) = 1
2〈v, v〉 = 1

2‖v‖2, v ∈ TxM,

where 〈 , 〉 stands for the inner product in the fibres of TM . Corresponding
functional S is called the action functional in Riemannian geometry. The
Euler-Lagrange equations are

gµν ẍ
µ +

∂gµν
∂xλ

ẋµẋλ =
1

2

∂gµλ
∂xν

ẋµẋλ,

and after multiplying by the inverse metric tensor gσν and summation over
ν they take the form

ẍσ + Γσµν ẋ
µẋν = 0, σ = 1, . . . , n,

where

Γσµν =
1

2
gσλ

(
∂gµλ
∂xν

+
∂gνλ
∂xµ

− ∂gµν
∂xλ

)

are Christofel’s symbols. The Euler-Lagrange equations of a free particle
moving on a Riemannian manifold are geodesic equations.

Let ∇ be the Levi-Civita connection — the metric connection in the
tangent bundle TM , and for ξ ∈ Vect(M) let ∇ξ be a covariant derivative
with respect to the vector field ξ. Explicitly,

(∇ξ η)
µ =

(
∂ηµ

∂xν
+ Γµνλη

λ

)
ξν , where ξ = ξµ(x)

∂

∂xµ
, η = ηµ(x)

∂

∂xµ
.

For a path γ = x(t) in M denote by ∇ẋ the covariant derivative along γ,

(∇ẋη)
µ(t) =

dηµ(t)

dt
+ Γµνλ(x(t))ẋ

ν(t)ηλ(t), where η = ηµ(t)
∂

∂xµ

is a vector field along γ. The formula (1.1) can now be written in an invariant
form

δS = −
∫ t1

t0

〈∇ẋ, δx〉dt,

which is known as the formula for the first variation of the action in Rie-
mannian geometry.
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Example 1.7 (The rigid body). The configuration space of a rigid body
in R

3 with a fixed point is a Lie group G = SO(3) of orientation preserving
orthogonal linear transformations in R

3. Every left-invariant Riemannian
metric 〈 , 〉g on G defines a Lagrangian L : TG→ R by

L(v) = 1
2〈v, v〉g, v ∈ TgG.

According to the previous example, equations of motion of a rigid body are
geodesic equations on G. Let g = so(3) be the Lie algebra of G. A velocity
vector ġ ∈ TgG defines the angular velocity of the body by Ω = (Lg−1)∗ġ ∈ g,
where Lg : G → G are left translations on G. In terms of the angular
velocitiy, the Lagrangian takes the form

L = 1
2〈Ω,Ω〉,

where 〈 , 〉 is an inner product on g = TeG given by the Riemannian metric.
The Lie algebra g — the Lie algebra of 3× 3 skew-symmetric matrices, has
the invariant inner product 〈u, v〉0 = −1

2 Truv (the Killing form), so that
〈Ω,Ω〉 = 〈A · Ω,Ω〉0. A symmetric linear operator A : g → g, positive-
definite with respect to the Killing form, is called the inertia tensor of the
body. The principal axes of inertia of the body are orthonormal eigenvec-
tors e1, e2, e3 of A; corresponding eigenvalues I1, I2, I3 are called principal
moments of inertia. Setting Ω = Ω1e1 + Ω2e2 + Ω3e3

9, we get

L = 1
2(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3).

In this parametrization, the Euler-Langrange equations become the Euler’s
equations

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω1Ω3,

I3Ω̇3 = (I1 − I2)Ω1Ω2.

The Euler’s equations describe the rotation of a free rigid body around a
fixed point with the principal moments of inertia I1, I2, I3 in the system of
coordinates whose axes are the principal axes of inertia.

Problem 1.5. Show that the Euler-Lagrange equations for the Lagrangian L(v) =
‖v‖, v ∈ TqM coincide with the geodesic equations written with respect to a constant
multiple of the natural parameter.

Problem 1.6. Prove that the second variation of the action functional in Rie-
mannian geometry, defined in Problem 1.4, is given by

δ2S = −
Z t1

t0

〈J δ1x, δ2x〉dt.

Here δ1x, δ2x ∈ TγPM and J = ∇2
ẋ +R(ẋ, )ẋ is second-order linear differential operator

acting on vector fields along the extremal γ, called the Jacobi operator, and R is a curvature
operator — a fibre-wise linear mapping R : TM ⊗ TM → End(TM) of vector bundles,
defined by R(ξ, η) = ∇η∇ξ −∇ξ∇η + ∇[ξ,η] : TM → TM , where ξ, η ∈ Vect(M).

9This establishes the isomorphism g ' R
3 with the commutator given by the cross-

product.
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Problem 1.7. Show that there exists a symmetric 3 × 3 matrix A such that
A · Ω = AΩ + ΩA, and find A for diagonal A.

Problem 1.8. Derive Euler’s equations for a rigid body. (Hint: Use that L =
− 1

2
TrAΩ2, where Ω = g−1ġ, and derive the Euler-Lagrange equations in the matrix form

AΩ̇ + Ω̇A = AΩ2 − Ω2A.)

1.4. Symmetries and Noether theorem. To describe the motion
of a mechanical system one needs to solve corresponding Euler-Lagrange
equations — a system of second order ordinary differential equations for
the generalized coordinates. This could be a very difficult problem. There-
fore of particular interest are those functions of generalized coordinates and
velocities which remain constant during the motion.

Definition. A smooth function I : TM → R is called the integral of
motion (first integral, or conservation law) for a Lagrangian system (M,L)
if

d

dt
I(γ′(t)) = 0

for all extremals γ of the action functional.

Definition. The energy of a Lagrangian system (M,L) is a function
E on TM × R defined in standard coordinates on TM by

E(q, q̇, t) =

n∑

i=1

q̇i
∂L

∂q̇i
(q, q̇, t) − L(q, q̇, t).

Lemma 1.1. The energy E = q̇
∂L

∂q̇
− L is a well-defined function on

TM × R.

Proof. Let (U,ϕ) and (U ′, ϕ′) be coordinate charts on M with the
transition function f = ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′) → ϕ′(U ∩ U ′). We have
q′ = f(q) and

dq′i =

n∑

j=1

∂fi
∂qj

dqj , i = 1, . . . , n,

or dq′ = f∗(q)dq, where f∗(q) =
{
∂fi

∂qj

}n
i,j=1

is a matrix-valued function

on ϕ(U ∩ U ′). By the definition of standard coordinates q̇′ = f∗(q)q̇, so
that q̇ = (q̇1, . . . , q̇n) transform like components of a tangent vector on M .
Therefore dq̇′ = g(q, q̇)dq+f∗(q)dq̇ for some matrix-valued function g(q, q̇),
and we compute

dL =
∂L

∂q′dq
′ +

∂L

∂q̇′dq̇
′

=

(
∂L

∂q′ f∗(q) +
∂L

∂q̇′ g(q, q̇)

)
dq +

∂L

∂q̇′ f∗(q)dq̇

=
∂L

∂q
dq +

∂L

∂q̇
dq̇.
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Thus under the change of variables q′ = f(q), q̇′ = f∗(q)q̇,

∂L

∂q̇′ f∗(q) =
∂L

∂q̇
and q̇′ ∂L

∂q̇′ = q̇
∂L

∂q̇
,

so that E is well-defined. �

Corollary 1.2. Under a change of coordinates on M , components of
∂L

∂q̇
(q, q̇) =

(
∂L

∂q̇1
, . . . ,

∂L

∂q̇n

)
transform like components of a 1-form on M .

Proposition 1.1 (Conservation of energy). The energy of a closed sys-
tem is an integral of motion.

Proof. For an extremal γ set E(t) = E(γ(t)). We have, according to
the Euler-Lagrange equations,

dE

dt
=
d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ − ∂L

∂q
q̇ − ∂L

∂q̇
q̈ − ∂L

∂t

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇ − ∂L

∂t
= −∂L

∂t
.

Since for a closed system
∂L

∂t
= 0, the energy is conserved. �

Conservation of energy for a closed mechanical system is a fundamental
law of physics which follows from the homogeneity of time. For a general
closed system of N interacting particles considered in Example 1.2,

E =

N∑

a=1

maṙ
2
a − L =

N∑

a=1

1
2maṙ

2
a + U(r).

In other words, the total energy E = T + U is a sum of the kinetic energy
and the potential energy.

Definition. A Lagrangian L : TM → R is invariant with respect to
the diffeomorphism h : M → M , if L(h∗(v)) = L(v) for all v ∈ TM . The
diffeomorphism h is called the symmetry of a closed Lagrangian system
(M,L).

Continuous symmetries give rise to conservation laws.

Theorem 1.3 (Noether). Suppose that a Lagrangian L : TM → R is
invariant under a one-parameter group {hs}s∈R of diffeomorphisms of M .
Then Lagrangian system (M,L) admits an integral of motion I, given in
standard coordinates on TM by

I(q, q̇) =

n∑

i=1

∂L

∂q̇i
(q, q̇)

(
dhsi (q)

ds

∣∣∣∣
s=0

)
=
∂L

∂q̇
q′.

The integral of motion I is called the Noether integral.
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Proof. Since
(
dhs1(q)

ds

∣∣∣∣
s=0

, . . . ,
dhsn(q)

ds

∣∣∣∣
s=0

)
= q′

are components of the vector field on M associated with the one-parameter
group {hs}s∈R, it follows from Corollary 1.2 that I is a well-defined function
on TM . Now differentiating L(hs∗(v)) = L(v) with respect to s at s = 0 and
using the Euler-Lagrange equations we get

0 =
∂L

∂q
q′ +

∂L

∂q̇
q̇′ =

d

dt

(
∂L

∂q̇

)
q′ +

∂L

∂q̇

dq′

dt
=

d

dt

(
∂L

∂q̇
q′

)
.

�

Remark. Noether theorem generalizes to time-dependent Lagrangians
L : TM×R → R. Namely, on the extended configuration space M1 = M×R

define a time-independent Lagrangian L1 by

L1(q, τ, q̇, τ̇) = L

(
q,

q̇

τ̇
, τ

)
τ̇ ,

where (q, τ) are local coordinates on M1 and (q, τ, q̇, τ̇) are standard coordi-
nates on TM1. The Noether integral I1 for a closed system (M1, L1) defines
an integral of motion I for a system (M,L) by the formula

I(q, q̇, t) = I1(q, t, q̇, 1).

When Lagrangian L does not depend on time, L1 is invariant with respect to
the one-parameter group of translations τ 7→ τ+s, and the Noether integral

I1 =
∂L1

∂τ̇
τ̇ gives I = −E.

Noether theorem can be generalized as follows. For X ∈ Vect(M) let X ′

be a vector field on TM defined by a local flow on TM induced from the
corresponding local flow on M . In standard coordinates on TM ,

(1.3) X =

n∑

i=1

ai(q)
∂

∂qi
and X ′ =

n∑

i=1

ai(q)
∂

∂qi
+

n∑

i,j=1

q̇j
∂ai
∂qj

(q)
∂

∂q̇i
.

Proposition 1.2. Suppose that for the Lagrangian L : TM → R there
exist a vector field X on M and a function F on TM such that for every
path γ in M

dL(X ′)(γ(t)) =
d

dt
F (γ′(t)).

Then

I =

n∑

i=1

ai(q)
∂L

∂q̇i
(q, q̇) − F (q, q̇)

is an integral of motion for the Lagrangian system (M,L).
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Proof. Denoting a(t) = (a1(γ(t)), . . . , an(γ(t)) and using Euler-Lagrange
equations, we have along the extremal γ,

d

dt

(
a
∂L

∂q̇

)
= a

∂L

∂q
+ ȧ

∂L

∂q̇
=
dF

dt
.

�

Example 1.8 (Conservation of momentum). Let M = V — a vector
space, and suppose that a Lagrangian L is invariant with respect to a one-
parameter group hs(q) = q + sv, v ∈ V . According to Noether’s theorem,

I =

n∑

i=1

vi
∂L

∂q̇i

is an integral of motion. Now let (M,L) be a closed Lagrangian system of
N interacting particles considered in Example 1.2. We have M = V = R

3N

and Lagrangian L is invariant under simultaneous translation of coordinates
ra = (ra1, ra2, ra3) of all particles by the same vector c ∈ R

3. Thus v =
(c, . . . , c) ∈ R

3N and for every c = (c1, c2, c3) ∈ R
3,

I =

N∑

a=1

(
c1
∂L

∂ṙa1
+ c2

∂L

∂ṙa2
+ c3

∂L

∂ṙa3

)
= c1P

1 + c2P
2 + c3P

3

is an integral of motion. The integrals of motion P 1, P 2, P 3 define the vector

P =

N∑

a=1

∂L

∂ṙa
∈ R

3

(or rather a vector in the dual space to R
3), called the momentum of the

system. Explicitly,

P =

N∑

a=1

maṙa,

so that the total momentum of a closed system is the sum of momenta of
individual particles. Conservation of momentum is a fundamental physical
law which reflects the homogeneity of space.

In general, pi =
∂L

∂q̇i
are called generalized momenta corresponding to

generalized coordinates qi, and F i =
∂L

∂qi
are called generalized forces. In

these notations, the Euler-Lagrange equations have the same form

ṗ = F

as Newton’s equations in Cartesian coordinates. Conservation of momentum
implies Newton’s third law.

Example 1.9 (Conservation of angular momentum). Let M = V be a
vector space with Euclidean inner product. LetG = SO(V ) be the connected
Lie group of automorphisms of V preserving the inner product, and let
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g = so(V ) be the Lie algebra of G. Suppose that a Lagrangian L is invariant
with respect to the action of a one-parameter subgroup hs(q) = esx · q of G
on V , where x ∈ g and ex is the exponential map. According to Noether’s
theorem,

I =

n∑

i=1

(x · q)i
∂L

∂q̇i

is an integral of motion. Now let (M,L) be a closed Lagrangian system of
N interacting particles considered in Example 1.2. We have M = V = R

3N

and Lagrangian L is invariant under a simultaneous rotation of coordinates
ra of all particles by the same orthogonal transformation in R

3. Thus x =
(u, . . . , u) ∈ so(3) ⊕ · · · ⊕ so(3)︸ ︷︷ ︸

N

, and for every u ∈ so(3)

I =

N∑

a=1

(
(u · ra)1

∂L

∂ṙa1
+ (u · ra)2

∂L

∂ṙa2
+ (u · ra)3

∂L

∂ṙa3

)

is an integral of motion. Using a basis in so(3) ' R
3 corresponding to the ro-

tations with axes given by the vectors e1, e2, e3 of the standard orthonormal
basis in R

3, we get the vector

M =

N∑

a=1

ra ×
∂L

∂ṙa
∈ R

3

(or rather a vector in the dual space to so(3)), called angular momentum of
the system. Explicitly,

M =

N∑

a=1

mara × ṙa,

so that the total angular momentum of a closed system is the sum of angular
momenta of individual particles. Conservation of angular momentum is a
fundamental physical law which reflects the isotropy of space.

Problem 1.9. Find how total momentum and total angular momentum transform
under the Galilean transformations.

1.5. One-dimensional motion. The motion of systems with one de-
gree of freedom is called one-dimensional. In terms of a Cartesian coordinate
x on M = R the Lagrangian takes the form

L = 1
2mẋ

2 − U(x).

The conservation of energy

E =
1

2
mẋ2 + U(x)

allows to solve equation of motion in a closed form by formally solving

dx

dt
=

√
2

m
(E − U(x))
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and integrating

t =

√
m

2

∫
dx√

E − U(x)
.

This is the general solution of Newton’s equation

mẍ = −dU
dx

with two arbitrary constants, the energy E and the constant of integration.
Since kinetic energy is non-negative, for a given value of E the actual

motion takes place in the region of R where U(x) ≤ E. The points where
U(x) = E are called turning points. The motion which is confined between
two turning points is called finite. The finite motion is periodic — the
particle oscillates between the turning points x1(E) and x2(E) with the
period

T (E) =
√

2m

∫ x2(E)

x1(E)

dx√
E − U(x)

.

If the region U(x) ≤ E is unbounded the motion is called infinite, the
particle eventually goes to infinity.

On the phase plane with coordinates (x, y) the Newton’s equation is
given by a system

mẋ = y, ẏ = −dU
dx

.

Trajectories correspond to the phase curves (x(t), y(t)), which lie on the
level sets

y2

2m
+ U(x) = E

of the energy function. The points (x0, 0), where is x0 is a critical point
of the potential energy U(x), correspond to the equilibrium solutions. The
local minima correspond to the stable solutions and local maxima — to the
unstable solutions. For the values of E which do not correspond to the
equilibrium solutions the level sets are smooth curves. These curves are
closed if the motion is is finite.

The simplest example of a one-dimensional system is a harmonic os-
cillator with U(x) = 1

2kx
2. For k > 0 the general solution of equations of

motion is

x(t) = A cos(ωt+ α),

where A is the amplitude, ω =

√
k

m
is the circular frequency, and α is the

phase of a simple harmonic motion with the period T =
2π

ω
. The energy is

E = 1
2mω

2A2 and the motion is finite for all E ≥ 0 with the same period T
for E > 0. For k < 0 the motion is infinite for all E.

Problem 1.10. Show that for U(x) = −x4 there are phase curves which do not
exist for all times. Prove that if U(x) ≥ 0 for all x than all phase curves exist for all times.
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Problem 1.11. The simple pendulum is a Lagrangian system with M = S1 =
R/2πZ and L = 1

2
θ̇2 + cos θ. Find the period T of the pendulum as a function of the

amplitude of the oscillations.

Problem 1.12. Suppose that the potential energy U(x) is even, U(0) = 0 and
U(x) is one-to-one monotonically increasing function for x ≥ 0. Prove that the inverse
function x(U) and the period T (E) are related by the Abel transform

T (E) = 2
√

2m

Z E

0

dx

dU

dU√
E − U

and x(U) =
1

2π
√

2m

Z U

0

T (E)dE√
U − E

.

1.6. The motion in a central field and the Kepler problem. The
motion of a system of two interacting particles — the two-body problem —
also can be solved completely. Namely, in this case ( Example 1.2) M = R

6

and

L =
m1ṙ

2
1

2
+
m2ṙ

2
2

2
− U(|r1 − r2|).

Introducing on R
6 new coordinates

r = r1 − r2 and R =
m1r1 +m2r2

m1 +m2
,

we get

L = 1
2µṘ

2 + 1
2mṙ2 − U(|r|),

where µ = m1 +m2 is the total mass and m =
m1m2

m1 +m2
is the reduced mass

of a two-body system. The Lagrangian L depends only on the velocity Ṙ

of the center of mass and not on its position R. A generalized coordinate
with this property is called cyclic. it follows from the Euler-Lagrange equa-
tions that generalized momentum corresponding to the cyclic coordinate is
conserved. In our case it is a total momentum of the system,

P =
∂L

∂Ṙ
= µṘ,

so that the center of mass R moves uniformly. Thus in the frame of reference
where R = 0, the Lagrangian of a two-body problem is reduced to the
Lagrangian of a single particle in the external central field U(|r|).

From conservation of angular momentum M = mr × ṙ it follows that
during the motion the position vector r lies in the plane P orthogonal to M

in R
3. Introducing polar coordinates (r, ϕ) in P we get10

L = 1
2m(ṙ2 + r2ϕ̇2) − U(r).

The coordinate ϕ is cyclic and its generalized momentum mr2ϕ̇ coincides
with |M| if ϕ̇ > 0 and with −|M| if ϕ̇ < 0. Denoting this quantity by M,
we get the equation

(1.4) mr2ϕ̇ = M,

10Note that here r is not the length of the position vector r.
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which is equivalent to the Kepler’s second law11. Using (1.4) we get for the
total energy

(1.5) E = 1
2m(ṙ2 + r2ϕ̇2) + U(r) = 1

2mṙ
2 + U(r) +

M2

2mr2
.

Thus the radial motion reduces to a one-dimensional motion with the effec-
tive potential energy

Ueff (r) = U(r) +
M2

2mr2
,

where the second term is called the centrifugal energy. As in the previous
section, is given by

(1.6) t =

√
m

2

∫
dr√

E − Ueff (r)
.

It follows from (1.4) that ϕ is monotonic function of t, given by another
quadrature

(1.7) ϕ =
M√
2m

∫
dr

r2
√
E − Ueff (r)

.

The set Ueff (r) ≤ E is a union of annuli 0 ≤ rmin ≤ r ≤ rmax ≤ ∞,
and the motion is finite if 0 < rmin ≤ r ≤ rmax < ∞. Though for a finite
motion r(t) oscillates between rmin and rmax, corresponding trajectories are
not necessarily closed. The necessary and sufficient condition for a finite
motion to have a close trajectory is that the angle

Φ =
M√
2m

∫ rmax

rmin

dr

r2
√
E − Ueff (r)

is commensurable with 2π, i.e., Φ = 2π
m

n
for some m,n ∈ Z. If the angle Φ

is not commensurable with 2π, the orbit is everywhere dense in the annulus
rmin ≤ r ≤ rmax. If

lim
r→∞

Ueff (r) = lim
r→∞

U(r) = U <∞,

the motion is inifnite for E > U — the particle goes to ∞ with finite velocity√
2
m(E − U).

Very important special case is when

U(r) = −α
r
.

It describes Newton’s gravitational attraction (α > 0) and Coulomb elec-
trostatic interaction (either attractive or repulsive). First consider the case
when α > 0 — the Kepler’s problem. The effective potential energy is

Ueff (r) = −α
r

+
M2

2mr2

11It is the statement that sectorial velocity of a particle in a central field is constant.
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and has the global minimum

U0 = −α
2m

2M2

at r0 =
M2

αm
. The motion is infinite for E ≥ 0 and is finite for U0 ≤ E <

0. The explicit form of trajectories can be determined by an elementary
integration in (1.7), which gives

ϕ = cos−1

M

r
− M

r0√
2m(E − U0)

+ C.

Choosing a constant of integration C = 0 and introducing notations

p = r0 and e =

√
1 − E

U0
,

we get the equation of the orbit (trajectory)

(1.8)
p

r
= 1 + e cosϕ.

This is the equation of a conic section with one focus at the origin. Quantity
2p is called the latus rectum of the orbit, and e is called the eccentricity.
The choice C = 0 is such that the point with ϕ = 0 is the point nearest to
the origin (called the perihelion). When U0 ≤ E < 0 the eccentricity e < 1
so that the orbit is the ellipse12 with the major and minor semi-axes

a =
p

1 − e2
=

α

2|E| , b =
p√

1 − e2
=

|M|√
2m|E|

.

Correspondingly, rmin =
p

1 + e
, rmax =

p

1 − e
and the period T of elliptic

orbit is given by

T = πα

√
m

2|E|3 .

The last formula is Kepler’s third law. When E > 0 the eccentricity e > 1
and the motion is infinite — the orbit is a hyperbola with the origin as
internal focus. When E = 0 the eccentricity e = 1 — the particle starts
from rest at ∞ and the orbit is a parabola.

For the repulsive case α < 0 the effective potential energy Ueff (r) is
always positive and decreases monotonically from ∞ to 0. The motion is
always infinite and the trajectories are hyperbolas (parabola if E = 0)

p

r
= −1 + e cosϕ

with

p =
M2

αm
and e =

√
1 +

2EM2

mα2
.

12The statement that planets have elliptic orbits with a focus at the Sun is Kepler’s

first law.
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The Kepler’s problem is very special: for every α ∈ R the Lagrangian
system on R

3 with

L = 1
2mṙ2 +

α

r
has three extra integrals of motionW1,W2,W3 in addition to the components
of the angular momentum M. Corresponding vector W = (W1,W2,W3),
called Laplace-Runge-Lenz vector, is given by

(1.9) W = ṙ × M − αr

r
.

Indeed, using equations of motion mr̈ = −αr

r3
and conservation of the angu-

lar momentum M = mr × ṙ, we get

Ẇ = mr̈ × (r × ṙ) − αṙ

r
+
α(ṙ · r)r

r3

= (mr̈ · ṙ)r − (mr̈ · r)ṙ − αṙ

r
+
α(ṙ · r)r

r3

= 0.

The fact that all orbits are conic sections follows from this extra symmetry
of the Kepler’s problem.

Problem 1.13. Prove all the statements made in this section.

Problem 1.14. Show that if

lim
r→0

Ueff (r) = −∞,

then there are orbits with rmin = 0 — “fall ” of the particle to the center.

Problem 1.15. Prove that all finite trajectories in central field are closed only
when

U(r) = kr2, k > 0 and U(r) = −α
r
, α > 0.

Problem 1.16. Find parametric equations for orbits in Kepler’s problem.

Problem 1.17. Prove that the Laplace-Runge-Lenz vector W points in the direc-
tion of the major axis of the orbit and that |W| = α2e, where e is the eccentricity of the
orbit.

1.7. Legendre transformation. The equations of motion of a La-
grangian system (M,L) in standard coordinates on TM associated with a
coordinate chart U on M are the Euler-Lagrange equations. In expanded
form, they are given the following system of ordinary differential equations
of second order,

∂L

∂qi
(q, q̇) =

d

dt

(
∂L

∂q̇i
(q, q̇)

)

=

n∑

j=1

(
∂2L

∂q̇i∂q̇j
(q, q̇) q̈j +

∂2L

∂q̇i∂qj
(q, q̇) q̇j

)
, i = 1, . . . , n.
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In order for this system to be solvable for the highest derivatives for all
initial conditions in TU , the symmetric n× n matrix

HL =

{
∂2L

∂q̇i∂q̇j
(q, q̇)

}n

i,j=1

should be invertible on TU .

Definition. A Lagrangian system (M,L) is called non-degenerate if for
every coordinate chart U on M the matrix HL(q, v) is invertible at every
point (q, v) ∈ TU .

For an invariant formulation, consider the 1-form θL on TM , defined in
standard coordinates on TM associated with a coordinate chart U on M by

θL =

n∑

i=1

∂L

∂q̇i
dqi =

∂L

∂q̇
dq.

It follows from Corollary 1.2 that θL is indeed a well-defined 1-form on TM .

Lemma 1.2. A Lagrangian system (M,L) is non-degenerate if and only
if the 2-form dθL on TM is non-degenerate.

Proof. In standard coordinates,

dθL =

n∑

i,j=1

(
∂2L

∂q̇i∂q̇j
dq̇j ∧ dqi +

∂2L

∂q̇i∂qj
dqj ∧ dqi

)
,

so that 2n × 2n matrix corresponding to the 2-form dθL is non-degenerate
if and only if the n× n matrix HL is non-degenerate. �

Definition. Let (U,ϕ) be a coordinate chart on M . Coordinates

(p,q) = (p1, . . . , pn, q1, . . . , qn)

on the chart T ∗U = R
n×U on the cotangent bundle T ∗M are called standard

coordinates13 if for (p, q) ∈ T ∗U and f ∈ C∞(U)

pi(df) =
∂f

∂qi
, i = 1, . . . , n.

Equivalently, standard coordinates on T ∗U are uniquely characterized by
the condition that p = (p1, . . . , pn) are coordinates in the fibre corresponding

to the basis dq1, . . . , dqn for T ∗
qM dual to the basis

∂

∂q1
, . . . ,

∂

∂qn
for TqM .

Definition. The 1-form θ on T ∗M , defined in standard coordinates by

θ =

n∑

i=1

pidqi = pdq,

is called the canonical Liouville 1-form.

13Following tradition, the first n coordinates parametrize the fibre of T ∗U and the
last n coordinates — the base.
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Corollary 1.2 shows that θ is a well-defined 1-form on T ∗M . Invariantly,
the 1-form θ is defined by θ(u) = p(π∗(u)), where u ∈ T(p,q)T

∗M and π :
T ∗M →M is the canonical projection.

Definition. A fibre-wise mapping τL : TM → T ∗M is called a Le-
gendre’s transformation associated with the Lagrangian L, if

θL = τ∗L(θ).

In standard coordinates the Legendre’s transformation is given by

τL(q, q̇) = (p,q), where p =
∂L

∂q̇
(q, q̇).

The mapping τL is a local diffeomorphism if and only if Lagrangian L is
non-degenerate.

Definition. Suppose that the Legendre’s transformation τL : TM →
T ∗M is a diffeomorphism. The Hamiltonian H : T ∗M → R, associated with
the Lagrangian L : TM → R, is defined by

H ◦ τL = E = q̇
∂L

∂q̇
− L.

In standard coordinates,

H(p,q) = (pq̇ − L(q, q̇))|
p=

∂L
∂q̇
,

where q̇ is considered a function of p and q obtained from the equation

p =
∂L

∂q̇
(q, q̇) by using the implicit function theorem. The cotangent bundle

T ∗M is called the phase space of the Lagrangian system (M,L). It turns
out on the phase space the equations of motion take a very simple and
symmetric form.

Theorem 1.4. Suppose that the Legendre transformation τL : TM →
T ∗M is a diffeomorphism. Then the Euler-Lagrange equations in standard
coordinates on TM ,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n,

are equivalent to the following system of first order differential equations in
standard coordinates on T ∗M ,

ṗi = −∂H
∂qi

q̇i =
∂H

∂pi
, i = 1, . . . , n.
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Proof. We have

dH =
∂H

∂p
dp +

∂H

∂q
dq

=

(
pdq̇ + q̇dp − ∂L

∂q
dq − ∂L

∂q̇
dq̇

)∣∣∣∣
p=

∂L
∂q̇

=

(
q̇dp − ∂L

∂q
dq

)∣∣∣∣
p=

∂L
∂q̇

.

Thus under the Legendre transform,

q̇ =
∂H

∂p
and ṗ =

d

dt

∂L

∂q̇
=
∂L

∂q
= −∂H

∂q
.

�

Corresponding first order differential equations on T ∗M are called Hamil-
ton’s equations (canonical equations).

Corollary 1.5. The Hamiltonian H is constant on the solutions of the
Hamilton’s equations.

Proof. For H(t) = H(p(t),q(t)) we have

dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0.

�

For the Lagrangian

L =
mṙ2

2
− U(r), r ∈ R

3,

of a particle of mass m in a potential field U(r), considered in Example 1.4,
we have

p =
∂L

∂ṙ
= mṙ.

Thus the Legendre’s transformation τL : TR
3 → T ∗

R
3 is a global diffeomor-

phism, linear on the fibres, and

H = (pṙ − L)|
ṙ=

p
m

=
p2

2m
+ U(r).

The Hamilton’s equations

ṙ =
∂H

∂p
=

p

m
,

ṗ = − ∂H

∂r
= −∂U

∂r
,

are equivalent to Newton’s equations with the force F = −∂U
∂r

.
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In general, consider the Lagrangian

L =

n∑

i,j=1

1
2a

ij(q)q̇iq̇j − U(q), q ∈ R
n,

where A(q) = {aij(q)}ni,j=1 is a symmetric n× n matrix. We have

pi =
∂L

∂q̇i
=

n∑

j=1

aij(q)q̇j , i = 1, . . . , n,

and the Legendre’s transformation is a global diffeomorphism, linear on the
fibres, if and only if the matrix A(q) is non-degenerate for all q ∈ R

n. In
this case,

H(p,q) = (pq̇ − L(q, q̇))|
p=

∂L
∂q̇

=

n∑

i,j=1

1
2aij(q)pipj + U(q),

where {aij(q)}ni,j=1 = A−1(q) is the inverse matrix.

Problem 1.18. Show that θL(v) = dL(π∗(v)), where v ∈ T (TM) and π : TM →
M is the canonical projection.

Problem 1.19. Prove that the path γ(t) in M is a trajectory for the Lagrangian
system (M,L) if and only if

iγ̇′(t)(dθL) + dEL(γ′(t)) = 0,

where γ̇′(t) is the velocity vector of the path γ′(t) in TM .

Problem 1.20. Suppose that for a Lagrangian system (Rn, L) the Legendre’s
transformation τL is a diffeomorphism and let H be the corresponding Hamiltonian. Prove

that for fixed q and q̇ the function pq̇ −H(p,q) has a single critical point at p =
∂L

∂q̇
.

2. Hamiltonian Mechanics

2.1. Hamilton’s equations. With every function H : T ∗M → R on
the phase space T ∗M there are associated Hamilton’s equations — a first-
order system of ordinary differential equations, which in the standard coor-
dinates on T ∗U has the form

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

The corresponding vector field XH on T ∗U ,

XH =

n∑

i=1

(
∂H

∂pi
∂

∂qi
− ∂H

∂qi

∂

∂pi

)
=
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
,

gives rise to a well-defined vector field XH on T ∗M , called the Hamiltonian
vector field. Suppose now that the vector field XH on T ∗M is complete,
i.e., its integral curves exist for all times. The corresponding one-parameter
group {gt}t∈R of diffeomorphisms of T ∗M generated by XH is defined by
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gt(p, q) = (p(t), q(t)), where p(t), q(t) is a solution of the Hamilton’s equa-
tions satisfying p(0) = p, q(0) = q, and is called the Hamiltonian phase
flow.

The canonical Liouville’s 1-form θ on T ∗M defines a 2-form ω = dθ. In
standard coordinates on T ∗M it is given by

ω =

n∑

i=1

dpi ∧ dqi = dp ∧ dq,

and is a non-degenerate 2-form. The form ω is called the canonical symplec-
tic form on T ∗M . The symplectic form ω for every (p, q) ∈ T ∗M defines an
isomorphism J : T ∗

(p,q)T
∗M → T(p,q)T

∗M by

ω(u1, u2) = J−1(u2)(u1), u1, u2 ∈ T(p,q)T
∗M.

In standard coordinates,

J(dp) =
∂

∂q
, J(dq) = − ∂

∂p
and XH = J(dH).

Theorem 2.1. The Hamiltonian phase flow on T ∗M preserves the canon-
ical symplectic form.

Proof. We need to prove that (gt)∗ω = ω. Since gt is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d

dt
(gt)∗ω

∣∣∣∣
t=0

= LXH
ω = 0,

where LXH
is the Lie derivative along the vector field XH . Since for every

vector field X,

dLX(f) = LX(df),

we have

LXH
(dpi) = d(XH(pi)) = −d

(
∂H

∂qi

)
and LXH

(dqi) = d(XH(qi)) = d

(
∂H

∂pi

)
.

Thus

LXH
ω =

n∑

i=1

(
LXH

(dpi) ∧ dqi + dpi ∧ LXH
(dqi)

)

=

n∑

i=1

(
−d

(
∂H

∂qi

)
∧ dqi + dpi ∧ d

(
∂H

∂pi

))
= −d(dH) = 0.

�

Corollary 2.2. LXH
(θ) = d(−H + iXH

(θ)).

The canonical symplectic form ω on T ∗M defines the volume form
ωn

n!
=

1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸

n

on T ∗M , called the Liouville volume form.
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Corollary 2.3 (Liouville’s Theorem). The Hamiltonian phase flow on
T ∗M preserves the Liouville volume form.

The restriction of the symplectic form ω on T ∗M to the configuration
space M is 0. Generalizing this property we have the following

Definition. A submanifold L of the phase space T ∗M is called a La-
grangian submanifold if dim L = dimM and ω|

L
= 0.

It follows from Theorem 2.1 that the image of a Lagrangian submanifold
under the Hamiltonian phase flow is a Lagrangian submanifold.

Problem 2.1. Verify that XH is a well-defined vector field on T ∗M .

Problem 2.2. Show that if all level sets of the Hamiltonian H are compact sub-
manifolds of T ∗M , then the Hamiltonian vector field XH is complete.

Problem 2.3. Let π : T ∗M → M be the canonical prjection, and let L be a La-
grangian submanifold. Show that if the the mapping π|

L
: L →M is a diffeomorphism,

then L is a graph of a smooth function on M . Give examples when for some t > 0 the
corresponding projection of gt(L ) onto M is no longer a diffeomorphism.

2.2. The action functional in the phase space. With every func-
tion H on the phase space T ∗M there is an associated 1-form

θ −Hdt = pdq −Hdt

on the extended phase space T ∗M × R, called the Poincaré-Cartan form.
Let π1 : T ∗M×R →M and π2 : T ∗M×R → R be the canonical projections,
and let P (T ∗M×R) be the space of smooth parametrized paths σ : [t0, t1] →
T ∗M × R such that π1(σ(t0)) = q0, π1(σ(t1)) = q1, and π2(σ(t)) = t for all
t ∈ [t0, t1]. Such paths called are admissible paths in T ∗M ×R. A variation
of an admissible path σ is a smooth family of admissible paths σε, where
ε ∈ [−ε0, ε0] and σ0 = σ, and the corresponding infinitesimal variation is

δσ =
∂σε
∂ε

∣∣∣∣
ε=0

∈ TσP (T ∗M × R)

(cf. Section 1.2). The principle of the least action in the phase space is the
following statement.

Theorem 2.4 (Poincaré). The admissible path σ in T ∗M × R is an
extremal for the action functional

S(σ) =

∫

σ

(pdq −Hdt) =

∫ t1

t0

(pq̇ −H)dt

if and only if its projection onto T ∗M is a solution of the canonical Hamil-
ton’s equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
.
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Proof. As in the proof of Theorem 1.1, for an admissible family σε(t) =
(p(t, ε),q(t, ε), t) in standard coordinates we compute, using integration by
parts,

d

dε

∣∣∣∣
ε=0

S(σε) =

n∑

i=1

∫ t1

t0

(
q̇iδp

i − ṗiδqi −
∂H

∂qi
δqi −

∂H

∂pi
δpi

)
dt

+

n∑

i=1

pi δqi|t1t0 .

Since δq(t0) = δq(t1) = 0, we conclude that the path σ is critical if and only
if p(t) and q(t) satisfy canonical Hamilton’s equations. �

Remark. For a Lagrangian system (M,L), every path γ(t) = (q(t)) in
configuration space M connecting points q0 and q1, defines an admissible

path γ̂(t) = (p(t),q(t), t) in the phase space T ∗M by setting p =
∂L

∂q̇
. If the

Legendre’s transformation τL : TM → T ∗M is a diffeomorphism, then

S(γ̂) =

∫ t1

t0

(pq̇ −H)dt =

∫ t1

t0

L(γ′(t), t)dt.

Thus the principle of the least action in a configuration space — Hamilton’s
principle, follows from the principle of the least action in a phase space.
In fact, it follows from Problem 1.20 that in this case both principles are
equivalent.

From Corollary 1.5 we immediately get

Corollary 2.5. Solutions of canonical Hamilton’s equations lying on
the hypersurface H(p,q) = E are extremals of the functional

∫
σ pdq in the

class of admissible paths σ lying on this hypersurface.

Corollary 2.6 (Maupertuis’ Principle). The trajectory γ = (q(τ)) of
a closed Lagrangian system (M,L) connecting points q0 and q1 and having
the energy E is the extremal of the functional

∫

γ

pdq =

∫

γ

∂L

∂q̇
(q(τ), q̇(τ))q̇(τ)dτ

on the space of all paths in the configuration space M connecting points q0
and q1 and parametrized such that H(∂L∂q̇ (τ),q(τ)) = E.

The functional

S0(γ) =

∫

γ

pdq

is called the abbreviated action. The precise formulation of Maupertuis’
princple is due to Euler and Lagrange.
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Proof. Every path γ = q(τ), parametrized such that H(∂L∂q̇ ,q) = E,

lifts to an admissible path σ = (∂L∂q̇ (τ),q(τ), τ), a ≤ τ ≤ b, lying on the

hypersurface H(p,q) = E. �

Problem 2.4 (Jacobi). On a Riemannian manifold (M,ds2) consider a La-

grangian system with L(q, v) = 1
2
‖v‖2 + U(q). Let E > U(q) for all q ∈ M . Show that

the trajectories of a closed Lagrangian system (M,L) with total energy E are geodesics
for the Riemannian metric dŝ2 = (E − U(q))ds2 on M .

2.3. The action as a function of coordinates. For a Lagrangian
system (M,L) denote by γ(t; q0, v0) the solution of Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

with the initial conditions γ(t0) = q0 ∈ M, γ̇(t0) = v0 ∈ Tq0M . Fix q0, v0
and t0, and suppose that there exist a neighborhood V0 of v0 ∈ Tq0M , a
neighborhood U of q0 ∈M , and times t such that the mapping

Tq0M 3 v 7→ q = γ(t; q0, v) ∈M

is a diffeomorphism between V0 and U . For such t, for every q ∈ U there is
a unique extremal γ(τ ; q0, v) with v ∈ V0, passing through q0 and q at times
t0 and t. Such extremals are said to form a central field. Basic theorems
in the theory of ordinary differential equations guarantee that for times t
sufficiently close to t0, every extremal γ(t) can be included into a central
field of extremals.

In standard coordinates this mapping is denoted by q̇0 7→ q(t) = γ(t;q0, q̇0).
We define the action as function of coordinates and time (classical action)
by

S(q, t;q0, t0) =

∫ t

t0

L(γ′(τ))dτ,

where γ is the extremal connecting q0 and q. For a fixed energy E,

(2.1) S(q, t;q0, t0) = S0(q, t;q0, t0) + E(t− t0).

Theorem 2.7. Under the above assumptions, the differential of the ac-
tion as a function of coordinates with fixed initial point is given by

dS = pdq −Hdt,

where p = ∂L
∂q̇ and H = pq̇ − L are determined by the velocity q̇ of the

trajectory γ at time t.

Proof. In standard coordinates, let qε be a path in M passing through
q at ε = 0 with the tangent vector v ∈ TqM ' R

n. For the corresponding
family of extremals γε(τ) = γ(τ ;q0,qε) the infinitesimal variation δγ sat-
isfies δγ(t0) = 0 and δγ(t) = v, and it follows from the variation with free
ends formula (1.2) that for fixed t,

dS(v) =
∂L

∂q̇
v.
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This shows that
∂S

∂q
= p. Now along the extremal γ(t;q0,q),

d

dt
S(q(t), t;q0, t0) =

∂S

∂q
q̇ +

∂S

∂t
= L,

so that
∂S

∂t
= L− pq̇ = −H. �

Corollary 2.8. The classical action satisfies the following nonlinear
partial differential equation

(2.2)
∂S

∂t
+H

(
∂S

∂q
,q

)
= 0.

This equation is called the Hamilton-Jacobi equation. Hamilton’s equa-
tions can be used for solving the Cauchy problem

(2.3) S(q, t)|t=t0 = s(q)

for Hamilton-Jacobi equation (2.2) by the method of characteristics, assum-
ing that the Hamiltonian phase flow gt on the phase space M = T ∗M exists.
Namely, consider the Lagrangian submanifold

L =

{
(p,q) ∈ T ∗M : p =

∂s(q)

∂q

}

— a graph of the section ds of the cotangent bundle π : T ∗M → M . The
mapping π|

L
is one to one and for sufficiently small t − t0 the restriction

of the projection π to the Lagrangian submanifold L t = gt−t0L remains to
be one to one. For such t the mapping πt = π ◦ gt ◦ (π|

L
)−1 : M →M is a

diffeomorphism and the extremals γ(τ,q0, q̇0) in the extended configuration

space M×R, where q̇0 =
∂H

∂p
(p0,q0) and (p0,q0) ∈ L , do not intersect for

t0 ≤ τ ≤ t. Such extremals are called the characteristics of the Hamilton-
Jacobi equation.

Proposition 2.1. Under the above assumptions, the solution S(q, t) to
the Cauchy problem (2.2)–(2.3) is given by

S(q, t) = s(q0) +

∫ t

t0

L(γ′(τ))dτ,

where γ(τ) is the characteristic which ends at a given point (q, t) ∈ M × R

and starts at a point (q0, t0) ∈M × R, uniquely determined by q ∈M .

Proof. Using again formula (1.2), where now q0 depends on q, we get
that along the characteristic,

∂S

∂q
(q) =

∂s

∂q0
(q0)

∂q0

∂q
+
∂L

∂q̇
(q, q̇) − ∂L

∂q̇
(q0, q̇0)

∂q0

∂q
= p,
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since
∂s

∂q
(q0) =

∂L

∂q̇
(q0, q̇0) = p0. Now as in the proof of Theorem 2.7, we

get along the characteristic, using that q0(t) depends on q(t),

d

dt
S(q(t), t) =

∂S

∂q
q̇ +

∂S

∂t
=
∂s

∂q
(q0)q̇0 −

∂L

∂q̇
(q0, q̇0)q̇0 + L(q, q̇),

so that
∂S

∂t
= −H(p,q)

and S satisfies the Hamilton-Jacobi equation. �

We can also consider the action S(q, t;q0, t0) as a function of both vari-
ables q and q0. The analog of Theorem 2.3 is the following statement.

Proposition 2.2. Differential of the action as a function of initial and
final points is given by

dS = pdq − p0dq0 −H(p,q)dt+H(p0,q0)dt0.

Problem 2.5. Prove that solution to the Cauchy problem for the Hamilton-Jacobi
equation is unique.

2.4. Classical observables and Poisson bracket. Smooth real-valued
functions on the phase space T ∗M are called classical observables. The vec-
tor space C∞(T ∗M) is an R-algebra — an associative algebra over R with
a unit, given by the constant function 1, and with a multiplication given by
the point-wise product of functions. The commutative algebra C∞(T ∗M)
is called the algebra of classical observables. Assuming that the Hamilton-
ian phase flow gt exists for all times, the time evolution of every observable
f ∈ C∞(T ∗M) is given by

ft(p, q) = f(gt(p, q)) = f(p(t), q(t)), q ∈M,p ∈ TqM.

Equivalently, the time evolution is described by the differential equation

dft
dt

=
dfs+t
ds

∣∣∣∣
s=0

=
d(ft ◦ gs)

ds

∣∣∣∣
s=0

= XH(ft)

=

n∑

i=1

(
∂H

∂pi
∂ft
∂qi

− ∂H

∂qi

∂ft
∂pi

)
=
∂H

∂p

∂ft
∂q

− ∂H

∂q

∂ft
∂p

,

called Hamilton’s equation for classical observables. Setting for f, g ∈
C∞(T ∗M),

(2.4) {f, g} = Xf (g) =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
,

we can rewrite the Hamilton’s equation in the following concise form

(2.5)
df

dt
= {H, f},
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where it is understood that (2.5) is a differential equation for a family of
functions ft on T ∗M with the initial condition ft(p,q)|t=0 = f(p,q). The
properties of the bilinear mapping

{ , } : C∞(T ∗M) × C∞(T ∗M) → C∞(T ∗M)

are summarized below.

Theorem 2.9. The mapping { , } satisfies the following properties.

(i) (Relation with the symplectic form)

{f, g} = ω(Jdf, Jdg) = ω(Xf , Xg).

(ii) (Skew-symmetry)

{f, g} = −{g, f}.

(iii) ( Leibniz rule)

{fg, h} = f{g, h} + g{f, h}.

(iv) (Jacobi identity)

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0

for all f, g, h ∈ C∞(T ∗M).

Proof. Property (i) immediately follows from the definitions of ω and J
in Section 2.1. Properties (ii)-(iii) are obvious. The Jacobi identity is verified
by a straightforward computation, or by the following elegant argument.
Observe that {f, g} is a bilinear form in first partial derivatives of f and
g, and every term in the left hand side of the Jacobi identity is a linear
homogenous function of second partial derivatives of f, g and h. Now the
only terms in the Jacobi identity which could actually contain second partial
derivatives of a function h are the following

{f, {g, h}} + {g, {h, f}} = (XfXg −XgXf )(h).

However, this expression does not contain second partial derivatives of h
since it is commutator of two differential operators of the first order which
is again an operator of the first order! �

The observable {f, g} is called canonical Poisson bracket of the observ-
ables f and g. The Poisson bracket map { , } turns the algebra of classical
observables C∞(T ∗M) into a Lie algebra with a Lie bracket given by the
Poisson bracket. It has an important property that the Lie bracket is a bi-
derivation with respect to the multiplication in C∞(T ∗M). The algebra of
classical observables C∞(T ∗M) provides an example of the Poisson algebra
— a commutative algebra over R with a Lie algebra structure satisfying the
derivation property.
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2.5. Canonical transformations and generating functions.

Definition. A diffeomorphism g of the phase space T ∗M is called a
canonical transformation, if it preserves the canonical symplectic form ω on
T ∗M , i.e., g∗(ω) = ω. By Theorem 2.1, the Hamiltonian phase flow gt is a
one-parameter group of canonical transformations.

Proposition 2.3. Canonical transformations preserve Hamilton’s equa-
tions.

Proof. If an observable f satisfies Hamilton’s equation

df

dt
= ω(JdH, Jdf) = {H, f},

then, since g∗(ω) = ω, the observable f̃ = f ◦ g satisfies

df̃

dt
= ω(JdH̃, Jdf̃) = {H̃, f̃},

where H̃ = H ◦ g. In other words, if in the standard coordinates p,q we
have ω = dp ∧ dq and

ṗ = −∂H
∂q

(p,q), q̇ =
∂H

∂p
(p,q),

then in the new coordinates (P,Q) = g(p,q) we have ω = dP ∧ dQ and

Ṗ = −∂H
∂Q

(P,Q), Q̇ =
∂H

∂P
(P,Q).

�

Consider now the classical case M = R
n. For a canonical transformation

(P,Q) = g(p,q) set P = P(p,q) and Q = Q(p,q). Since dP ∧ dQ =
dp∧dq onT ∗M ' R

2n, the 1-form pdq−PdQ — the difference between the
canonical Liouville 1-form and its pullback by the mapping g — is closed.
From Poincaré lemma it follows that there exists a function F (p,q) on R

2n

such that
pdq − PdQ = dF (p,q).

Now assume that at some point (p0,q0) the n×n matrix
∂Q

∂p
=

{
∂Qi
∂pj

}n

i,j=1

is nondegenerate. Canonical transformation g with this property is called
free. By the inverse function theorem, there exists a neighborhood U of
(p0,q0) in R

2n for which the functions Q,q are coordinate functions. The
function

S(Q,q) = F (p,q)

is called a generating function of the canonical transformation g in U . In
new coordinates Q,q on U we have

p =
∂S

∂q
(Q,q) and P = − ∂S

∂Q
(Q,q).

The converse statement easily follows from the implicit function theorem.
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Proposition 2.4. Let S(Q,q) be a function in some neighborhood U of
a point (Q0,q0) ∈ R

2n such that the n× n matrix

∂2S

∂Q∂q
(Q0,q0) =

{
∂2Q

∂Qi∂qj
(Q0,q0)

}n

i,j=1

is nondegenerate. Then S is a generating function of a local (i.e., defined
in some neighborhood of (Q0,q0) in R

2n) free canonical transformation.

Suppose there is a canonical transformation (P,Q) = g(p,q) such that
H(p,q) = K(Q) for some function K. Then in the new coordinates Hamil-
ton’s equations have the form

Q̇ = 0, Ṗ = −∂K
∂Q

,

and are trivially solved as follows

Q(t) = Q(0), P(t) = P(0) − t
∂K

∂Q
(Q(0)).

Assuming that canonical transformation is free, its generating function S(Q,q)
satisfies the differential equation

(2.6) H
(∂S
∂q

(Q,q),q
)

= K(Q),

where after the differentiation one should substitute q = q(P,Q), defined
by the canonical transformation g−1. Differential equation (2.6) for fixed Q,
as it follows from (2.1), coincides with the Hamilton-Jacobi equation for the
abbreviated action S0 = S − Et with E = K(Q),

H
(∂S0

∂q
(Q,q),q

)
= E.

Theorem 2.10 (Jacobi). Suppose that there exists a function S(Q,q)
depending on n parameters Q = (Q1, . . . , Qn) and satisfying the Hamilton-
Jacobi equation (2.6) for some function K(Q) and that the n × n matrix
∂2S

∂Q∂q
is non-degenerate. Then (locally) the Hamilton’s equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p

reduce to

Q̇ = 0, Ṗ = −∂K
∂Q

and are solved explicitly.

Proof. Set p =
∂S

∂q
(Q,q) and P = − ∂S

∂Q
(Q,q). By the inverse func-

tion theorem, g(p,q) = (P,Q) is a (local) canonical transformation with the
generated function S, and it follows from (2.6) that H(p(P,Q),q(P,Q)) =
K(Q). �
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It seems that finding n-parameter solution of the Hamilton-Jacobi equa-
tion, which is a nonlinear partial differential equation, is a more difficult
problem then solving Hamilton’s equations, which is a system of ordinary
differential equations. It is quite remarkable that for many problems of clas-
sical mechanics one can find n-parameter solution of the Hamilton-Jacobi
equation by the method of separation of variables. By the Jacobi theorem,
this solves the corresponding Hamilton’s equations.

Problem 2.6. Prove Proposition 2.4.

Problem 2.7. Suppose that a canonical transformation g(p,q) = (P,Q) is such
that locally (P,q) can be considered as new coordinates. Prove that S1(P,q) = PQ +
F (p,q), also called a generation function, satisfies

p =
∂S1

∂q
and Q =

∂S1

∂P
.

Find the generating function for identity transformation P = p,Q = q.

2.6. Symplectic manifolds. The notion of a symplectic manifold is a
generalization of the example of a cotangent bundle T ∗M .

Definition. A non-degenerate, closed 2-form ω on a manifold M is
called a symplectic form, and the pair (M , ω) is called a symplectic manifold.

Since symplectic form is non-degenerate, a symplectic manifold M is
necessarily even-dimensional, dim M = 2n. Generalizing further the exam-
ple M = T ∗M , we get the following

Definition. A submanifold L of a symplectic manifold (M , ω) is called
a Lagrangian submanifold, if dim L = 1

2 dim M and the restriction of the
symplectic form ω to L is 0.

Symplectic manifolds form a category. A morphism between (M1, ω1)
and (M2, ω2), also called a symplectomorphism, is a mapping f : M1 → M2

such that ω1 = f∗(ω2). When M1 = M2 and ω1 = ω2, the notion of a sym-
plectomorphism generalizes the notion of a canonical transformation. The
direct product of symplectic manifolds (M1, ω1) and (M2, ω2) is a symplectic
manifold

(M1 × M2, π
∗
1(ω1) + π∗2(ω2)),

where π1 and π2 are, respectively, projections of M1 × M2 onto the first
and second factors in the Cartesian product. In addition to tangent bun-
dles, other examples of symplectic manifolds are given by the real forms of
complex Kähler manifolds, with a symplectic form being the Kähler form.
In particular, for the case of complex projective varieties, a symplectic form
is the pull-back of the Kähler form of the Fubini-Study metric on CP

n.
The simplest example of a non-compact symplectic manifold is a sym-

plectic vector space — the pair (V, ω), where ω is a non-degenerate, skew-
symmetric bilinear form on a vector space V . It is the basis fact of linear
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algebra that every symplectic vector space V has a symplectic basis — a
basis e1, . . . , en, f

1, . . . , fn of V , where 2n = dimV , such that

ω(ei, ej) = ω(f i, f j) = 0 and ω(ei, f
j) = δji , i, j = 1, . . . , n.

In coordinates (p,q) = (p1, . . . , pn, q1, . . . , qn) with respect to this basis,
V ' R

2n and

ω = dp ∧ dq =

n∑

i=1

dpi ∧ dqi.

Every symplectic vector space is isomorphic to a direct product of the phase
planes R

2 with the canonical symplectic form dp ∧ dq.
It turns out that every symplectic manifold locally looks like a symplectic

vector space.

Theorem 2.11 (Darboux’ Theorem). Let (M , ω) be a 2n-dimensional
symplectic manifold. For every point x ∈ M there is a neighborhood U of x
with local coordinates (p,q) = (p1, . . . , pn, q1, . . . , qn) such that on U

ω = dp ∧ dq =

n∑

i=1

dpi ∧ dqi.

Coordinates p,q are called canonical or Darboux coordinates. The proof
proceeds by induction on n with two main steps stated as Problems 2.9 and
2.10.

A non-degenerate 2-form ω for every x ∈ M defines an isomorphism
J : T ∗

xM → TxM by

ω(u1, u2) = J−1(u2)(u1), u1, u2 ∈ TxM .

In local coordinates x = (x1, . . . , x2n) for the coordinate chart (U,ϕ) on M ,
the 2-form ω is given by

ω = 1
2

2n∑

i,j=1

ωij(x) dxi ∧ dxj ,

where {ωij(x)}2n
i,j=1 is a non-degenerate, skew-symmetric matrix-function on

ϕ(U). Denoting the inverse matrix by {ωij(x)}2n
i,j=1, we have

J(dxi) = −
2n∑

j=1

ωij(x)
∂

∂xj
, i = 1, . . . , 2n.

Definition. A Hamiltonian system is a pair consisting of a symplectic
manifold (M , ω), called a phase space, and a smooth real-valued function H
on M , called a Hamiltonian. The motion of a points on the phase space is
described by the vector field

XH = J(dH),

called a Hamiltonian vector field.
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The trajectories of a Hamiltonian system ((M , ω), H) are the integral
curves of a Hamiltonian vector field XH on M . In canonical coordinates
(p,q) they are described by the canonical Hamilton’s equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

Suppose now that the Hamiltonian vector field XH on M is complete. The
phase flow on M associated with a Hamiltonian H is a one-parameter group
{gt}t∈R of diffeomorphisms of M generated by XH . The following statement
generalizes Theorem 2.1.

Theorem 2.12. The Hamiltonian phase flow on the phase space pre-
serves the symplectic form.

Proof. It is sufficient to show that LXH
ω = 0. Using Cartan’s formula

LX = iX ◦ d+ d ◦ iX
and dω = 0, we get for every X ∈ Vect(M ),

LXω = (d ◦ iX)(ω).

Since iX(ω)(Y ) = ω(X,Y ), we have for X = XH and every Y ∈ Vect(M )
that

iXH
(ω)(Y ) = ω(J(dH), Y ) = −dH(Y ).

Thus iXH
(ω) = −dH, and the statement follows from d2 = 0. �

Corollary 2.13. A vector field X on M is a Hamiltonian vector field
if and only if the 1-form iX(ω) is exact.

Definition. A vector field X on a symplectic manifold (M , ω) is called
symplectic vector field, if the 1-form iX(ω) is closed, which is equivalent to
LXω = 0.

The commutative algebra C∞(M ) with a multiplication given by the
point-wise product of functions, is called the algebra of classical observables.
Assuming that the Hamiltonian phase flow gt exists for all times, the time
evolution of every observable f ∈ C∞(M ) is given by

ft(x) = f(gt(x)), x ∈ M ,

and is described by the differential equation

dft
dt

= XH(ft)

— the Hamilton’s equation for classical observables. The Hamilton’s equa-
tions for observables on M have the same form as the Hamilton’s equations
on M = T ∗M , considered in Section 2.3. Since

XH(f) = df(XH) = ω(XH , J(df)) = ω(XH , Xf ),

we have the following
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Definition. A Poisson bracket on the algebra C∞(M ) of classical ob-
servables on a symplectic manifold (M , ω) is a bilinear mapping { , } :
C∞(M ) × C∞(M ) → C∞(M ), defined by

{f, g} = ω(Xf , Xg), f, g ∈ C∞(M ).

Now the Hamilton’s equation takes the following concise form

(2.7)
df

dt
= {H, f},

understood as a differential equation for a family of functions ft on M with
the initial condition ft|t=0 = f . In local coordinates x = (x1, . . . , x2n) on
M ,

{f, g}(x) = −
2n∑

i,j=1

ωij(x)
∂f(x)

∂xi

∂g(x)

∂xj
.

Theorem 2.14. The Poisson bracket { , } on a symplectic manifold
(M , ω) is skew-symmetric, satisfies Leibniz rule and the Jacobi identity.

Proof. The first two properties are obvious. It follows from the defini-
tion of a Poisson bracket and the formula

[Xf , Xg](h) = (XgXf −XfXg)(h) = {g, {f, h}} − {f, {g, h}},
that the Jacobi identity is equivalent to the property

(2.8) [Xf , Xg] = X{f,g}.

Let X and Y be symplectic vector fields. Using Cartan’s formulas we get

i[X,Y ](ω) = LX(iY (ω)) − iY (LX(ω))

= d(iX ◦ iY (ω)) + iXd(iY (ω))

= d(ω(Y,X)) = iXω(X,Y )
(ω),

where Xω(X,Y ) is a Hamiltonian vector field corresponding to ω(X,Y ) ∈
C∞(M ). Since 2-form ω is non-degenerate, this implies that

[X,Y ] = Xω(X,Y ),

and setting X = Xf , Y = Xg, we get (2.8). �

From (2.8) we immediately get

Corollary 2.15. The subspace Ham(M ) of Hamiltonian vector fields
on M is a Lie subalgebra of Vect(M ). The mapping C∞(M ) → Ham(M ),
given by f 7→ Xf , is a Lie algebra homomorphism with the kernel consisting
of locally constant functions on M

In Lagrangian mechanics, a function I on TM is an integral of motion
for the Lagrangian system (M,L), if it is constant along the trajectories. In
Hamiltonian mechanics, an observable I — a function on the phase space M

— is called an integral of motion (first integral) for the Hamiltonian system
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((M , ω), H), if it is constant along the Hamiltonian phase flow. According
to (2.7), this is equivalently to the condition

{H, I} = 0.

It is said that the observables H and I are in involution (Poisson commute).
From the Jacobi identity for the Poisson bracket we get the following

Corollary 2.16 (Poisson’s Theorem). The Poisson bracket of two in-
tegrals of motion is an integral of motion.

Proof. If {H, I1} = {H, I2} = 0, then

{H, {I1, I2}} = {{H, I1}, I2} − {{H, I2}, I1} = 0.

�

It follows from the Poisson theorem that integrals of motion form a Lie
algebra and, by (2.8), corresponding Hamiltonian vector fields form a Lie
subalgebra in Vect(M ). Since {I,H} = dH(XI) = 0, the vector fields XI

are tangent to submanifoldsH = E of M — the level sets of the Hamiltonian
H. This defines a Lie algebra of integrals of motion for the Hamiltonian
system ((M , ω), H) at the level set H = E.

Let G be a finite-dimensional Lie group that acts on a connected sym-
plectic manifold (M , ω) by symplectomorphisms. The Lie algebra g of G
acts on M by vector fields and the linear mapping g 3 ξ 7→ Xξ ∈ Vect(M )
is a homorphism of Lie algebras,

[Xξ, Xη] = X[ξ,η], ξ, η ∈ g.

The G-action is called Hamiltonian, if Xξ are Hamiltonian vector fields, i.e.,
for every ξ ∈ g there is Φξ ∈ C∞(M ), defined up to an additive constant,
such that Xξ = XΦξ

= J(dΦξ). The action is called Poisson, if there is a
choice of functions Φξ such that the linear mapping Φ : g → C∞(M ) is a
homorphism of Lie algebras,

(2.9) {Φξ,Φη} = Φ[ξ,η], ξ, η ∈ g.

Definition. A Lie group G is a symmetry group of the Hamiltonian
system ((M , ω), H), if there is a Hamiltonian action of G on M such that

H(g · x) = H(x), g ∈ G, x ∈ M .

Theorem 2.17 (Noether theorem with symmetries). If G is a symmetry
group of the Hamiltonian system ((M , ω), H), then the functions Φξ, ξ ∈ g,
are the integrals of motion. If the action of G is Poisson, the integrals of
motion satisfy (2.9).

Proof. By definition of the Hamiltonian action, for every ξ ∈ g,

0 = Xξ(H) = XΦξ
(H) = {Φξ, H}.

�
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Corollary 2.18. Suppose that for a Lagrangian system (M,L) a Lie
group G acts on the configuration space M such that L(g∗(v)) = L(v) for
g ∈ G, v ∈ TM . If the Legendre transformation τL : TM → T ∗M is a
diffeomorphism, the Lie group G is a symmetry group of Hamiltonian system
((T ∗M,ω), H) corresponding to (M,L), and the G-action on the phase space
T ∗M is Poisson. In particular, Φξ = −Iξ ◦τL, where Iξ is a Noether integral
of motion for the one-parameter subgroup of G generated by ξ ∈ g.

Proof. According to Theorem 1.3, Noether integrals are linear in mo-
menta, so that for Φξ = −Iξ ◦ τL we get, using (1.3),

XΦξ
= J(dΦξ) = Xξ and Φξ = −iXξ

(θ),

where θ is a canonical Liouville 1-form on T ∗M . Using Cartan’s formula
and Corollary 2.2, we obtain

Φ[ξ,η] = −i[Xξ,Xη ](θ) = −LXξ
iXη(θ) − iXηLXξ

(θ)

= XΦξ
(Φη) = {Φξ,Φη}.

�

Example 2.1. The Lagrangian

L = 1
2mṙ2 − U(r)

for a particle in R
3 moving in a central field (see Section 1.6), is invariant

with respect to the action of the group SO(3) of orthogonal transformations
of the Euclidean space R

3. Let u1, u2, u3 be a basis for the Lie algebra
so(3) corresponding to the rotations with the axes given by the vectors of
the standard basis e1, e2, e3 for R

3, (see Example 1.9 in Section 1.4). These
generators satisfy the commutation relations

[ui, uj ] = εijkuk,

where i, j, k = 1, 2, 3, and εijk is totally antisymmetric tensor, ε123 = 1.
Corresponding Noether integrals of motion are given by Φui

= −Mi, where

M1 = (r × p)1 = r2p3 − r3p2,

M2 = (r × p)2 = r3p1 − r1p3,

M3 = (r × p)3 = r1p2 − r2p1.

(It is convenient to lower the indices of the momenta pi by the Euclidean
metric on R

3.) According to Theorem 2.17 and Corollary 2.18, their Poisson
brackets satisfy

{Mi,Mj} = −εijkMk,

which is also easy to verify directly using (2.4),

{f, g}(r,p) =
∂f

∂p

∂g

∂r
− ∂f

∂r

∂g

∂p
.
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Example 2.2 (The Kepler’s problem). For every α ∈ R the Lagrangian
system on R

3 with

L = 1
2mṙ2 +

α

r
has three extra integrals of motion — the components W1,W2,W3 of the
Laplace-Runge-Lenz vector, given by

W =
p

m
× M − αr

r

(see Section 1.6). Using Poisson brackets from the previous example, to-
gether with {ri,Mj} = −εijkrk and {pi,Mj} = −εijkpk, we get by a straight-
forward computation,

{Wi,Mj} = −εijkWk, and {Wi,Wj} =
2H

m
εijkMk,

where H =
p2

2m
− α

r
is a Hamiltonian of the Kepler’s problem.

Problem 2.8 (Coadjont orbits). Let G be a finite-dimensional Lie group, g be
its Lie algebra, and let g∗ be the dual vector space to g. For u ∈ g∗ let M = Ou be the
orbit of u under the coadjoint action of G on g∗. Show that the formula

ω(u1, u2) = u([x1, x2]),

where u1 = ad∗x1(u), u2 = ad∗x2(u) ∈ Ou and ad∗ stands for the coadjoint action of
a Lie algebra g on g∗, gives rise to a well-defined 2-form on M , which is closed and
non-degenerate. (The 2-form ω is called the Kirillov-Kostant symplectic form.)

Problem 2.9. Let (M , ω) be a symplectic manifold. For x ∈ M choose a function
q1 on M such that q1(x) = 0 and dq1 does not vanish at x, and set X = −Xq1 . Show that
there is a neighborhood U of x ∈ M and a function p1 on U such that X(q1) = 1 on U ,
and there exist coordinates p1, q1, z1, . . . , z2n−2 on U such that

X =
∂

∂p1
and Y = Xp1 =

∂

∂q1
.

Problem 2.10. Continuing Problem 2.9, show that the 2-form ω − dp1 ∧ dq1 on

U depends only on the variables z1, . . . , z2n−2 and is non-degenerate.

Problem 2.11. Do the computation in Example 2.2 and show that the Lie algebra
of the integrals M1,M2,M3,W1,W2,W3 in Kepler’s problem at H(p, r) = E is isomorphic
to the Lie algebra so(4), if E < 0, to the Lie algebra e(3), if E = 0, and to the Lie algebra
so(1, 3), if E > 0.

Problem 2.12 (Symplectic quotients). For a Poisson action of a Lie group G
on a symplectic manifold (M , ω), define the moment map P : M → g∗ by

P (x)(ξ) = Φξ(x), ξ ∈ g, x ∈ M ,

where g is the Lie algebra of G. For every regular value p ∈ g∗ of the moment map
P such that a stabilizer Gp of p acts freely and proper on Mp = P−1(p), the quotient
Mp = Gp\Mp is called a reduced phase space. Show that Mp is a symplectic manifold
with the symplectic form uniquely characterized by the condition that its pull-back to Mp

coincides with the restriction to Mp of the symplectic form ω.
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2.7. Poisson manifolds. The notion of a Poisson manifold generalizes
the notion of a symplectic manifold.

Definition. A Poisson manifold is a manifold M equipped with a
Poisson structure — a skew-symmetric bilinear mapping

{ , } : C∞(M ) × C∞(M ) → C∞(M )

which satisfies the Leibniz rule and Jacobi identity.

Equivalently, M is a Poisson manifold if the algebra A = C∞(M ) of
classical observables is a Poisson algebra — a Lie algebra such that the Lie
bracket is a biderivation with respect to the multiplication in A (a point-
wise product of functions). It follows from the derivation property that in
local coordinates x = (x1, . . . , xn) on M , the Poisson bracket has the form

{f, g}(x) =

N∑

i,j=1

ηij(x)
∂f(x)

∂xi

∂g(x)

∂xj
.

The 2-tensor ηij(x) defines a global section η of the vector bundle TM ∧TM

over M , called a Poisson tensor.
The evolution of classical observables on a Poisson manifold is given by

the Hamilton’s equations, which have the same form as (2.7),

df

dt
= XH(f) = {H, f}.

The phase flow gt for a complete Hamiltonian vector field XH = {H, · }
defines the evolution operator Ut : A → A by

Ut(f)(x) = f(gt(x)), f ∈ A.
Theorem 2.19. Suppose that every Hamiltonian vector field on a Pois-

son manifold (M , { , }) is complete. Then for every H ∈ A, the corre-
sponding evolution operator Ut is an automorphism of the Poisson algebra
A, i.e.,

Ut({f, g}) = {Ut(f), Ut(g)} for all f, g ∈ A.(2.10)

Conversely, if a skew-symmetric bilinear mapping { , } : C∞(M )×C∞(M ) →
C∞(M ) is such that XH = {H, · } are complete vector fields for all H ∈ A
and corresponding evolution operators Ut satisfy (2.10), then (M , { , }) is
a Poisson manifold.

Proof. Let ft = Ut(f), gt = Ut(g) and ht = Ut({f, g}). By definition,

d

dt
{ft, gt} = {{H, ft}, gt} + {ft, {H, gt}} and

dht
dt

= {H,ht}.

If (M , { , }) is a Poisson manifold, then it follows from the Jacobi identity
that

{{H, ft}, gt} + {ft, {H, gt}} = {H, {ft, gt}},
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so that ht and {ft, gt} satisfy satisfy the same differential equation (2.7).
Since these functions coincide at t = 0, (2.10) follows from the uniqueness
theorem for the ordinary differential equations.

Conversely, we get Jacobi identity for the functions f, g and H by dif-
ferentiating (2.10) with respect to t at t = 0. �

Corollary 2.20. A global section η of TM ∧ TM is a Poisson tensor
if and only if

LXf
η = 0 for all f ∈ A.

Definition. The center of a Poisson algebra A is

Z(A) = {f ∈ A : {f, g} = 0 for all g ∈ A}.
A Poisson manifold (M , { , }) is called non-degenerate, if a center of the
Poisson algebra of classical observables A = C∞(M ) consists only of locally
constant functions (Z(A) = R for connected M ).

Equivalently, a Poisson manifold (M , { , }) is non-degenerate if the
Poisson tensor η for every x ∈ M defines an isomorphism J : T ∗

xM → TxM
by

η(u1, u2) = u2(J(u1)), u1, u2 ∈ T ∗
xM .

In local coordinates x = (x1, . . . , xn) for the coordinate chart (U,ϕ) on M ,
we have

J(dxi) =

n∑

j=1

ηij(x)
∂

∂xj
, i = 1, . . . , n.

Poisson manifolds form a category. A morphism between (M1, { , }1)
and (M2, { , }2) is a mapping ϕ : M1 → M2 of smooth manifolds such that

{f ◦ ϕ, g ◦ ϕ}1 = {f, g}2 ◦ ϕ ∀f, g ∈ C∞(M2).

A direct product of Poisson manifolds (M1, { , }1) and (M1, { , }1) is a
Poisson manifold (M1 × M2, { , }) defined by the property that natural
projections maps π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 are
Poisson mappings. For f ∈ C∞(M1 ×M2) and (x1, x2) ∈ M1 ×M2 denote,

respectively, by f
(1)
x2 and f

(2)
x1 restrictions of f to M × {x2} and {x1} ×M2.

Then for f, g ∈ C∞(M1 × M2),

{f, g}(x1, x2) = {f (1)
x2
, g(1)
x2

}1(x1) + {f (2)
x1
, g(2)
x1

}2(x2).

Non-degenerate Poisson manifolds form a subcategory of the category of
Poisson manifolds.

Theorem 2.21. The category of symplectic manifolds is (anti-) isomor-
phic to the category of non-degenerate Poisson manifolds.

Proof. According to Theorem 2.14, every symplectic manifold carries
a non-degenerate Poisson structure. Conversely, let (M , { , }) be a non-
degenerate Poisson manifold. Define the 2-form ω on M by

ω(X,Y ) = J−1(Y )(X), X, Y ∈ Vect(M ),
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where the isomorphism J : T ∗M → TM is defined by the Poisson tensor η.
In local coordinates x = (x1, . . . , xn) on M ,

ω = −
∑

1≤i<j≤n
ηij(x) dxi ∧ dxj ,

where {ηij(x)}ni,j=1 is the inverse matrix to {ηij(x)}ni,j=1. The 2-form ω is

skew-symmetric and non-degenerate. For every f ∈ A let Xf = {f, · } be
the corresponding vector field on M . The Jacobi identity for the Poisson
bracket { , } is equivalent to LXf

η = 0 for every f ∈ A, so that

LXf
ω = 0.

Since Xf = Jdf , we have ω(X, Jdf) = df(X) for every X ∈ Vect(M ), so
that

ω(Xf , Xg) = {f, g}.
By Cartan’s formula,

dω(X,Y, Z) =1
3 (LXω(X,Y ) − LY ω(X,Z) + LZω(X,Y )

−ω([X,Y ], Z) + ω([X,Z], Y ) − ω([Y, Z], X)) ,

where X,Y, Z ∈ Vect(M ). Now setting X = Xf , Y = Xg, Z = Xh, we get

dω(Xf , Xg, Xh) =1
3 (ω(Xh, [Xf , Xg]) + ω(Xf , [Xg, Xh]) + ω(Xg, [Xh, Xf ]))

=1
3

(
ω(Xh, X{f,g}) + ω(Xf , X{g,h}) + ω(Xg, X{h,f})

)

=1
3 ({h, {f, g}} + {f, {g, h}} + {g, {h, f}})

=0.

The exact 1-forms df, f ∈ A, generate the vector space of 1-forms
A1(M ) as a module over A, so that Hamiltonian vector vector fields Xf =
Jdf generate the vector space Vect(M ) as a module over A. Thus dω = 0
and (M , ω) is a symplectic manifold associated with the Poisson manifold
(M , { , }). It follows from the definitions that Poisson mappings of non-
degenerate Poisson manifolds correspond to symplectomorphisms of associ-
ated Poisson manifolds. �

Remark. One can also prove the theorem by a straightforward compu-
tation in local coordinates x = (x1, . . . , xn) on M . Just observe that the
condition

∂ηij(x)

∂xl
+
∂ηjl(x)

∂xi
+
∂ηli(x)

∂xj
= 0, i, jl = 1, . . . , n,

which is a coordinate form of dω = 0, follows from the condition

n∑

j=1

(
ηij(x)

∂ηkl(x)

∂xj
+ ηlj(x)

∂ηik(x)

∂xj
+ ηkj(x)

∂ηli(x)

∂xj

)
= 0,
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which is a coordinate form of the Jacobi identity, by multiplying it three
times by the inverse matrix using

n∑

p=1

(
ηip(x)

∂ηpk(x)

∂xj
+
∂ηip(x)

∂xj
ηpk(x)

)
= 0.

Problem 2.13 (Dual space to a Lie algebra). Let g be a finite-dimensional
Lie algebra with a Lie bracket [ , ], and let g∗ be its dual space. For f, g ∈ C∞(g∗) define

{f, g}(u) = u ([df, dg]) ,

where u ∈ g∗ and T ∗
ug∗ ' g. Prove that { , } is a Poisson bracket. (It was introduced by

Sophus Lie and is called linear, or Lie-Poisson bracket.) Show that bracket is degenerate
and determine the center of A = C∞(g∗).

Problem 2.14. A Poisson bracket { , } on M restricts to a Poisson bracket { , }0

on a submanifold N , if the inclusion ı : N → M is a Poisson mapping. Show that the
Lie-Poisson bracket on g∗ restricts to a non-degenerate Poisson bracket ona coadjoints
orbit, associated with Kirillov-Kostant symplectic form.

Problem 2.15 (Lie-Poisson groups). A finite-dimensional Lie group is called a
Lie-Poisson group if it has a structure of a Poisson manifold (G, { , }) such that the group
multiplication G×G→ G is a Poisson mapping, where G×G is a direct product of Poisson
manifolds. Using a basis ∂1, . . . , ∂n of left-invariant vector fields on G corresponding to a
basis x1, . . . , xn of the Lie algebra g, the Poisson bracket { , } can be written as

{f1, f2}(g) =

n
X

i,j=1

ηij(g)∂if1∂jf2,

where 2-tensor ηij(g) defines a mapping η : G→ Λ2g by η(g) =
Pn

i,j=1 η
ij(g)xi⊗xj . Show

that the bracket { , } equips G with a Lie-Poisson structure if and only if the following
conditions are satisfied: (i) for all g ∈ G,

ξijk(g) =

n
X

l=1

“

ηil(g)∂lη
jk(g) + ηjl(g)∂lη

ki(g) + ηkl(g)∂lη
ij(g)

”

+

n
X

l,p=1

“

cilpη
pj(g)ηkl(g) + cjlpη

pk(g)ηil(g) + cklpη
pi(g)ηjl(g)

”

= 0,

where [xi, xj ] =
Pn

k=1 c
k
ijxk; (ii) the mapping η is a group 1-cocycle with the adjoint

action on Λ2g, i.e., η(g1g2) = Ad−1g2 · η(g1) + η(g2), g1, g2 ∈ G.

Problem 2.16. Show that the second condition in the previous problem trivially
holds when η is a coboundary, η(g) = −r+Ad−1g ·r for some r =

Pn

i,j=1 r
ijxi⊗xj ∈ Λ2g,

and then the first condition is satisfied if and only if the element

ξ(r) = [r12, r13 + r23] + [r13, r23] ∈ Λ3
g

is invariant under the adjoint action of g on Λ3g. Here r12 =
Pn

i,j=1 r
ijxi ⊗ xj ⊗ 1,

r13 =
Pn

i,j=1 r
ijxi ⊗ 1⊗ xj and r23 =

Pn

i,j=1 r
ij1⊗ xi ⊗ xj are corresponding elements in

the universal enveloping algebra Ug of a Lie algebra g. In particular, G is a Lie-Poisson
group if ξ(r) = 0, which is called the classical Yang-Baxter equation.

Problem 2.17. Suppose that r =
Pn

i,j=1 r
ijxi ⊗ xj ∈ Λ2g is such that the

matrix {rij} is non-degenerate, and let {rij} be the inverse matrix. Show r satisfies
the classical Yang-Baxter equation if and only if the map c : Λ2g → C, defined by
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c(x, y) =
Pn

i,j=1 riju
ivj , where x =

Pn

i=1 u
ixi, y =

Pn

i=1 v
ixi, is a non-degenerate Lie

algebra 2-cocycle, i.e., it satisfies

c(x, [y, z]) + c(z, [x, y]) + c(y, [z, x]) = 0, x, y, z,∈ g.

2.8. Hamilton’s and Liouville’s representations. We complete the
formulation of classical mechanics by describing the process of measurement.

In physics, by a measurement of a classical system we understand the
result of a physical experiment which gives numerical values for classical
observables. The experiment consists of creating certain conditions for the
system and it is always assumed that these conditions can be repeated over
and over. The conditions of the experiment define a state of the system, if
repeating these conditions results in probability distributions for the values
of all observables of the system.

Mathematically, a state µ on the algebra A = C∞(M ) of classical ob-
servables on the phase space M is the assignment

A 3 f 7→ µf ∈ P(R),

where P(R) is a set of probability measures on R — Borel measures on R

such that the total measure of R is 1. For every Borel subset E ⊂ R the
quantity 0 ≤ µf (E) ≤ 1 is a probability that in the state µ the value of
the observable f belongs to E. By definition, the expectation value of an
observable f in the state µ is given by the Lebesgue-Stieltijes integral

Eµ(f) =

∫ ∞

−∞
λdµf (λ),

where µf (λ) = µf ((−∞, λ)) is a distribution function of the measure dµf .
The correspondce f 7→ µf should should satisfy the following natural prop-
erties.

S1. |Eµ(f)| <∞ for f ∈ A0 — the subalgebra of bounded observables.
S2. Eµ(1) = 1, where 1 is the unit in A.
S3. For all a, b ∈ R and f, g ∈ A,

Eµ(af + bg) = aEµ(f) + bEµ(g),

if both Eµ(f) and Eµ(g) exist.
S4. If f1 = ϕ ◦ f2 with smooth ϕ : R → R, then for every Borel subset

E ⊂ R,

µf1(E) = µf2(ϕ
−1(E)).

It follows from the property S4 and a definition of Lebesgue-Stieltijes
integral, that

Eµ(ϕ(f)) =

∫ ∞

−∞
ϕ(λ)dµf (λ).

In particular, Eµ(f
2) ≥ 0 for all f ∈ A, so that the states define normalized,

positive, linear functionals on the subalgebra A0.
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Assuming that the functional Eµ can be extended to a bounded, piece-
wise continuous functions on M , one can recover the distribution function
from the expectation values by the formula

µf (λ) = Eµ (θ(λ− f)) ,

where θ(x) is Heavyside step function,

θ(x) =

{
1, x > 0,

0, x ≤ 0.

Indeed, setting θλ(x) = θ(λ− x), we get

µθλ(f)((−∞, s)) = µf
(
θ−1
λ (−∞, s)

)
=





1, s ≥ 1,

µf ([λ,∞)), 0 < s < 1,

0, s ≤ 0,

so that

Eµ(θ(λ− f)) =

∫ ∞

−∞
sdµθλ(f)(s) = 1 − µf ([λ,∞)) = µf (λ).

A probability measure dµ on M defines the state µ on A by assigning14

to every observable f a probability measure µf on R with the distribution
function

µf (λ) =

∫

M

θ(λ− f)dµ =

∫

Mλ(f)

dµ,

where Mλ(f) = {x ∈ M : f(x) < λ}. It follows from the Fubini theorem
that

(2.11) Eµ(f) =

∫ ∞

−∞
λdµf (λ) =

∫

M

fdµ.

Conversely, for locally compact M the Riesz-Markov theorem states
that for every positive, linear functional l on the space Cc(M ) of continuous
functions on M with compact support, there exists a unique regular Borel
measure dµ on M such that

l(f) =

∫

M

fdµ for all f ∈ Cc(M ).

This leads to the following definition.

Definition. The set of states S for a Hamiltonian system with the
phase space M is a set P(M ) of probability measures on M . For every
µ ∈ S and f ∈ A the distribution function µf is defined by

µf (λ) =

∫

M

θ(λ− f)dµ =

∫

Mλ(f)

dµ.

14There should be no confusion in denoting the state and the measure by µ.
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The expectation values of classical observables are given by (2.11). The
states corresponding to Dirac measures dµx supported at points x ∈ M are
called pure states; all other states are called mixed states.

Physically, pure states are characterized by the property that a mea-
surement of every observable in the pure state gives a well-defined result.
Mathematically this can be expressed as follows. Let

σ2
µ(f) = Eµ

(
(f − Eµ(f))2

)
= Eµ(f

2) − Eµ(f)2 ≥ 0

be the dispersion of the observable f in the state µ.

Lemma 2.1. Thus pure states are the only states in which every observ-
able has zero dispersion.

Proof. It follows from the Cauchy-Bunyakovskii-Schwarz inequality
that σ2

µ(f) = 0 if only if f is constant on the support of a probability
measure dµ. �

In particular, a mixture of a pure states dµx and dµy, x, y ∈ M , is a
mixed state with the measure

dµ = αdµx + (1 − α)dµy, 0 < α < 1,

and σ2
µ(f) > 0 for every observable f such that f(x) 6= f(y).

For a system consisting of few interacting particles (say, a motion of
planets in celestian mechanics) it is possible to measure all coordinates and
momenta, so one considers only pure states. Mixed states necessarily appear
for macroscopic systems, when it is impossible to measure all coordinates
and momenta15.

We end this chapter by presenting two equivalent ways of describing
the dynamics of a Hamiltonian system ((M , { , }), H) with the algebra of
observables A = C∞(M ) and the set of states S = P(M ).

1. Hamilton’s description of dynamics. States do not depend
on time, and time evolution of observables is given by Hamilton’s
equations of motion,

dµ

dt
= 0, µ ∈ S, and

df

dt
= {H, f} f ∈ A.

The expectation value of an observable f in the state µ at time t
is given by16

Eµ(ft) =

∫

M

f(gt(x))dµ(x).

15Typically, a macroscopic system consists of N ∼ 1023 molecules. Macroscopic
systems are studied in classical statistical mechanics.

16Assuming that Hamiltonian vector field XH is complete so that the phase flow gt

exists.
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In particular, the expectation value of f in the pure state dµx
corresponding to the point x ∈ M is given by f(gt(x)). Hamilton’s
picture is commonly used for mechanical systems consisting of few
interacting particles.

2. Liouville’s description of dynamics. The observables do not
depend on time

df

dt
= 0, f ∈ A,

and states dµ(x) = ρ(x)dx satisfy Liouville’s equation.

dρ

dt
= −{H, ρ}, ρ(x)dx ∈ S.

Here dx is a volume form on M invariant under the phase flow,

whose existence is assumed17, ρ(x) =
dµ

dx
is the distributional Radon-

Nikodim derivative, and the Liouville equation is understood in the
distributional sense. The expectation value of an observable f in
the state µ at time t is given by

Eµt(f) =

∫

M

f(x)ρ(g−t(x))dx.

Liouiville’s picture, where states are given by generalized distribution
functions on M , is commonly used in statistical mechanics. The equality

Eµ(ft) = Eµt(f) for all f ∈ A, µ ∈ S,
which follows from the invariance of the volume form dx and the change
of variables, expresses the equivalence between Liouville’s and Hamilton’s
descriptions of dynamics.

3. Notes and references

Classical references are the textbooks [Arn89] and [LL76], which are written, re-

spectively, from mathematics and physics perspectives. The treatise [AM78] and the

encyclopaedia surveys [AG90], [AKN97] provide a comprehensive exposition, including

the history and the references to classical works and recent contributions. Monographs

[DFN84], [DFN85] and lecture notes [Bry95] contain all necessary material from differ-

ential geometry and theory of Lie groups, and the reference to other sources. Most of the

problems are fairly standard and are taken from [Arn89],[LL76], [Bry95] and [DFN84].

Problems 2.8 and 2.14 introduce the reader to the orbit method [Kir04], and Problem 2.12

— to the method of symplectic reduction (see [Arn89], [Bry95] and references therein).

Problems 2.15 –2.17 introduce the reader to the theory of Lie-Poisson groups (see [Dri86],

[Dri87],[STS85], and [Tak90] for an elementary exposition).

17It is the Liouville volume form when Poisson structure on M is non-degenerate.



CHAPTER 2

Foundations of Quantum Mechanics

We recall the standard notations and basic facts from the theory of self-
adjoint operators on Hilbert spaces. Let H be a separable Hilbert space
with an inner product ( , ) and let A be a linear operator in H with the
domain D(A) ⊂ H — a linear subset of H . Operator A is called closed if
its graph Γ(A) = {(ϕ,Aϕ) ∈ H × H : ϕ ∈ D(A)} is a closed subspace in

H ×H . If domain of A is dense1 in H , i.e., D(A) = H , the domain D(A∗)
of the adjoint operator A∗ consists of ϕ ∈ H such that there is η ∈ H with
the property that

(Aψ,ϕ) = (ψ, η) for all D(A),

and the operator A∗ is defined by A∗ϕ = η. Operator A is called symmetric
if

(Aϕ,ψ) = (ϕ,Aψ) for all ϕ, ψ ∈ D(A).

By definition, the regular set of a closed operator A with a dense domain
D(A) is the set

ρ(A) = {λ ∈ C |A−λI : D(A) → H is a bijection with a bounded inverse2},
and for λ ∈ ρ(A), the bounded operator Rλ(A) = (A− λI)−1 is called the
resolvent of A at λ. The regular set ρ(A) ⊂ C is open and its complement
σ(A) = C\ρ(A) is the spectrum of A. The subset σp(A) of σ(A) consisting
of eigenvalues of A is called the point spectrum.

An operator A is self-adjoint (or Hermitian) if A = A∗. Equivalently,
A is symmetric and D(A) = D(A∗), and for such operators σ(A) ⊂ R. A
symmetric operator A is called essentially self-adjoint if its closure Ā = A∗∗

is self-adjont. For a symmetric operator A the following conditions are
equivalent:

(i) A is essentially self-adjoint.
(ii) ker(A∗ + iI) = ker(A∗ − iI) = {0}.
(iii) Im(A+ iI) = Im(A− iI) = H .

A symmetric operator A with D(A) = H is bounded and self-adjoint.
An operator A is positive if (Aϕ,ϕ) ≥ 0 for all φ ∈ D(A), which we de-
note by A ≥ 0. Positive operators satisfy the Cauchy-Bunyakovski-Schwarz

1We consider only linear operators with dense domains.
2By the closed graph theorem, the last condition is redundant.

49
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inequality

(0.1) |(Aϕ,ψ)|2 ≤ (Aϕ,ϕ)(Aψ,ψ) for all ϕ, ψ ∈ D(A).

In particular, (Aϕ,ϕ) = 0 implies that Aϕ = 0. Every bounded positive op-
erator is self-adjoint3. We denote by L (H ) the Banach algebra of bounded
linear operators on H . Compact operator A is of trace class, if

∞∑

n=1

µn(A) <∞,

where µn(A) are singular values of A, µn(A) =
√
λn(A) ≥ 0, where λn(A)

are eigenvalues for A∗A. A bounded operator A is of trace class if and only
if for every orthonormal basis {en}∞n=1 for H ,

∞∑

n=1

|(Aen, en)| <∞.

Since a permutation of an orthonormal basis is again an orthonormal basis,
this condition is equivalent to

∞∑

n=1

(Aen, en) <∞

for every orthonormal basis {en}∞n=1 for H . The trace of a trace class
operator A is defined by

TrA =

∞∑

n=1

(Aen, en),

and does not depend on the choice of an orthonormal basis {en}∞n=1 for H .
Operators of trace class form a two-sided ideal S1 (von Neumann-Schatten
ideal) in the Banach algebra L (H ) and

TrAB = TrBA for all A ∈ S1, B ∈ L (H )

— the cyclic property of the trace. Bounded positive operator A is of trace
class if there is an orthonormal basis {en}∞n=1 for H such that

∞∑

n=1

(Aen, en) <∞.

An operator A ∈ L (H ) is Hilbert-Schmidt if AA∗ ∈ S1. The vector space
S2 of Hilbert-Schmidt operators in H is a Hilbert space with the inner
product (A,B)2 = TrAB∗. The Hilbert-Schmidt space S2 ⊂ S1 is also a
two-sided ideal in the Banach algebra L (H ).

3This is true only for complex Hilbert spaces.
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1. Observables and States

1.1. Physical principles. Quantum mechanics studies the microworld
— the physical laws at the atomic scale. The properties of the microworld are
so different from our everyday’s experience that there is no surprise that its
laws seem to contradict the common sense. The need for quantum mechanics
is a breakdown of classical mechanics at atomic level, its inadequacy to
describe the properties of microscopic systems. Thus classical mechanics and
classical electrodynamics can not explain stability of atoms and molecules.
Neither can these theories reconcile different properties of light, its wave-
like behavior in interference and diffraction phenomena and its particle-like
behavior in photo-electric emission and scattering by free photons.

We will not discuss here these and other basic experimental facts, re-
ferring the interested reader to physics textbooks. Nor will we follow the
historic path of the theory. Instead, we show how to formulate quantum me-
chanics using the general notions of states, observables and time evolution,
described in the previous chapter. The departure from classical mechanics
is that we will realize these notions differently. The fundamental difference
between microworld and the perceived world around us is that in the mi-
croworld every experiment results in interaction with the system and thus
disturbs its properties, whereas in classical physics it is always assumed
that one can neglect the disturbances the measurement brings upon a sys-
tem. This imposes a limitation on our powers of observation and leads to a
conclusion that there exist observables which can not be measured simulta-
neously.

Mathematically, this means that observables in quantum mechanics no
longer commute. Indeed, according to Gelfand-Naimark theorem, every
semi-simple commutative Banach algebra with unit is an algebra of contin-
uous functions on a compact topological space, the spectrum of the algebra.
This is the situation we have in classical mechanics, where the spectrum of
the algebra of classical observables is the phase space. An example of a non-
commutative algebra is given by the Banach algebra of bounded operators
on a complex Hilbert space, and it is this algebra which plays a funda-
mental role in quantum mechanics. Here we formulate the basic principles
of quantum mechanics in the precise mathematical form. At this point it
should be noted that one can not verify directly the principles lying in the
foundation of quantum mechanics. Nevertheless, the validity of quantum
mechanics, whenever it is applicable, is continuously being confirmed by nu-
merous experimental facts which perfectly agree with the predictions of the
theory4.

1.2. Basic axioms.

4This refers to non-relativistic phenomena at atomic scale.
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A1. With every quantum system there is an associated separable com-
plex Hilbert space H , in physics terminology called the space of
states5.

A2. The set of observables A of a quantum system with the Hilbert
space H consists of all self-adjoint operators on H . The subset
A0 = A ∩L (H ) of bounded observables is a vector space over R.

A3. Set of states S of a quantum system with a Hilbert space H

consists of all positive (and hence self-adjoint) M ∈ S1 such that
TrM = 1. Pure states are projection operators onto one-dimensional
subspaces of H . For ψ ∈ H , ‖ψ‖ = 1, the corresponding projec-
tion is denoted by Pψ. All other states are called mixed states6.

A4. The measurement is a correspondence

A × S 3 (A,M) 7→ µA ∈ P(R),

which to every observable A ∈ A and state M ∈ S assigns a
probability measure µA on R. For every Borel subset E ⊂ R,
the quantity 0 ≤ µA(E) ≤ 1 is the probability that for a quantum
system in the state M the result of a measurement of an observable
A belongs to E. The expectation value (the mean-value) of an
observable A ∈ A in a state M ∈ S is

〈A|M〉 =

∫ ∞

−∞
λdµA(λ),

where µA(λ) = µA((−∞, λ)) is a distribution function for the
probability measure µA.

The set of states S is a convex set. According to the Hilbert-Schmidt
theorem on the canonical decomposition for compact self-adjoint operators,
for every M ∈ S there exists (finite or infinite) orthonormal set {ψn}Nn=1 in
H such that

(1.1) M =

N∑

n=1

αnPψn and TrM =

N∑

n=1

αn = 1,

where αn > 0 are non-zero eigenvalues of M . Thus every mixed state is a
convex linear combination of pure states. The following result characterizes
the pure states.

Lemma 1.1. A state M ∈ S is a pure state if and only if it can not be
represented as a non-trivial convex linear combination in S .

Proof. Clearly, if M ∈ S can not be represented as a non-trivial con-
vex linear combination of states, then M = Pψ for some ψ ∈ H , ‖ψ‖ = 1.
Conversely, suppose that

Pψ = aM1 + (1 − a)M2, 0 < a < 1,

5Space of pure states, to be precise.
6In physics terminology, operator M is called the density operator.
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and let H = Cψ⊕H1 be the orthogonal sum decomposition. Since M1 and
M2 are positive operators, for ϕ ∈ H1 we have

a(M1ϕ, ϕ) ≤ (Pψϕ, ϕ) = 0,

so that (M1ϕ, ϕ) = 0 for all ϕ ∈ H1 and by (0.1) we get M1|H1
= 0. Since

M1 is self-adjoint, it leaves the complimentary subspace Cψ invariant, and
from TrM1 = 1 it follows that M1 = Pψ, and therefore, M2 = Pψ. �

Explicit construction of the correspondence A × S → P(R) is based
on the general spectral theorem of von Neumann, which emphasizes the
fundamental role self-adjoint operators play in quantum mechanics.

Definition. A projection-valued measure on R is a mapping P : B(R) →
L (H ) of the σ-algebra B(R) of Borel subsets of R into the Banach algebra
of bounded operators on H , satisfying the following properties,

PM1. For every Borel subset E ⊂ R, P(E) is an orthogonal projection,
i.e., P(E) = P(E)2 and P(E) = P(E)∗.

PM2. P(∅) = 0, P(R) = I, the identity operator on H .
PM3. For every disjoint union of Borel subsets,

E =

∞∐

n=1

En, P(E) = lim
n→∞

n∑

i=1

P(Ei)

in the strong topology on L (H ).

It follows from properties PM1-PM3 that

(1.2) P(E1)P(E2) = P(E1 ∩ E2) for all E1, E2 ∈ B(R).

With every projection-valued measure P we associate a projection-valued
function

P(λ) = P((−∞, λ)),

called the projection-valued resolution of the identity. It is characterized
by the following properties.

PD1.

P(λ)P(µ) = P(min{λ, µ}).
PD2.

lim
λ→−∞

P(λ) = 0, lim
λ→∞

P(λ) = I.

PD3.

lim
µ→λ−0

P(µ) = P(λ).

For every ϕ ∈ H the resolution of the identity P(λ) defines a distribution
function (P(λ)ϕ, ϕ) of the bounded measure on R (probability measure when
‖ϕ‖ = 1). By the polarization identity

(P(λ)ϕ, ψ) = 1
4 {(P(λ)(ϕ+ ψ), ϕ+ ψ) − (P(λ)(ϕ− ψ), ϕ− ψ)

+ i(P(λ)(ϕ+ iψ), ϕ+ iψ) − i(P(λ)(ϕ− iψ), ϕ− iψ)} ,
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so that (P(λ)ϕ, ψ) corresponds to a complex measure on R — a complex
linear combination of measures.

A measurable function f on R is said to be finite almost everywhere
(a.e.) with respect to the projection-valued measure P, if it is finite a.e. with
respect to all measures (Pψ, ψ), ψ ∈ H . For separable H a theorem of von
Neumann states that for every projection-valued measure P there exists
ϕ ∈ H such that a function f is finite a.e. with respect to P if and only if
it is finite a.e. with respect to the measure (Pϕ, ϕ).

The next statement is the celebrated general spectral theorem of von
Neumann.

Theorem 1.1 (von Neumann). For every self-adjoint operator A on
the Hilbert space H there exists a unique resolution of the identity P(λ),
satisfying the following properties.

(i)

D(A) =

{
ϕ ∈ H

∣∣∣∣
∫ ∞

−∞
λ2d(P(λ)ϕ, ϕ) <∞

}
,

and for every ϕ ∈ D(A)

Aϕ =

∫ ∞

−∞
λ dP(λ)ϕ,

defined as a limit of Riemann-Stieltjes sums in the strong topology
on H . The support of corresponding projection-valued measure P

coincides with the spectrum of A.
(ii) For every continuous function f on R, f(A) is a linear operator on

H with a dense domain

D(f(A)) =

{
ϕ ∈ H

∣∣∣∣
∫ ∞

−∞
f(λ)2d(P(λ)ϕ, ϕ) <∞

}
,

defined for ϕ ∈ D(f(A)) as

f(A)ϕ =

∫ ∞

−∞
f(λ)dP(λ)ϕ,

and understood as in part (i). The operator f(A) satisfies

f(A)∗ = f̄(A),

where f̄ is the complex conjugate function to f , and the opera-
tor f(A) is bounded if and only if the function f is bounded. For
bounded continuous functions f and g,

f(A)g(A)ϕ =

∫ ∞

−∞
f(λ)g(λ)dP(λ)ϕ, ϕ ∈ H .

(iii) For every measurable function f on R, finite a.e. with respect to
the projection-valued measure P, f(A) is a linear operator on H
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with a dense domain D(f(A)) defined as in (ii), understood in the
weak sense: for every ϕ ∈ D(f(A)) and ψ ∈ H ,

(f(A)ϕ, ψ) =

∫ ∞

−∞
f(λ)d(P(λ)ϕ, ψ),

— a Lebesgue-Stieltjes integral with respect to a complex measure.
The correspondence f 7→ f(A) satisfies the same properties as in
(ii).

(iv) For every bounded operator B which commutes with A, that is,
B(D(A)) ⊂ D(A) and AB = BA on D(A), operator B commutes
with the resolution of the identity P(λ) and, therefore, with every
operator f(A).

We will denote the resolution of the identity for a self-adjoint operator
A, given by the spectral theorem, by PA(λ). Conversely, every resolution of
the identity P(λ), as defined by properties PD1-PD3, by virtue of (i)-(ii)
is a resolution of the identity for a self-adjoint operator. It follows from the
spectral theorem that the spectrum of a self-adjoint A coincides with the
support of its projection-valued measure PA, i.e., λ ∈ σ(A) if and only if
PA((λ− ε, λ+ ε)) 6= 0 for all ε > 0.

Now the correspondence A ×S → P(R), postulated in A4, associates
to every M ∈ S and A ∈ A a probability measure µA on R, defined by the
celebrated Born-von Neumann formula

(1.3) µA(E) = Tr PA(E)M, E ∈ B(R).

It follows from the Hilbert-Schmidt decomposition (1.1) that

µA(E) =

N∑

n=1

αn(PA(E)ψn, ψn),

so indeed 0 ≤ µA(E) ≤ 1. We denote by µA(λ) the distribution function of
the probability measure µA, µA(λ) = (PA(λ)ψ, ψ) for M = Pψ.

Lemma 1.2. Suppose that an observable A ∈ A and a state M ∈ S

are such that 〈A|M〉 exists and AM ∈ S1 (this is always the case when
A ∈ A0). Then

〈A|M〉 = TrAM.

In particular, if M = Pψ and ψ ∈ D(A), then

〈A|M〉 = (Aψ,ψ) and 〈A2|M〉 = ‖Aψ‖2.
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Proof. Let {en}∞n=1 be an orthonormal basis for H . It follows from
the spectral theorem that

〈A|M〉 =

∫ ∞

−∞
λdµA(λ) =

∫ ∞

−∞

∞∑

n=1

λd(PA(λ)Men, en)

=

∞∑

n=1

∫ ∞

−∞
λd(PA(λ)Men, en) =

∞∑

n=1

(AMen, en) = TrAM,

where the interchange of the summation and the integration is legitimate
since

∫ ∞
−∞ |λ|dµA(λ) <∞. In particular, when M = Pψ and ψ ∈ D(A),

〈A|M〉 =

∫ ∞

−∞
λd(PA(λ)ψ, ψ) = (Aψ,ψ).

Finally, it follows from the spectral theorem and the change of variables
formula that

‖Aψ‖2 =

∫ ∞

−∞
λ2d(PA(λ)ψ, ψ) =

∫ ∞

0
λd(PA2(λ)ψ, ψ) = 〈A2|M〉.

�

Remark. It is convenient to approximate a unbounded self-adjoint op-
erator A by bounded operators An = fn(A), where fn = χ[−n,n] — a char-
acteristic function of the interval [−n, n]. Assuming that 〈A|M〉 exists, we
have

〈A|M〉 =

∫ ∞

−∞
λdµA(λ) = lim

n→∞

∫ n

−n
λdµA(λ) = lim

n→∞
〈An|M〉.

Definition. Self-adjoint operators A and B commute if the correspond-
ing projection-valued measures PA and PB commute, PA(E1)PB(E2) =
PB(E2)PA(E1) for all E1, E2 ∈ B(R).

The following two results, which follow from the spectral theorem, are
very useful in applications.

Proposition 1.1. The following statements are equivalent.

(i) Self-adjoint operators A and B commute.
(ii) For all λ, µ ∈ C, Imλ, Imµ 6= 0,

Rλ(A)Rµ(B) = Rµ(B)Rλ(A).

(iii) For all u, v ∈ R,

eiuAeivB = eivBeiuA.

(iv) For all u ∈ R, the operators eiuA and B commute.

Slightly abusing notations7, we will often write [A,B] = AB − BA = 0
for commuting self-adjoint operators A and B.

7In general, for unbounded self-adjoint operators A and B the commutator [A,B] =
AB −BA is not necessarily closed, i.e., it could be defined only for ϕ = 0.
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Proposition 1.2. Let A = {A1, . . . , An} be a finite set of self-adjoint,
pair-wise commuting operators on H . Then there exists a unique projection-
valued measure PA on the Borel subsets of R

n having the following proper-
ties.

(i) In the strong operator topology,

Ak =

∫

Rn

λkdPA, k = 1, . . . , n,

where λk is the k-th coordinate function on R
n.

(ii) For every measurable function f on R
n, finite a.e. with respect to

the projection-valued measure PA, f(A1, . . . , An) is a linear opera-
tor on H defined by

f(A1, . . . , An) =

∫

Rn

fdPA,

where the integral us understood in the weak operator topology. The
correspondence f 7→ f(A1, . . . , An) satisfies the same properties as
in the part (ii) of the spectral theorem.

The support of the projection-valued measure PA on R
n is called the joint

spectrum of the commutative family A = {A1, . . . , An}.
Remark. According to von Neumann theorem on a generating operator,

for every commutative family A of self-adjoint operators (not necessarily
finite) on a separable Hilbert space H there is a generating operator — a
self-adjoint operator R on H such that all operators in A are functions of
R.

It seems natural that simultaneous measurement of a finite set of ob-
servables A = {A1, . . . , An} in the state M ∈ S should be described by the
probability measure µA on R

n given by the following generalization of the
Born-von Neumann formula,

(1.4) µA(E) = Tr(PA1(E1) . . .PAn(En)M), E = E1 × · · · ×En ∈ B(Rn).

However, formula (1.4) defines a probability measure on R
n if and only if

P(E) = PA1(E1) . . .PAn(En) is a projection-valued measure on R
n. Since a

product of orthogonal projections is an orthogonal projection only when the
projection operators commute, we conclude that the operators A1, . . . , An
form a commutative family. This result agrees with the requirement that
simultaneous measurement of several observables should be independent of
the order of the measurements of individual observables. We summarize
these arguments as the following axiom.

A5. A finite set of observables A = {A1, . . . , An} can be measured
simultaneously (simultaneously measured observables) if and only
if they form a commutative family. Simultaneous measurement of
the commutative family A ⊂ A in the state M ∈ S is described
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by the probability measure µA on R
n given by

µA(E) = Tr PA(E)M, E ∈ B(Rn),

where PA is the projection-valued measure from Proposition 1.2.
Explicitly, PA(E) = PA1(E1) . . .PAn(En) for E = E1 × · · · × En ∈
B(Rn). For every Borel subset E ⊂ R

n the quantity 0 ≤ µA(E) ≤ 1
is the probability that for a quantum system in the state M the
result of the simultaneous measurement of observables A1, . . . , An
belongs to E.

The axioms A1-A5 are known as Dirac-von Neumann axioms.

Problem 1.1. Prove property (1.2).

Problem 1.2. Prove that the state M is a pure state if and only if TrM2 = 1.

Problem 1.3. Prove all the remaining statements in this section.

1.3. Heisenberg’s uncertainty relations. The variance of the ob-
servable A in the state M , which measures the mean deviation of A from
its expectation value, is defined by

σ2
M (A) = 〈(A− 〈A|M〉I)2|M〉 = 〈A2|M〉 − 〈A|M〉2 ≥ 0,

provided the expectation values 〈A2|M〉 and 〈A|M〉 exist. It follows from
Lemma 1.2 that for M = Pψ, where ψ ∈ D(A),

σ2
M (A) = ‖(A− 〈A|M〉I)ψ‖2 = ‖Aψ‖2 − (Aψ,ψ)2.

Lemma 1.3. For A ∈ A and M ∈ S the variance σM (A) = 0 if and only
if ImM is an eigenspace for the operator A with the eigenvalue a = 〈A|M〉.
In particular, if M = Pψ, then ψ is an eigenvector of A, Aψ = aψ.

Proof. It follows from the spectral theorem that

σ2
M (A) =

∫ ∞

−∞
(λ− a)2dµA(λ),

so that σM (A) = 0 if and only if the probability measure µA is supported
at the point a ∈ R, i.e., µA({a}) = 1. Since µA({a}) = TrPA({a})M and
TrM = 1, we conclude that this is equivalent to ImM being an invariant
subspace for PA({a}). �

Now we formulate generalized Heisenberg’s uncertainty relations.

Proposition 1.3 (H. Weyl). Let A,B ∈ A and let M = Pψ be the pure
state such that ψ ∈ D(A) ∩D(B) and Aψ,Bψ ∈ D(A) ∩D(B). Then

σ2
M (A)σ2

M (B) ≥ 1
4〈i[A,B]|M〉2.

The same inequality holds for all M ∈ S , where by definition 〈i[A,B]|M〉 =
limn→∞〈i[An, Bn]|M〉.
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Proof. Let M = Pψ. Since

[A− 〈A|M〉I,B − 〈B|M〉I] = [A,B],

it is sufficient to prove the inequality

〈A2|M〉〈B2|M〉 ≥ 1
4〈i[A,B]|M〉2.

We have for all α ∈ R,

0 ≤ ‖(A+ iαB)ψ‖2 =α2(Bψ,Bψ) − iα(Aψ,Bψ) + iα(Bψ,Aψ) + (Aψ,Aψ)

=α2(B2ψ, ψ) + α(i[A,B]ψ, ψ) + (A2ψ, ψ),

so that necessarily 4(A2ψ, ψ)(B2ψ, ψ) ≥ (i[A,B]ψ, ψ). The same argument
works for the mixed states. Since

σ2
M (A)σ2

M (B) = lim
n→∞

σ2
M (An)σ

2
M (Bn)

(see the remark in the previous section), it is sufficient to prove the inequality
for bounded A and B. Then using the cyclic property of the trace we have
for all α ∈ R,

0 ≤Tr((A+ iαB)M(A+ iαB)∗) = Tr((A+ iαB)M(A− iαB))

=α2 TrBMB + iαTrBMA− iαTrAMB + TrAMA

=α2 TrMB2 + αTr(i[A,B]M) + TrMA2,

and the inequality follows. �

Heisenberg’s uncertainty relations express quantitatively the fact that
observables which do not commute can not be measured simultaneously,
even in a pure state. This manifests a fundamental difference between the
classical mechanics and the quantum mechanics.

1.4. Dynamics. Though quantum observables A do not form an alge-
bra with respect to an operator product8, a real vector space A0 of bounded
obsevables has a structure of a Lie algebra with the bracket

i[A,B] = i(AB −BA), A,B ∈ A0.

In analogy with classical mechanics, the time evolution of a quantum system
is determined by a quantum observable H ∈ A , called a Hamiltonian
operator (Hamiltonian for brevitiy). The analog of the Hamilton’s picture
in classical mechanics (see Section 2.5 in Chapter 1) is the Heisenberg’s
picture in quantum mechanics, where the states do not depend on time and
bounded observables satisfy Heisenberg’s equations of motion

(1.5)
dA

dt
= {H,A}~, A ∈ A0,

where

(1.6) { , }~ =
i

~
[ , ]

8The product of two non commuting self-adjoint operators is not self-adjoint.
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is called the quantum bracket. The positive number ~ — the Planck con-
stant, is one of the fundamental constants in physics9. Introducing the one-
parameter strongly continuous group U(t) of unitary operators associated
with the self-adjoint operator H,

(1.7) U(t) = e−
i
~
tH , t ∈ R,

the solution to the Heisenberg’s equations of motion with the initial condi-
tion A(0) = A can be written as

(1.8) A(t) = U(t)−1AU(t).

The evolution operator Ut : A0 → A0 is defined by Ut(A) = U−1(t)AU(t),
and extends to the whole set A of quantum observables. The quantum
dynamics of an observable A ∈ A is given by A(t) = Ut(A), and in this
sense all quantum observables (not necessarily bounded) satisfy Heisenberg’s
equations of motion. An observable A whose time evolution (1.8) does not
depend on t is called a quantum integral of motion, or a constant of motion.
An observable A is an integral of motion if and only if it commutes with the
Hamiltonian H, so that, in agreement with (1.5),

{A,H}~ = 0.

By Stone theorem, every strongly-continuous one-parameter group of
uinitary operators10 U(t) is of the form (1.7), where

D(H) = {ϕ ∈ H : lim
t→0

U(t) − I

t
ϕ exists} and Hϕ = i~ lim

t→0

U(t) − I

t
ϕ.

Thus quantum dynamics is described by the strongly continuous one-parameter
group of unitary operators.

The analog of the Liouville’s picture in classical mechanics (see Section
2.5 in Chapter 1) is the Schrödinger’s picture in quantum mechanics, where
observables do not depend on time and the evolution of states is given by

(1.9)
dM

dt
= −{H,M}h, M ∈ S .

The solution to (1.9) with the initial condition M(0) = M can be written
as

(1.10) M(t) = U(t)MU−1(t).

It follows from the cyclic property of the trace that for A ∈ A0,

〈A(t)|M〉 = Tr(U−1(t)AU(t)M) = Tr(AU(t)MU−1(t)) = 〈A|M(t)〉,
which establishes the equivalence between Heisenberg’s and Schrödinger’s
pictures. A quantum integral of motion A in Schrödinger’s picture is defined

9The Planck constant has a physical dimension of the action. Its value ~ =
1.054×10−27 erg×sec, which is determined from the experiment, manifests that quantum
mechanics is a microscopic theory.

10According to von Neumann theorem, on a separable Hilbert space every weakly
measurable one-parameter group of unitary operators is strongly continuous.
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the property that the expectation value 〈A|M(t)〉, where M(t) is given by
(1.10), does not depend on t for any M ∈ S .

It follows from (1.9) that the time evolution of a pure state M = Pψ is
given by M(t) = Pψ(t), where ψ(t) = U(t)ψ. The vector ψ(t) satisfies the
time-dependent Schrödinger equation

(1.11) i~
dψ

dt
= Hψ

with the initial condition ψ(0) = ψ. A state M ∈ S is called stationary if
M(t) = U(t)MU−1(t) does not depend on time, i.e., [M,U(t)] = 0 for all t.
According to Proposition 1.1, this is equivalent to [M,H] = 0.

Lemma 1.4. The pure state M = Pψ is stationary if and only if ψ is the
eigenvector for H,

Hψ = Eψ.

Corresponding eigenvalue E is called the energy and

ψ(t) = e−
i
~
Eψ.

Proof. It follows from U(t)Pψ = PψU(t) that ψ is a common eigenvec-
tor for unitary operators U(t) for all t, U(t)ψ = c(t)ψ, |c(t)| = 1. Since U(t)
is strongly continuous one-parameter group of unitary operators, continuous
function c(t) = (U(t)ψ, ψ) satisfies the equation c(t1 + t2) = c(t1)c(t2) for all

t1, t2 ∈ R, so that c(t) = e−
i
~
tE for some E ∈ R. Thus by the Stone theorem

ψ ∈ D(H) and Hψ = Eψ. �

The eigenvalue equation Hψ = Eψ is called the stationary Schrödinger
equation.

Problem 1.4. Show that if an observable A is such that for every state M the
expectation value 〈A|M(t)〉 does not depend on t, then A is a quantum integral of motion.

Problem 1.5. Show that the solution of the initial value problem for the time-
dependent Schrödinger equation (1.11) is given by

ψ(t) =

Z ∞

−∞
e−

i
~

tλdP(λ)ψ,

where P(λ) is the resolution of identity for the Hamiltonian H.

2. Quantization

To study the quantum system one needs to describe its Hilbert space
of states H and the Hamiltonian H — a self-adjoint operator in H which
defines the evolution of a system. When the quantum system has a classical
analog, the procedure of constructing the corresponding Hilbert space H

and the HamiltonianH is called a quantization of a classical system. Heuris-
tically, a quantization of a classical Hamiltonian system11 ((M , { , }), h) is

11In this chapter we denote classical observables, including the Hamiltonian, by lower-
case roman letters.
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a one-to-one mapping Q : A → A from the set of classical observables
A = C∞(M ) to the set A of quantum observables — the set of all self-
adjoint operators on a Hilbert space H . The map Q depends on a param-
eter ~ > 0, is a linear mapping between the subspaces of bounded classical
and quantum observables, and for all f, g ∈ A satisfies

1
2Q−1(Q(f)Q(g) + Q(g)Q(f)) → fg, Q−1({Q(f),Q(g)}~) → {f, g}

as ~ → 0. The latter property is the so-called correspondence principle. In
particular h 7→ Q(h) = H — the Hamiltonian for a quantum system.

Since quantum mechanics is different from classical mechanics, the cor-
respondence f 7→ Q(f) can not be an isomorphism between the Lie algebras
of bounded classical and quantum observables with respect to classical and
quantum brackets. It becomes an isomorphism only in the limit ~ → 0
when, according to the correspondence principle, quantum mechanics turns
into the classical mechanics. Since quantum mechanics provides a more
accurate and refine description then classical mechanics, quantization of a
classical system may not be unique. However, for many “real” quantum
systems — the systems describing actual physical phenomena, the corre-
sponding Hamiltonian H is defined uniquely by its classical analog.

2.1. Heisenberg’s commutation relations. The simplest classical
system with one degree of freedom is described by the phase space R

2 with
coordinates p, q and the Poisson bracket { , }, associated with the canonical
symplectic form ω = dp ∧ dq. In particular, the Poisson bracket between
the classical observables p and q — the momentum and the coordinate of a
particle, has the following simple form

(2.1) {p, q} = 1.

It is another postulate of quantum mechanics that under the quantization,
the classical observables p and q correspond to the quantum observables P
and Q — self-adjoint operators P and Q on a Hilbert space H , satisfyng
the following properties.

C1. There is a dense D ⊂ H such that P : D → D and Q : D → D.
C2. For all ψ ∈ D,

(PQ−QP )ψ = −i~ψ.
C3. Every bounded operator on H which commutes with P and Q is

a multiple of the identity operator I.

Property C2 is called Heisenberg’s (canonical) commutation relation
for one degree of freedom. In terms of the quantum bracket (1.6) it take the
form

(2.2) {P,Q}~ = I,

which is exactly the same as the Poisson bracket (2.1). The operators P
and Q are called, respectively, the momentum operator and the coordinate
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operator. The correspondence p 7→ P , q 7→ Q with P and Q satisfying C1-
C3 is the cornerstone for the quantization of classical systems. The validity
of (2.2), as well as of quantum mechanics as a whole, is confirmed by the
agreement of the theory with numerous experiments.

It follows from the Heisenberg’s uncertainty relations (see Proposition
1.3), that for any pure state M = Pψ with ψ ∈ D,

σM (P )σM (Q) ≥ ~

2
.

This is a fundamental result saying that it is impossible to measure the
coordinate and the momentum of quantum particle simultaneously: the
more accurate is the measurement of one quantity, the less accurate is the
value of the other. It is often said that quantum particle has no observed
path, so that “quantum motion” differs dramatically from the motion in
classical mechanics.

Now it is straightforward to consider a classical system with n degrees of
freedom, described by the phase space R

2n with coordinates p = (p1, . . . , pn)
and q = (q1, . . . , qn), and the Poisson bracket { , }, associated with the
canonical symplectic form ω = dp ∧ dq. The Poisson brackets between
the classical observables p and q — the momenta and the coordinates of a
particle, have the following form

(2.3) {qk, ql} = 0, {pk, pl} = 0, {pk, ql} = δkl , k, l = 1, . . . , n.

Corresponding quantum momenta and coordinate operators P = (P 1, . . . , Pn)
and Q = (Q1, . . . , Qn) leave a dense domain D ⊂ H invariant and satisfy
Heisenberg’s commutation relations for n degrees of freedom,

(2.4) {Qk, Ql}~ = 0, {P k, P l}~ = 0, {P k, Ql}~ = δkl I, k, l = 1, . . . , n.

It is also assumed that every bounded operator on H which commutes with
all operators P and Q is a multiple of the identity operator I.

Algebraically, Heisenberg’s commutation relations give rise to an irre-
ducible representation of a Heisenberg algebra hn with n degrees of freedom,
defined as follows.

Definition. The Heisenberg algebra hn with n degrees of freedom is a
Lie algebra with the generators xk, . . . , xn, y1, . . . , yn, c and the relations

[xk, c] = 0, [yk, c] = 0, [xk, yl] = δkl c, k, l = 1, . . . , n.

Equivalently, the Heisenberg algebra hn is a one-dimensional central ex-
tension of the abelian Lie algebra R

2n,

0 → R → hn → R
2n → 0,

by the Lie algebra 2-cocycle given by the canonical symplectic form ω on R
2n.

The corresponding element c is called the central element of the Heisenberg
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algebra hn. Explicitly, the Heisenberg algebra is a nilpotent subalgebra of
the Lie algebra of (n+ 2) × (n+ 2) matrices with the elements

n∑

k=1

(ukx
k + vkyk) + αc =




0 u1 u2 . . . un α
0 0 0 . . . 0 v1

0 0 0 . . . 0 v2

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 vn

0 0 0 . . . 0 0



.

It follows from (2.4) that Heisenberg’s commutation relations correspond
to the irreducible representation ρ of hn on the Hilbert space H by skew-
Hermitian operators, defined by ρ(xk) = −iP k, ρ(yk) = −iQk, k = 1, . . . , n,
and ρ(c) = i~I. The operators P k and Qk are necessarily unbounded (see
Problem 2.1), so that rigorous definition of the mapping ρ requires a caution.
To exclude the “pathological” representations, we will assume that ρ is an
integrable representation, i.e., it can be integrated to an irreducible unitary
representation of the Heisenberg group Hn — a connected, simply-connected
Lie group with the Lie algebra hn. Explicitly, the Heisenberg group is a
unipotent subgroup of the Lie algebra SL(n+ 2,R) with the elements

g =




1 u1 u2 . . . un α
0 1 0 . . . 0 v1

0 0 1 . . . 0 v2

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 vn

0 0 0 . . . 0 1



.

Abstractly, the Heisenberg group Hn is generated by two n-parameter abelian

subgroups euX = e
Pn

k=1 ukx
k
, evY = e

Pn
k=1 v

kyk and a one-parameter center
eαc, which satisfy the relations

euXevY = euvcevY euX , where uv =

n∑

k=0

ukv
k.(2.5)

Indeed, it readily follows from the commutation relations of the Heisenberg
algebra and the Campbell-Baker-Hausdorff formula that

euXevY = e
1
2 [uX,vY ]e(uX+vY )

and

evY euX = e−
1
2 [uX,vY ]e(uX+vY ),

which imply (2.5). In the matrix realization, euX = I + uX, evY = I + vY
and eαc = I + αc, where I is the (n+ 2) × (n+ 2) identity matrix.

The exponential map hn → Hn is onto, so that an irreducible unitary
representation R of the Heisenberg group Hn in the Hilbert space H is
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defined by two strongly continuous n-parameter abelian groups of unitary
operators

U(u) = R(euX), V (v) = R(evY ),

satisfying H. Weyl relations

(2.6) U(u)V (v) = ei~uvV (v)U(u),

where by the Schur lemma R(eαc) = ei~αI. Irreducible representation ρ of
the Heisenberg algebra is integrable if ρ = dR, where R is an irreducible
integrable representation of the Heisenberg group. According to the Stone
theorem,

Pk = i
∂U(u)

∂uk

∣∣∣∣
u=0

and Qk = i
∂V (v)

∂vk

∣∣∣∣
v=0

, k = 1, . . . , n.

Remark. Not every irreducible representation of Heisenberg algebra is
integrable, so that H. Weyl relations can not be obtained from the Heisen-
berg’s commutation relations. However, the following heuristic argument
(which ignores the subtleties of dealing with unbounded operators) is com-
monly used in physics textbooks. Consider the case of one degree of freedom
and start with

{P,Q}~ = I.

Since quantum bracket satisfies the Leibniz rule, i.e., it is a derivation, we
have (for a “suitable” function f)

{f(P ), Q}h = f ′(P ).

In particular, choosing f(P ) = e−iuP = U(u), we obtain

U(u)Q−QU(u) = ~uU(u) or U(u)QU(u)−1 = Q+ ~uI.

This implies (for a “suitable” function g)

U(u)g(Q) = g(Q+ ~uI)U(u),

and setting g(Q) = e−ivQ = V (v), we get H. Weyl relation.

We will prove in Section 3.1 that all integrable irreducible representations
of the Heisenberg algebra hn having the same value on the central element c
are unitary equivalent. This justifies the following mathematical formulation
of the Heisenberg’s commutation relations for n degrees of freedom.

Heisenberg’s Commutation Relations. Momenta and coordinate
operators P and Q for a quantum particle with n degrees of freedom corre-
spond to the integrable irreducible representation ρ of the Heisenberg algebra
hn with the property ρ(c) = i~I.

Problem 2.1. Prove that there are no bounded operators on the Hilbert space H

satisfying [A,B] = I.
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2.2. Coordinate and momentum representations. We start with
the case of one degree of freedom and consider two natural realizations of
the Heisenberg’s commutation relation. They are defined by the property
that one of the self-adjoint operators P and Q is “diagonal” (i.e., is a mul-
tiplication by a function operator in the corresponding Hilbert space).

In the coordinate representation, H = L2(R, dq) is the Hilbert L2-space
on the configuration space R with the coordinate q, which is a Lagrangian
subspace of R

2 defined by the equation p = 0. Set

D(Q) =

{
ϕ ∈ H :

∫ ∞

−∞
q2|ϕ(q)|2dq <∞

}

and for ϕ ∈ D(Q) define the operator Q as a “multiplication by q operator”,

(Qϕ)(q) = qϕ(q), q ∈ R,

justifying the name coordinate representation. Coordinate operator Q is
obviously self-adjoint and its projection-valued measure is given by

(2.7) (P(E)ϕ)(q) = χE(q)ϕ(q),

where χE is the characteristic function of a Borel subset E ⊂ R.
Recall that a self-adjoint operator A has an absolutely continuous spec-

trum if for every ψ ∈ H , ‖ψ‖ = 1, the probability measure

νψ(E) = (PA(E)ψ, ψ), E ∈ B(R),

absolutely continuous with respect to the Lebesgue measure on R.

Lemma 2.1. Coordinate operator Q has an absolutely continuous spec-
trum σ(Q) = R, and every bounded operator B which commutes with Q is
a function of Q, B = f(Q) with f ∈ L∞(R).

Proof. Clearly supp PA = R and νψ(E) =
∫
E |ψ(q)|2dq, which proves

the first statement. Now a bounded operator B on H commutes with Q if
and only if iBP(E) = P(E)B for all E ∈ B(R). Using (2.7) we get that for
every E ∈ B(R) with finite Lebesgue measure,

B(χE) = fE ,

where measurable fE satisfies supp fE ⊆ E. Using the commutativity prop-
erty once again, we get that for E1 ⊂ E2, fE2 |E1

= fE1 |E1
. Thus there exists

a measurable function f on R such that f |E = fE |E for every E ∈ B(R).
The linear subspace spanned by all χE ∈ L2(R) is dense in L2(R), and we
get that

(Bϕ)(q) = f(q)ϕ(q) for all ϕ ∈ L2(R).

Since B is a bounded operator, ‖B‖ = ‖f‖∞ <∞ and f ∈ L∞(R). �

We say that the coordinate operator Q has simple, absolutely continuous
spectrum R.
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Remark. By the Schwartz kernel theorem, the operator B can be rep-
resented an integral operator with a distributional kernel K(q, q′). Then the
commutativity BQ = QB implies that, in the distributional sense,

(q − q′)K(q, q′) = 0,

so that K is “proportional” to the Dirac delta-function, i.e.,

K(q, q′) = f(q)δ(q − q′),

with some f ∈ L∞(R). This argument is usually given in the physics text-
books.

Remark. The operatorQ has no eigenvectors — the eigenvalue equation

Qϕ = λϕ

has no solutions in L2(R). However, in the distributional sense, this equation
for every λ ∈ R has a unique (up to a constant factor) solution ϕλ(q) =
δ(q−λ), and these “generalized eigenfunctions” combine to a Schwarz kernel
of the identity operator I on L2(R). This reflects the fact that operator Q
is diagonal in the coordinate representation.

For a pure state M = Pψ, ‖ψ‖ = 1, corresponding probability measure
µQ on R is given by

µQ(E) = νψ(E) =

∫

E
|ψ(q)|2dq, E ∈ B(R).

Physically, this is interpreted that in the state Pψ with the “wave function”
ψ(q), the probability of finding a quantum particle between q and q + dq
is |ψ(q)|2dq. In other words, the modulus square of a wave function is the
probability distribution for the coordinate of a particle.

Corresponding momentum operator P is given by a differential operator

P =
~

i

d

dq

with D(P ) = W 1,2(R) — a Sobolev space of absolutely continuous functions
f on R such that f and its derivative f ′ (defined a.e.) are in L2(R). The
operator P is self-adjoint and it is straightforward to verify that on D =
C∞
c (R) — the space of smooth functions on R with compact support,

QP − PQ = i~I.

Remark. Operator P on H has no eigenvectors — the eigenvalue equa-
tion

Pϕ = pϕ, p ∈ R,

has a solution

ϕ(q) = const × eipq/~



68 2. FOUNDATIONS OF QUANTUM MECHANICS

which does not belong to L2(R). The family of “normalized generalized
eigenfunctions”

ϕp(q) =
1√
2π~

eipq/~

combines to a Schwartz kernel of the inverse ~-dependent Fourier transform
operator, which diagonalizes the momentum operator P . Indeed, in the
distributional sense,

∫ ∞

−∞
ϕp(q)ϕp′(q)dq = δ(p− p′).

Proposition 2.1. Coordinate representation defines an irreducible, in-
tegrable representation of the Heisenberg algebra.

Proof. To show that coordinate representation is integrable, let U(u) =
e−iuP and V (v) = e−ivQ be the corresponding one-parameter groups of
unitary operators. Clearly, (V (v)ϕ)ψ(q) = e−ivqϕ(q) and it easily fol-
lows from the Stone theorem (or by the definition of a derivative) that
(U(u)ϕ)(q) = ϕ(q−~u), so that the operators U(u) and V (v) satisfy H. Weyl
relation (2.6). Such realization of H. Weyl relation is called Schrödinger
representation.

To prove that coordinate representation is irreducible, letB be a bounded
operator commuting with P and Q. By Lemma 2.1, T = f(Q) for some
f ∈ L∞(R). Now commutativity between T and P implies that

TU(u) = U(u)T for all u ∈ R,

which is equivalent to f(q − ~u) = f(q) for all q, u ∈ R, so that f = const
a.e. on R. �

To summarize, the coordinate representation is characterized by the
property that the coordinate operator Q is a multiplication by q operator
and the momentum operator P is a differentiation operator,

Q = q and P =
~

i

d

dq
.

Similarly, momentum representation is defined by the property that the
momentum operator P is a multiplication by p operator. Namely let H =
L2(R, dp) be the Hilbert L2-space on the “momentum space” R with the
coordinate p, which is a Lagrangian subspace of R

2 defined by the equation
q = 0. The coordinate and momentum operators are given by

Q̂ = i~
d

dp
and P̂ = p,

and satisfy the Heisenberg’s commutation relation. In the momentum rep-
resentation, the modulus square of the wave function ψ(p) of a pure state
M = Pψ, ‖ψ‖ = 1, is the probability distribution for the momentum of the
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quantum particle, i.e., the probability that a quantum particle has momen-
tum between p and p+ dp is |ψ(p)|2dp.

Let F~ : L2(R) → L2(R) be the ~-dependent Fourier transform operator,
defined by

ϕ̂(p) = F~(ϕ)(p) =
1√
2π~

∫ ∞

−∞
e−ipq/~ϕ(q)dq.

Here integral is understood as the limit ϕ̂ = limn→∞ ϕ̂n in the strong topol-
ogy on L2(R), where

ϕ̂n(p) =
1√
2π~

∫ n

−n
e−ipq/~ϕ(q)dq.

It is well-known that F is a unitary operator on L2(R) and

Q̂ = F~QF
−1
~
, P̂ = F~PF

−1
~
,

so that coordinate and momentum representations are unitary equivalent.
In particular, since the operator P̂ is obviously self-adjoint, this immedi-
ately shows that the operator P is self-adjoint, and that the momentum
representation is integrable.

For n degrees of freedom, the coordinate representation is defined by
setting H = L2(Rn, dnq), where dnq = dq1 . . . dqn is the Lebesgue measure
on R

n, and

Q = q = (q1, . . . , qn), P =
~

i

∂

∂q
=

(
~

i

∂

∂q1
, . . . ,

~

i

∂

∂qn

)
.

Here R
n is the configuration space with the coordinates q — a Lagrangian

subspace of R
2n defined by the equations p = 0. The coordinate and mo-

menta operators are self-adjoint and satisfy Heisenberg’s commutation rela-
tions. Projection-valued measured for the operators Qk are given by

(Pk(E)ϕ)(q) = χπ−1
k

(E)(q)ϕ(q),

where E ∈ B(R) and πk : R
n → R is a canonical projection onto the k-th

component, k = 1, . . . , n. Correspondingly, the projection-valued measure
P for the commutative family Q = (Q1, . . . , Qn) (see Proposition 1.2) is
defined on the Borel subsets E ⊂ R

n by

(P(E)ϕ)(q) = χE(q)ϕ(q).

The family Q has absolutely continuous joint spectrum R
n.

Coordinate operators Q1, . . . , Qn form a complete system of commuting
observables. This means, by definition, that none of these operators is a
function of the other operators, and that every bounded operator commuting
with Q1, . . . , Qn is a function of Q1, . . . , Qn, i.e., is a multiplication by f(q)
operator for some f ∈ L∞(Rn). The proof repeats verbatim the proof of
Lemma 2.1. For the pure state M = Pψ, ‖ψ‖ = 1, the modulus square
|ψ(q)|2 of the wave function is the density of a joint distribution function
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µQ for the commutative family Q, i.e., the probability of finding a quantum
particle in a Borel subset E ⊂ R

n is given by

µQ(E) =

∫

E

|ψ(q)|2dnq.

The coordinate repsentation defines an irreducible, integrable represen-
tation of the Heisenberg algebra hn. Indeed, corresponding n-parameter
groups of unitary operators U(u) = e−iuP and V (v) = e−ivQ are given by

(U(u)ϕ)(q) = ϕ(q − ~u), (V (v)ϕ)(q) = e−ivqϕ(q),

and satisfy H. Weyl relations (2.6). The same argument as in the proof of
Proposition 2.2 shows that this representation of the Heisenberg group Hn,
called the Schrödinger representation for n degrees of freedom, is irreducible.

In the momentum representation, H = L2(Rn, dnp), where dnp =
dp1 . . . dpn is the Lebesgue measure on R

n, and

Q̂ = i~
∂

∂p
=

(
i~

∂

∂p1
, . . . , i~

∂

∂pn

)
, P̂ = p = (p1, . . . , pn).

Here R
n is the momentum space with the coordinates p — a Lagrangian

subspace of R
2n defined by the equations q = 0.

The coordinate and momentum representations are unitary equivalent
by the Fourier transform. As in the case n = 1, the Fourier transform
F~ : L2(Rn, dnq) → L2(Rn, dnp) is a unitary operator defined by

ϕ̂(p) = F~(ϕ)(p) =(2π~)−n/2
∫

Rn

e−ipq/~ϕ(q)dnq

= lim
N→∞

(2π~)−n/2
∫

|q|≤N

e−ipq/~ϕ(q)dnq,

where the limit is understood in the strong topology on L2(Rn, dnp). As in
the case n = 1, we have

Q̂k = F~QkF
−1
~
, P̂k = F~PkF

−1
~
, k = 1, . . . , n.

In particular, since operators P̂1, . . . , P̂n are obviously self-adjoint, this im-
mediately shows that P1, . . . , Pn are also self-adjoint.

Remark. Following Dirac, physicists use to denote a vector ψ ∈ H by
a ket vector |ψ〉, a vector ϕ ∈ H ∗ in the dual space to H (H ∗ ' H is
a complex anti-linear isomorphism) — by a bra vector 〈ϕ|, and their inner
product — by 〈ϕ|ψ〉. In standard mathematics notation,

(ψ, ϕ) = 〈ϕ|ψ〉 and (Aψ,ϕ) = 〈ϕ|A|ψ〉.
where A is a linear operator. From physics point of view, Dirac’s notations
are intuitive and convenient for working with coordinate and momentum
representations. Denoting by |q〉 = δ(q − q′) and |p〉 = (2π~)−n/2eipq/~
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the set of generalized common eigenfunctions for the operators Q and P

respectively, we formally get

Q|q〉 = q|q〉, P|p〉 = p|p〉,

where operators Q act on q′, and

〈q|ψ〉 =

∫

Rn

δ(q − q′)ψ(q′)dnq′ = ψ(q),

〈p|ψ〉 = (2π~)−n/2
∫

Rn

e−ipq/~ψ(q)dnq = ψ̂(p),

as well as 〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p − p′). Though in our exposition
we are not using Dirac’s notations, this could help the interested reader to
“translate” the notations used in physics textbooks to the standard mathe-
matics notations.

Problem 2.2. Give an example of non-integrable representation of the Heisenberg
algebra.

Problem 2.3. Prove that there exists ϕ ∈ H = L2(R, dq) such the vectors P(E)ϕ,
E ∈ B(R), where P is a projection-valued measure for the coordinate operatorQ, are dense
in H .

Problem 2.4. Find the generating operator for the commutative family Q =
(Q1, . . . , Qn). Does it have a physical interpretation?

Problem 2.5. Find the projection-valued measure for the commutative family
P = (P1, . . . , Pn) in the coordinate representation.

2.3. Free quantum particle. Free classical particle with one degree
of freedom is described by the phase space R

2 with coordinates p, q and the

Poisson bracket (2.1), and by the Hamiltonian function h(p, q) =
p2

2m
. The

Hamiltonian operator of a free quantum particle with one degree of freedom
is

H =
P 2

2m
,

and in coordinate representation is given by

H = − ~
2

2m

d2

dq2
.

It is a self-adjoint operator on H with D(H) = W 2,2(R) — a Sobolev space
of functions in L2(R), whose generalized first and second derivatives are in
L2(R).

The operator H is positive with absolutely continuous spectrum [0,∞)
of multiplicity two. Indeed, let H = L2(R>0,C

2; dσ) be the Hilbert space of
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C
2-valued measurable functions Ψ on the semi-line R>0 = (0,∞), which are

square-integrable with respect to the measure dσ(E) =
√

m
2E dE,

H =

{
Ψ(E) =

(
ψ1(E)
ψ2(E)

)
: ‖Ψ‖2 =

∫ ∞

0
(|ψ1(E)|2 + |ψ2(E)|2)dσ(E) <∞

}
.

Since in momentum representation H is a multiplication by
p2

2m
operator,

under the isomorphism L2(R, dp) ' H,

L2(R, dp) 3 ψ(p) 7→ Ψ(E) =

(
ψ(

√
2mE)

ψ(−
√

2mE)

)
∈ H,

the operator H becomes a multiplication by E operator, HΨ(E) = EΨ(E).

Remark. The Hamiltonian operatorH has no eigenvectors — the eigen-
value equation

Hψ = Eψ

has no solutions in L2(R). However, for every E > 0 this differential equation
has two linear independent bounded solutions

ψ±(q) =
1√
2π~

e±i
√

2mE q/~,

which do not belong to L2(R). In the distributional sense, these solutions
combine to a Schwartz kernel of the unitary operator establishing the iso-
morphism between H = L2(R, dp) and the Hilbert space H in which H acts
as a multiplication by E operator.

The Schrödinger equation for a free particle,

i~
dψ(t)

dt
= Hψ(t), ψ(0) = ψ,

is easily solved by the Fourier transform. Indeed, in the momentum repre-
sentation it takes the form

i~
∂ψ̂(p, t)

∂t
=

p2

2m
ψ̂(p, t), ψ̂(p, 0) = ψ̂(p),

so that

ψ̂(p, t) = e
−
ip2t
2m~ ψ̂(p).

Therefore in the coordinate representation solution is given by

(2.8) ψ(q, t) =
1√
2π~

∫ ∞

−∞
e
i

„

qp− p2

2mt

«

/~
ψ̂(p)dp.

The formula (2.8) describes the motion of a quantum particle and admits
the following physical interpretation. Suppose that the initial condition ψ is
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such that its Fourier transform ψ̂ = F~(ψ) is a smooth function supported
in a neighborhood U0 of p0 ∈ R \ {0} such that 0 /∈ U0 and

∫ ∞

−∞
|ψ̂(p)|2dp = 1.

Such states are called “wave packets”. Then for every compact subset E ⊂ R

we have

(2.9) lim
|t|→∞

∫

E

|ψ(q, t)|2dq = 0.

Since ∫ ∞

−∞
|ψ(q, t)|2dq = 1

for all t, it follows from (2.9) that as |t| → ∞, quantum particle “leaves”
every compact subset of R, so that the motion is infinite. To prove (2.9),

observe that the function χ(p, q, t) = − p2

2m + qp
t — the “phase” in integral

representation (2.8), has the property that |∂χ∂p | > C > 0 for all p ∈ U0,

q ∈ E and large enough |t|. Integrating by parts we get

ψ(q, t) =
1√
2π~

∫

U0

eitχ(q,p,t)/~ψ̂(p)dp

= − 1

it

√
~

2π

∫

U0

∂

∂p


 ψ̂(p)

∂χ(q,p,t)
∂p


 eitχ(q,p,t)/~dp,

so that uniformly on E,

ψ(q, t) = O

(
1

|t|

)
as |t| → ∞.

By repeated integration by parts, we obtain that for every n ∈ N uniformly
on E,

ψ(q, t) = O

(
1

|t|n
)
.

To describe the motion of a free quantum particle in unbounded regions,
we use the stationary phase method. In its simplest form it is stated as
follows.

The Method of Stationary Phase. Let f, g ∈ C∞(R), where f is
real-valued and g has compact support, and suppose that f has a single
non-degenerate critical point x0, i.e., f ′(x0) = 0 and f ′′(x0) 6= 0. Then

∫ ∞

−∞
eiNf(x)g(x)dx =

(
2π

N |f ′′(x0)|

)1/2

eiNf(x0)+ iπ
4

sgnf ′′(x0)g(x0) +O

(
1

N

)

as N → ∞.
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Applying the stationary phase method to the integral representation
(2.8) (and setting N = t), we find that the critical point of χ(q, p, t) is
p0 = mq

t with χ′′(p0) = − 1
m 6= 0, and

ψ(q, t) =

√
m

t
ψ̂

(mq
t

)
e

imq2

~t
−πi

4
+O(t−1)

= ψ0(q, t) +O(t−1) as t→ ∞.

Thus as t→ ∞, the wave function ψ(q, t) is supported on t
mU0 — a domain

where the probability of finding a particle is asymptotically different from
zero. At large t the points in this domain move with constant velocities
v = p

m , p ∈ U0. In this sense, the classical relation p = mv remains valid in
the quantum picture. Moreover, the asymptotic wave function ψ0 satisfies

∫ ∞

−∞
|ψ0(q, t)|2dq =

√
m

t

∫ ∞

−∞

∣∣∣ψ̂
(mq
t

)∣∣∣
2
dq = 1,

and, therefore, describes the asymptotic probability distribution. Similarly,
setting N = −|t|, we can describe behavior of the wave function ψ(q, t) as
t→ −∞.

Remark. In the weak topology on H the vector ψ(t) → 0 as |t| → ∞.
Indeed, for every ϕ ∈ H we get by the Parseval identity

(ψ(t), ϕ) =

∫ ∞

−∞
ψ̂(p)ϕ̂(p)e

− ip2t
2m~ dp,

and the integral goes to zero as |t| → ∞ by the Riemann-Lebesgue lemma.

Classical free particle with n degrees of freedom is described by the
phase space R

2n with coordinates p = (p1, . . . , pn) and q = (q1, . . . , qn), the
Poisson bracket (2.3), and the Hamiltonian function

h(p,q) =
p2

2m
=

(p1)2 + · · · + (pn)2

2m
.

The Hamiltonian operator of a free quantum particle with n degrees of
freedom is

H =
P2

2m
=

(P 1)2 + · · · + (Pn)2

2m
,

and in the coordinate representation is

H = − ~
2

2m
∆,

where

∆ =
∂2

∂q21
+ · · · + ∂2

∂q2n
is the Laplace operator12 in the Cartesian coordinates on R

n. The Hamilton-
ianH is a self-adjoint operator on H = L2(Rn, dnq) withD(H) = W 2,2(Rn)

12It is negative of the Laplace-Beltrami operator of the standard Euclidean metric on
R

n.
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— the Sobolev space on R
n. In the momentum representation,

H =
p2

2m

— a multiplication by a function operator on H = L2(Rn, dnp).
The operator H is positive with absolutely continuous spectrum [0,∞)

of infinite multiplicity. Namely, let Sn−1 = {n ∈ R
n : n2 = 1} be the

(n− 1)-dimensional unit sphere in R
n, dn be the measure on Sn−1 induced

by the Lebesgue measure on R
n, and let

h = {f : Sn−1 → C : ‖f‖2
h =

∫

Sn−1

|f(n)|2dn <∞}.

Let Hn = L2(R>0, h; dσn) be the Hilbert space of h-valued measurable
functions13 Ψ on R>0, square-integrable on R>0 with respect to the measure
dσn(E) = (2mE)

n
2
dE
2E ,

Hn =

{
Ψ : R>0 → h, ‖Ψ‖2 =

∫ ∞

0
‖Ψ(E)‖2

h dσn(E) <∞
}
.

Since in the momentum represntation H is a multiplication by
p2

2m
operator,

under the isomorphism L2(Rn, dnp) ' Hn,

L2(Rn, dnp) 3 ψ(p) 7→ Ψ(E)(n) = ψ(
√

2mE n) ∈ Hn,

the operator H becomes a multiplication by E operator, HΨ(E) = EΨ(E).

Remark. As in the case n = 1, the Hamiltonian operator H has no
eigenvectors — the eigenvalue equation

Hψ = Eψ

has no solutions in L2(Rn). However, for every E > 0 this differential
equation has an infinitely many linear independent bounded solutions

ψn(q) = (2π~)−
n
2 ei

√
2mE nq/~

parametrized by the unit sphere Sn−1. These solutions do not belong to
L2(Rn), but in the distributional sense they combine to a Schwartz kernel
of the unitary operator establishing the isomorphism between the Hilbert
spaces H = L2(Rn, dnp) and Hn.

As in the case n = 1, the Schrödinger equation for free particle,

i~
dψ(t)

dt
= Hψ(t), ψ(0) = ψ,

is solved by the Fourier transform,

ψ(q, t) = (2π~)−n/2
∫

Rn

e
i

„

qp− p2

2mt

«

/~
ψ̂(p)dnp.

13That is, for every f ∈ h the function (f,Ψ) is measurable on R>0.
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For a wave packet — an initial condition ψ such that its Fourier transform
ψ̂ = F~(ψ) is a smooth function supported on a neighborhood U0 of p0 ∈
R
n \ {0} such that 0 /∈ U0 and

∫

Rn

|ψ̂(p)|2dnp = 1,

quantum particle “leaves” every compact subset of R
n and the motion is

infinite. Asymptotically as |t| → ∞, the wave function ψ(q, t) is different
from 0 only when q = p

m t, p ∈ U0.

2.4. Examples of quantum systems. Here we describe quantum sys-
tems that correspond to classical Lagrangian systems introduced in Section
1.3 of Chapter 1. In Hamiltonian formulation, the phase space of these sys-
tems is a symplectic vector space R

2n with canonical coordinates p,q and
symplectic form ω = dp ∧ dq.

Example 2.1 (Newtonian particle). Classical particle in R
n moving a

potential field v(q) is described by the Hamiltonian function

h(p,q) =
p2

2m
+ v(q).

Assume that the Hamiltonian operator for the quantum system is given by

H =
P2

2m
+ V,

so that coordinate and momenta operators satisfy Heisenberg equations of
motion

(2.10) Ṗ = {H,P}~, Q̇ = {H,Q}~.

To determine the operator V , we require that the classical relation q̇ =
p

m
between the velocity and the momentum of a particle is preserved under the
quantization, i.e.,

Q̇ =
P

m
.

Since {P2,Q}~ = 2P, it follows (2.10) that this condition is equivalent to

[V,Qk] = 0, k = 1, . . . , n.

According to Section 2.2, V is a function of commuting operatorsQ1, . . . , Qn,
and the natural choice14 is V = v(Q). Thus the Hamiltonian operator of a
Newtonian particle is

H =
P2

2m
+ v(Q),

and in coordinate representation it is a Schrödinger operator

(2.11) H = − ~
2

2m
∆ + v(q)

14Confirmed by the agreement of the theory with the experiments.
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with the real-valued potential v(q).
The sum of two unbounded, self-adjoint operators is not necessarily self-

adjoint, and one needs to describe admissible potentials v(q) for which H
is a self-adjoint operator on L2(Rn, dnq). If a potential v(q) is real-valued,
locally integrable function on R

n, differential operator (2.11) defines a sym-
metric operator H with the domain C2

0 (Rn) — twice continuously differ-
entiable functions on R

n with compact support. Potentials for which the
operator H has no self-adjoint extensions are clearly non-physical. It may
also happen that H has several self-adjoint extensions which are specified
by some boundary conditions at infinity, which are again non-physical. The
only physical case is when the symmetric operator H admits a unique self-
adjoint extension, i,e., H is essentially self-adjoint15. In Chapter 3 we present
necessary conditions for the essential self-adjointness. Here we only mention
the von Neumann criterion that if A is a closed operator and D(A) = H ,
then H = A∗A is a positive self-adjoint operator.

Example 2.2 (Interacting particles). A closed system of N interacting
particles on R

3 is described by the canonical coordinates r = (r1, . . . , rN ),
the canonical momenta p = (p1, . . . ,pN), ra,pa ∈ R

3, and by the Hamil-
tonian function

(2.12) h(p, r) =

N∑

a=1

p2
a

2ma
+ v(r),

where ma is the mass of the a-th particle, a = 1, . . . , N . Corresponding
Hamiltonian operator H in the coordinate representation has the form

(2.13) H = −
N∑

a=1

~
2

2ma
∆a + v(r).

In particular, when

v(r) =
∑

1≤a<b≤N
v(ra − rb),

the Schrödinger operator (2.13) describes the N -body problem in quantum
mechanics. The fundamental quantum system is the complex atom, formed
by a nuclei of charge Ne and mass M and by N electrons of charge −e and
mass m. Denoting by R ∈ R

3 the position of a nuclei, and by r1, . . . , rN
positions of the electrons and assuming that the interaction is given by the
Coulomb attraction, we get for the Hamiltonian function (2.12)

h(P,p,R, r) =
P2

2M
+

N∑

a=1

p2
a

2m
−

N∑

a=1

Ne2

|R − ra|
+

∑

1≤a<b≤N

e2

|ra − rb|
,

15The closure H̄ = H∗∗ is self-adjoint.
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where P is the canonical momentum of a nuclei. Corresponding Schrödinger
operator H in the coordinate representation has the form16

H = − ~
2

2M
∆ −

N∑

a=1

~
2

2m
∆a −

N∑

a=1

Ne2

|R − ra|
+

∑

1≤a<b≤N

e2

|ra − rb|
.

In the case of the hydrogen atom, N = 1, and the Hamiltonian is

H = − ~
2

2M
∆p −

~
2

2m
∆e −

e2

|rp − re|
,

where rp is the position of the proton, and re is the position of the elec-
tron. As the first approximation, the proton can be considered as infinitely
heavy, so that the hydrogen atom is described by an electron in an attrac-
tive Coulomb field −e2/|r|, where now r = re − rp. The corresponding
Hamiltonian operator takes the form

(2.14) H = − ~
2

2m
∆ − e2

|r| .

We will solve the Schrödinger equation with this Hamiltonian H in Chapter
3.

Example 2.3 (Charged particle in an electromagnetic field). Classical
particle of charge e and mass m moving in the time-independent electro-
magnetic field with scalar and vector potentials ϕ(r) and A(r), r ∈ R

3, is
described by the Hamiltonian function

h(p, r) =
1

2m

(
p − e

c
A(r)

)2
+ eϕ(r).

Corresponding Hamiltonian operator in the coordinated representation is
given by

(2.15) H =
1

2m

(
~

i

∂

∂r
− e

c
A(r)

)2

+ eϕ(r)

— the Schrödinger operator of a particle in an electromagnetic field.

2.5. Harmonic oscillator. The simplest classical system with one de-
gree of freedom is a harmonic oscillator, described by the phase space R

2

with the canonical coordinates p, q, and the Hamiltonian function

h(p, q) =
p2

2m
+
mω2q2

2
.

Here positive ω =
√

k
m (see Section 1.5 in Chapter 1) has a physical meaning

of the frequency of oscillations. Namely, the Hamilton’s equations

ṗ = {h, p} = −mω2q, q̇ = {h, q} =
p

m

16Ignoring the fact that electron has spin, see Chapter 6.
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with the initial conditions p0, q0 are readily solved

p(t) = p0 cosωt−mωq0 sinωt,(2.16)

q(t) = q0 cosωt+
1

mω
p0 sinωt,(2.17)

and describe the harmonic motion.
Corresponding Hamiltonian operator is

H =
P 2

2m
+
mω2Q2

2
,

and in the coordinate representation H = L2(R, dq) is a Schrödinger oper-
ator with a quadratic potential,

H = − ~
2

2m

d2

dq2
+
mω2q2

2
.

The harmonic oscillator is the simplest non-trivial quantum system whose
Schrödinger equation can be solved explicitly. It appears in all problems
involving quantized oscillations, namely in molecular and crystalline vibra-
tions. The exact solution of the harmonic oscillator, described below, has
remarkable17 algebraic and analytic properties.

Set temporarily m = 1 and consider the operators

(2.18) a =
1√
2ω~

(ωQ+ iP ) , a∗ =
1√
2ω~

(ωQ− iP ) ,

defined on W 1,2(R) ∩ Ŵ 1,2(R). It is not difficult to show that a∗ is the
adjoint operator to a and a∗∗ = a, so that a is a closed operator. From the
Heisenberg’s commutation relation (2.2) we get

(2.19) [a, a∗] = I

on W 2,2(R) ∩ Ŵ 2,2(R). Indeed,

aa∗ =
P 2 + ω2Q2

2ω~
+

iω

2ω~
[P,Q] =

P 2 + ω2Q2

2ω~
+

1

2
I,

and

a∗a =
P 2 + ω2Q2

2ω~
− iω

2ω~
[P,Q] =

P 2 + ω2Q2

2ω~
− 1

2
I,

so that (2.19) holds on W 2,2(R) ∩ Ŵ 2,2(R), and

H = ω~
(
a∗a+ 1

2I
)

= ω~
(
aa∗ − 1

2I
)
.

In particular, it follows from the von Neumann criterion that the Hamilton-
ian operator H is self-adjoint.

17Algebraic structure of the exact solution of the harmonic oscillator plays a funda-
mental role in quantum elecrodynamics and in quantum field theory in general.
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The operators a, a∗ and N = a∗a satisfy the commutation relations of a
nilpotent Lie algebra:

(2.20) [N, a] = −a, [N, a∗] = a∗, [a, a∗] = I.

It is due to this Lie-algebraic structure that the Heisenberg’s equations of
motion for and the Schrödinger equation for the harmonic oscillator can be
solved exactly.

Indeed, the Heisenberg’s equations of motion for the operators a and a∗

have the form

ȧ = {H, a}~ = −iωa and ȧ∗ = {H, a∗}~ = iωa∗,

and are readily solved

a(t) = e−ωta0, a∗(t) = eiωta∗0,

where a0, a
∗
0 are the initial conditions. Returning to the operators

P = i

√
ω~

2
(a∗ − a), Q =

√
~

2ω
(a∗ + a),

we get

P (t) = P0 cosωt− ωQ0 sinωt,(2.21)

Q(t) = Q0 cosωt+
1

ω
P0 sinωt.(2.22)

Therefore (note that we have set m = 1), solutions of classical and quantum
equations of motion for the harmonic oscillator have the same form!

Now consider the Schrödinger equation

Hψ = Eψ

for the harmonic oscillator. We will show that the Hamiltonian H has purely
discrete spectrum by determining explicitly the eigenvalues — the energy
levels of the harmonic oscillator, and the corresponding complete system of
the eigenvectors. First, suppose that the following properties hold.

I. There exists a non-zero ψ ∈ H such that

Hψ = Eψ.

II. For all n ∈ N, ψ ∈ D(an) ∩D((a∗)n).

Then the following statements hold.

(a) There exists ψ0 ∈ H , ‖ψ0‖ = 1, such that

Hψ0 = ~ω
2 ψ0

— the ground state vector for the harmonic oscillator.
(b) The vectors

(2.23) ψn =
(a∗)n√
n!
ψ0 ∈ H , n = 0, 1, 2, . . . ,
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satisfy

(2.24) a∗ψn =
√
n+ 1ψn+1, anψn =

√
nψn−1,

and are the orthonormal eigenvectors for H with the eigenvalues
~ω(n+ 1

2),

Hψn = ~ω(n+ 1
2)ψn.

(c) Operator H is essentially self-adjoint on the Hilbert space H0 — a
closed subspace of H , spanned by the orthonormal set {ψn}∞n=0.

It is easy to prove these statements. If a non-zero ψ ∈ H satisfies
properties I-II, then rewriting commutation relations (2.20) as

Na = a(N − I) and Na∗ = a∗(N + I),

we get for all n ≥ 0,

(2.25) Nanψ = (E − n)anψ and N(a∗)nψ = (E + n)(a∗)nψ.

Since N ≥ 0 on D(N), it follows from the first equation in (2.25) that there

exists n0 ≥ 0 such that an0ψ 6= 0 but an0+1ψ = 0. Setting ψ0 =
an0ψ

‖an0ψ‖ ∈ H

we get

(2.26) aψ0 = 0 and Nψ0 = 0.

Since H = ~ω(N + 1
2I), this proves (a). To prove (b) we observe that it

follows from the commutation relation (2.19) and the Leibniz rule that

(2.27) [a, (a∗)n] = n(a∗)n−1,

and we get

‖(a∗)nψ0‖2 = ((a∗)nψ0, (a
∗)nψ0) = (ψ0, a

n−1a(a∗)nψ0)

= n(ψ0, a
n−1(a∗)n−1ψ0) + (ψ0, a

n−1(a∗)naψ0)

= n‖(a∗)n−1ψ0‖2 = · · · = n!‖ψ0‖2 = n!

The first equation in (2.24) is trivial, the second equation follows from (2.26)-
(2.27), and we conclude that ψn are normalized eigenvectors of H with the
eigenvalues ~ω(n + 1

2). The last fact also follows from the second equa-
tion in (2.25). The eigenvectors ψn are orthogonal since the corresponding
eigenvalues are distinct and the operator H is symmetric. Finally, property
(c) immediately follows from the fact that, according to (b), the subspaces
Im (H ± iI)|

H0
are dense in H0.

Remark. Since coordinate representation of the Heisenberg’s commu-
tation relations is irreducible, it is tempting to conclude from the properties
(a)-(c) that H0 = H . Namely, it follows from the construction that the
linear span of vectors ψn — a dense subspace of H0, is invariant for the
operators P and Q. However, we can not immediately conclude that the
projection operator Π0 onto the subspace H0 commutes with P and Q.
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By using the coordinate representation, we can prove properties I-II

and that H0 = H . Namely, equation aψ0 = 0 becomes a first order linear
differential equation (

~
d

dq
+ ωq

)
ψ0 = 0,

so that

ψ0(q) = 4

√
ω

π~
e
− ω

2~
q2

and

‖ψ0‖2 =

√
ω

π~

∫ ∞

−∞
e
−ω

~
q2

dq = 1.

Correspondingly, the eigenfunctions

ψn(q) =
1√
n!

(
1√
2ω~

(
ωq − ~

d

dq

))n

ψ0

are of the form Pn(q)e
− ω

2~
q2

, where Pn(q) are polynomials of degree n. Thus
to prove that the functions {ψn}∞n=0 form an orthonormal basis in L2(R), it

is sufficient to show that the system of functions {qne−q2}∞n=0 is complete in
L2(R). Namely, suppose that f ∈ L2(R) is such that

∫ ∞

−∞
f(q)qne−q

2
dq = 0 for all n = 0, 1, 2, . . .

For z ∈ C let

F (z) =

∫ ∞

−∞
f(q)eiqz−q

2
dq.

Clearly, the integral is absolutely convergent for all z ∈ C and defines an
entire function. We have

F (n)(0) = in
∫ ∞

−∞
f(q)qne−q

2
dq = 0 for all n = 0, 1, 2, . . . ,

so that F (z) = 0 for all z ∈ C. This implies that for the function g(q) =

f(q)e−q
2 ∈ L1(R) ∩ L2(R) we have F (g) = 0, where F is the “ordinary”

(~ = 1) Fourier transform. Thus g = 0 and, therefore, f = 0.
The polynomials Pn are expressed through classical Hermite-Tchebyscheff

polynomials Hn, defined by

Hn(q) = (−1)neq
2 dn

dqn
e−q

2
, n = 0, 1, 2 . . .

Namely, using the identity

e
q2

2
dn

dqn
e−q

2
= −

(
q − d

dq

) [
e

q2

2
dn−1

dqn−1
e−q

2

]

= · · · = (−1)n
(
q − d

dq

)n

e−
q2

2



2. QUANTIZATION 83

we obtain

ψn(q) = 4

√
ω

π~

1√
2nn!

e
− ω

2~
q2

Hn

(√
ω

~
q

)
.

We summarize these results as follows.

Theorem 2.1. The Hamiltonian

H = −~
2

2

d2

dq2
+
mω2q2

2

of a harmonic oscillator with one degree of freedom is a self-adjoint operator

on H = L2(R) with the domain D(H̄) = W 2,2(R)∩ Ŵ 2,2(R), and with pure
point spectrum

Hψn = Enψn, n = 0, 1, 2, . . .

with the energy levels En = ~ω(n + 1
2). The corresponding eigenfunctions

ψn form an orthonormal basis for H and are given by

(2.28) ψn(q) = 4

√
mω

π~

1√
2nn!

e
−mω

2~
q2

Hn

(√
mω

~
q

)
,

where Hn(q) are classical Hermite-Tchebyscheff polynomials.

Proof. Consider the operator H defined on the Schwartz space S (R)
of rapidly decreasing functions. Since the operator H is symmetric and has
a complete system of eigenvectors in S (R), the subspaces Im(H ± iI) are
dense H , so that H is essentially self-adjoint. The proof that its self-adjoint
closure (which we continue to denote by H) has the domain W 2,2(R) ∩
Ŵ 2,2(R), is left to the reader. �

Remark. Since the energy levels of the Hamiltonian H are equidistant
by ~ω, the quantum harmonic oscillator describes the system of identical
“quanta” with the energy ~ω. The state |0〉 = ψ0, in Dirac’s notations, is
the vacuum state with no quanta present and with the vacuum energy 1

2~ω,

and the states |n〉 = ψn consist of n quanta with the energy ~ω(n + 1
2).

According to (2.24), the operator a∗ adds one quant to the state |n〉 and
is called a creation operator, and the operator a destroys one quant in the
state |n〉 and is called an annihilation operator.

Example of harmonic oscillator illustrates the dramatic difference be-
tween the quantum motion and the motion in classical mechanics. The
classical motion in the potential V (q) = 1

2mω
2q2 is finite: a particle with

energy E moves in the region |ωq| ≤
√

2E
m , whereas there is always an non-

zero probability of finding quantum particle outside the classical region.
Thus for the ground state energy E = 1

2~ω this probability is
∫

|q|≥
q

~

mω

|ψ0(q)|2dq =
2√
π

∫ ∞

1
e−x

2
dx ' 0.1572992070.
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Harmonic oscillator with n degrees of freedom is a classical system de-
scribed by the phase space R

2n with the canonical coordinates p,q, and by
the Hamiltonian function

h(p,q) =
p2

2m
+ v(q),

where v(q) is a positive-definite quadratic form on R
n. By applying an

orthogonal transformation to both coordinates q and momenta p, we can
assume that the form v(q) is diagonal and

h(p,q) =
p2

2m
+

n∑

j=1

mω2
j q

2
j

2

with ω1, . . . , ωn > 0. The motion of the system is described by an indepen-
dent harmonic motions in (pj , qj)-planes with frequences ωj , j = 1, . . . , n.

Corresponding Hamiltonian operator is

H =
P2

2m
+

n∑

j=1

mω2
jQ

2
j

2

and in the coordinate representation H = L2(Rn, dnq) is a Schrödinger
operator with quadratic potential,

H = − ~
2

2m
∆ +

n∑

j=1

mω2
j q

2
j

2
.

Hamiltonian H is a self-adjoint operator with D(H) = W 2,2(Rn)∩Ŵ 2,2(Rn)
and a pure discrete spectrum. Corresponding eigenfunctions

ψk(q) = ψk1(q1) . . . ψkn(qn),

where k = (k1, . . . , kn) and ψkj
(qj) are eigenfunctions (2.28) with ω = ωj ,

form an orthonormal basis for L2(Rn). Corresponding energy levels are
given by

Ek = ~ω1(k1 + 1
2) + · · · + ~ωn(kn + 1

2).

The spectrum of H is simple if and only if ~ω1, . . . , ~ωn are linear indepen-
dent over Z. The highest degeneracy case is ω1 = · · · = ωn = ω, when the
multiplicity of the eigenvalue

Ek = ~ω

n∑

j=1

(kj + 1
2)

is the partition function pn(|k|) — the number of representations of the
integer |k| = k1 + · · · + kn as a sum of n non-negaitve integers. Setting
m = 1 and introducing the operators18

(2.29) aj =
1√
2ω~

(ωQj + iPj) , a∗j =
1√
2ω~

(ωQj − iPj) , j = 1, . . . , n,

18Here using the standard Euclidean metric on R
n, we lowered the indices for P j .
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we get commutation relations for creation and annihilation operators for n
degrees of freedom,

(2.30) [aj , al] = 0, [a∗j , a
∗
l ] = 0, [aj , a

∗
l ] = δjlI, j, l = 1, . . . , n,

which generalize relation (2.18) for the one degree of freedom. The opera-
tors aj , a

∗
j and Nj = a∗jaj , j = 1, . . . , n, satisfy commutation relations of a

nilpotent Lie algebra, a direct sum of n copies of the nilpotent Lie algebra
(2.20). In particular, the operator

N =

n∑

j=1

a∗jaj

satisfies

[N, aj ] = −aj , [N, a∗j ] = a∗j , j = 1, . . . , n,

and H = ~ω(N + n
2 I).

Problem 2.6. Show that 〈H|M〉 ≥ 1
2
~ω for every M ∈ S , where H is the

Hamiltonian of harmonic oscillator with one degree of freedom.

Problem 2.7. Let q(t) = A cos(ωt+α) be the classical trajectory of the harmonic

oscillator with m = 1 and the energy E = ω2A2

2
, and let µα be the probability measure on

R supported at the point q(t). Show that the convex linear combination of the measures
µα, 0 ≤ α ≤ 2π, is the probability measure on R with the distribution function µ(q) =
θ(A2−q2)

π
√

A2−q2
, where θ(q) is the Heavyside step function.

Problem 2.8. Show that when n → ∞ and ~ → 0 such that ~ω(n + 1
2
) = ω2A2

2

remains fixed, the envelope of the distribution function |ψn(q)|2 on the interval |q| ≤ A
coincides with the classical distribution function µ(q) from the previous problem. (Hint:

Prove the integral representation

e−q2

Hn(q) =
2n+1

√
π

Z ∞

0

e−y2

yn cos(2qy − nπ
2

)dy,

and derive the asymptotic formula

ψn(q) =

r

2

π

1
4
p

A2 − q2
cos

n ω

2~

“

A2 sin−1 q

A
+ q

p

A2 − q2 − A2π

2

”

+O(1)
o

when ~ → 0 and n+ 1
2

= ωA2

2~
, |q| < A.)

Problem 2.9. Complete the proof of Theorem 2.1.

Problem 2.10. Show that the operators Eij = a∗i aj , i, j = 1, . . . , n, satisfy the
commutation relations of the Lie algebra sl(n,C).

2.6. Holomorphic representation and Wick symbols. Let

`2 =

{
c = {cn}∞n=0 : ‖c‖2 =

∞∑

n=0

|cn|2 <∞
}

be the Hilbert `2-space. The choice of an orthonormal basis {ψn}∞n=0 for
L2(R, dq), given by the eigenfunctions (2.28) of the Schrödinger operator for
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the harmonic oscillator, defines the Hilbert space isomorphism L2(R, dq) '
`2,

L2(R, dq) 3 ψ =

∞∑

n=0

cnψn 7→ c = {cn}∞n=0 ∈ `2,

where

cn = (ψ, ψn) =

∫ ∞

−∞
ψ(q)ψn(q)dq,

since the functions ψn are real-valued. Using (2.24) we get

a∗ψ =

∞∑

n=0

cna
∗ψn =

∞∑

n=0

√
n+ 1 cnψn+1 =

∞∑

n=1

√
n cn−1ψn, ψ ∈ D(a∗),

and

aψ =

∞∑

n=0

cnaψn =

∞∑

n=0

√
n cnψn−1 =

∞∑

n=0

√
n+ 1 cn+1ψn, ψ ∈ D(a),

so that in `2 creation and annihilation operators a∗ and a are represented
by the following semi-infinite matrices:

a =




0
√

1 0 0 .

0 0
√

2 0 .

0 0 0
√

3 .
. . . . .


 , a∗ =




0 0 0 0 .√
1 0 0 0 .

0
√

2 0 0 .

0 0
√

3 0 .
. . . . .



.

As the result,

N = a∗a =




0 0 0 0 .
0 1 0 0 .
0 0 2 0 .
0 0 0 3 .
. . . . .



,

so that the Hamiltonian of the harmonic oscillator is represented by a diag-
onal matrix,

H = ~ω(N + 1
2) = diag{1

2~ω, 3
2~ω, 5

2~ω, . . . }.
This representation of the Heisenberg’s commutation relations is called

representation by the occupation numbers, and has the property that in this
representation the Hamiltonian H of the harmonic operator is diagonal.

Another representation where H is diagonal is constructed as follows.
Let D be the space of entire functions f(z) with the inner product

(f, g) =
1

π

∫∫

C

f(z)g(z)e−|z|2d2z,
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where d2z = i
2dz ∧ dz̄ is the Lebesgue measure on C ' R

2. It is easy to
check that D is a Hilbert space with the orthonormal basis

fn(z) =
zn√
n!
, n = 0, 1, 2, . . .

The correspondence

`2 3 c = {cn}∞n=0 7→ f(z) =

∞∑

n=0

cnfn(z) ∈ D ,

establishes the Hilbert space isomorphism `2 ' D . The realization of a
Hilbert space H as the Hilbert space D of entire functions is called a holo-
morphic representation. In the holomorphic representation,

a∗ = z, a =
d

dz
, and H = ~ω

(
z
d

dz
+

1

2

)
,

and it is very easy to show that a∗ is the adjoint operator to a. The mapping

H 3 ψ =

∞∑

n=0

cnψn 7→ f(z) =

∞∑

n=0

cnfn(z) ∈ D ,

establishes the isomorphism between the coordinate and holomorphic rep-
resentations. It follows from the formula for the generating function for
Hermite-Tchebyscheff polynomials,

∞∑

n=0

Hn(q)
zn

n!
= e2qz−z

2
,

that the corresponding unitary operator U : H → D is an integral operator

Uψ(z) =

∫ ∞

−∞
U(z, q)ψ(q)dq

with the kernel

U(z, q) =

∞∑

n=0

ψn(q)fn(z) = 4

√
mω

π~
e

mω
2~
q2−

“√
mω

~
q− 1√

2
z

”2

.

Another useful realization is a representation in the Hilbert space D̄ of
anti-holomorphic functions f(z̄) on C with the inner product

(f, g) =
1

π

∫∫

C

f(z̄)g(z̄)e−|z|2d2z,

given by

a∗ = z̄, a =
d

dz̄
.

This representation is used to introduce the so-called Wick symbols of the
operators. Namely, let A be an operator in D̄ which is a polynomial with
constant coefficients in creation and annihilation operators a∗ and a. Using
commutation relation (2.19), we can move all operators a∗ to the left of the
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operators a, and represent A in the Wick normal form as the following finite
sum

(2.31) A =
∑

l,m

Alm(a∗)lam.

By definition, the Wick symbol A(z̄, z) of the operator A is

(2.32) A(z̄, z) =
∑

l,m

Almz̄
lzm.

It is a restriction of a polynomial A(v, z) in variables v and z to v = z̄.
In order to define Wick symbols of bounded operators in D̄ , we consider

the family of coherent states, or Poisson vectors Φv ∈ D̄ , v ∈ C, defined by

Φv(z̄) = evz̄, z ∈ C.

They satisfy the properties

(2.33) aΦv = vΦv and f(v̄) = (f,Φv), f ∈ D̄ , v ∈ C.

Indeed, the first property is trivial, whereas the “reproduction property”
immediately follows from the formula

(2.34) Φv(z̄) =

∞∑

n=0

fn(v)f̄n(z̄),

where f̄n(z̄) = fn(z), n = 0, 1, 2 . . . , is the orthonormal basis for D̄ .
We also have

(2.35) (f, g) =
1

π

∫∫

C

(f,Φv)(g,Φv)e
−|v|2d2v.

Now for the operator A in the Wick normal form (2.31) we get, using the
first property in (2.33),

(AΦz,Φv̄) =
∑

l,m

Alm((a∗)lamΦz,Φv̄) =
∑

l,m

Alm(amΦz, a
lΦv̄)

= A(v, z)(Φz,Φv̄).

Therefore,

A(v, z) =
(AΦz,Φv̄)

(Φz,Φv̄)
= e−vz(AΦz,Φv̄),

since by the reproduction property, (Φz,Φv̄) = Φz(v) = evz.

Definition. The Wick symbol A(z̄, z) of a bounded operator A in the
Hilbert space D̄ is a restriction to v = z̄ of an entire function A(v, z) in
variables v and z, defined by

A(v, z) = e−vz(AΦz,Φv̄).

In the next theorem, we summarize the properties of the Wick symbols.
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Theorem 2.2. Wick symbols of the bounded operators on D̄ have the
following properties.

(i) If A(z̄, z) is the Wick symbol an operator A, then the Wick symbol

of the operator A∗ we have A∗(z̄, z) = A(z̄, z) and

A∗(v, z) = A(z̄, v̄).

(ii) For f ∈ D̄ ,

(Af)(z̄) =
1

π

∫∫

C

A(z̄, v)f(v̄)e−v(v̄−z̄)d2v.

(iii) A real-analytic function A(z̄, z) if a Wick symbol of a bounded op-
erator A in D̄ if and only if it is a restriction to v = z̄ of an entire
function A(v, z) in variables v and z with the property that for every
f ∈ D̄ the integral in part (ii) is absolutely convergent and defines
a function in D̄ .

(iv) If A1(z̄, z) and A2(z̄, z) are the Wick symbols of operators A1 and
A2, then the Wick symbol of the operator A = A1A2 is given by

A1(z̄, z) =
1

π

∫∫

C

A1(z̄, v)A2(v̄, z)e
−(v−z)(v̄−z̄)d2v.

Proof. We have

A∗(v, z) = e−vz(A∗Φz,Φv̄) = e−vz(Φz, AΦv̄) = e−vz(AΦv̄,Φz) = A(z̄, v̄),

which proves (i). To prove (ii), we use the reproduction property to get

(Af)(z̄) = (Af,Φz) = (f,A∗Φz) =
1

π

∫∫

C

f(v̄)(A∗Φz)(v̄)e
−|v|2d2v.

Using the reproduction property once again we have

(A∗Φz)(v̄) = (A∗Φz,Φv) = A∗(v̄, z)(Φz,Φv) = evz̄A(z̄, v),

which proves (ii). Property (iii) follows from the definition and the uniform
boundness principle, which is needed to show that the operator A on D̄ ,
defined by the integral in (ii), is bounded. We leave the standard details to
the reader. Finally, to prove (iv) we get, using (2.35) and (i),

A(z̄, z) = e−|z|2(A1A2Φz,Φz) = e−|z|2(A2Φz, A
∗
1Φz)

=
1

π

∫∫

C

(A2Φz,Φv)(A∗
1Φz,Φv)e

−(|v|2+|z|2)d2v

=
1

π

∫∫

C

A1(z̄, v)A2(v̄, z)e
−(v−z)(v̄−z̄)d2v.

�
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Remark. Properties (i) and (iv) remain valid for the operators of the
form (2.31).

A matrix symbol Ã(z̄, z) of a bounded operator A in the Hilbert space

D̄ is a restriction to v = z̄ of an entire function Ã(v, z) in variables v and z,
defined by the following absolutely convergent series

(2.36) Ã(v, z) =

∞∑

m,n=0

(Af̄m, f̄n)fn(v)fm(z).

The matrix and normal symbols are related as follows.

Lemma 2.2. For a bounded operator A in the Hilbert space D̄ ,

Ã(v, z) = evzA(v, z).

Proof. Using (2.34) we get

Ã(v, z) =
1

π

∞∑

m,n=0

fn(v)fm(z)

∫∫

C

(Af̄m)(ū)fn(u)e
−|u|2d2u

=
1

π

∫∫

C

(AΦz)(ū)Φv̄(ū)e
−|u|2d2u = (AΦz,Φv̄) = evzA(v, z).

Changing the order of summation and integration is justified by the absolute
convergence. �

It is straightforward to generalize these constructions to n degrees of
freedom. The Hilbert space Dn defining the holomorphic representation is
the space of entire functions f(z) of n complex variables z = (z1, . . . , zn)
with the inner product

(f, g) =
1

πn

∫

Cn

f(z)g(z)e−|z|2d2nz <∞,

where |z|2 = z2
1 + · · ·+ z2

n and d2nz = d2z1 · · · d2zn is the Lebesgue measure
on C

n ' R
2n. The functions

fm(z) =
zm1
1 . . . zmn

n√
m1! . . .mn!

, m1, . . . ,mn = 0, 1, 2, . . . ,

form an orthonormal basis for Dn. Corresponding creation and annihilation
operators are given by

a∗j = zj , aj =
∂

∂zj
, j = 1, . . . , n.

The Hilbert space D̄n of anti-holomorphic functions f(z̄) on C
n is defined

by the inner product

(f, g) =
1

πn

∫

Cn

f(z̄)g(z̄)e−|z|2d2nz <∞,
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and the creation and annihilation operators are given by

a∗j = z̄j , aj =
∂

∂z̄j
, j = 1, . . . , n.

The coherent states are Φv(z̄) = evz̄, where vz̄ = v1z̄1 + · · · + vnzn, and
satisfy the reproduction property

f(v̄) = (f,Φv), f ∈ D̄n, v ∈ C
n.

The Wick symbol A(z̄, z) of a bounded operator A on D̄n is defined as
a restriction to v = z̄ of an entire function A(v, z) of 2n variables v =
(v1, . . . , vn) and z = (z1, . . . , zn), given by

A(v, z) = e−vz(AΦz,Φv̄).

We have

(Af)(z̄) =
1

πn

∫

Cn

A(z̄,v)f(v̄)e−v(v̄−z̄)d2nv, f ∈ D̄n,

and the Wick symbol A(z̄, z) of the operator A = A1A2 is given by

A1(z̄, z) =
1

πn

∫

Cn

A1(z̄,v)A2(v̄, z)e
−(v−z)(v̄−z̄)d2nv,

where A1(z̄, z) and A2(z̄, z) are the Wick symbols of the operators A1 and
A2.

The matrix symbol Ã(z̄, z) of a bounded operator A on D̄n is defined

as a restriction to v = z̄ of an entire function Ã(v, z) of 2n variables
v = (v1, . . . , vn) and z = (z1, . . . , zn), given by the following absolutely
convergent series

Ã(v, z) =

∞∑

k,m=0

(Af̄k, f̄m)fm(v)fk(z),

where k = (k1, . . . , kn), m = (m1, . . . ,mn) are multi-indices, and f̄m(z̄) =

fm(z). The matrix and Wick symbols of a bounded operator A are related
by

Ã(v, z) = evzA(v, z).

Problem 2.11. Find an explicit formula for the unitary operator establishing the
Hilbert space isomorphism D̄n ' L2(Rn, dnq).

Problem 2.12. Prove that for bounded operator A the functions A(v, z) and

Ã(v, z) are entire functions of 2n variables.

Problem 2.13. Let A be a trace class operator on D̄n with the Wick symbol
A(z̄, z). Prove that

TrA =
1

πn

Z

Cn

A(z̄, z)e−|z|2dn
z.


