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CHAPTER 1

Classical Mechanics

We use standard notations and basic facts from differential geometry. All
manifolds, maps and functions are smooth (that is, C°°) and real-valued,
unless it is specified explicitly otherwise. Local coordinates q = (q1, ..., ¢n)
on a smooth n-dimensional manifold M at a point ¢ € M are Cartesian
coordinates on p(U) C R™, where (U, ¢) is a coordinate chart on M centered
at ¢ € U. For f: U — R™ we denote (f oo ') (q1,...,q.) by f(q). If U is
a domain in R" then for f : U — R we denote by

of _ <3f 3]“)
da  \dq1”""" daa

the gradient of a function f at a point q € R™ with Cartesian coordinates
(q1,---,qn). We denote by

A (M) = ) A ()

the graded algebra of smooth differential forms on M with respect to the
wedge product, and by d the deRham differential — a graded derivation of
A®*(M) of degree 1 such that df is a differential of a function f € A%(M) =
C>(M). Let Vect(M) be the Lie algebra of smooth vector fields on M with
the bracket [, ], given by a commutator of vector fields. For X € Vect(M)
we denote by Lx and iy, respectively, the Lie derivative along X and the
inner product with X. The Lie derivative is a degree 0 derivation of A®*(M)
which commutes with d and satisfies Lx(f) = X(f) for f € A°(M), and
the inner product is a degree —1 derivation of A®(M) satisfying ix(f) =0
and iy (df) = X (f) for f € A°(M). They satisfy Cartan formulas

Lx =ixod+doix =(d+ix)?,
’L.[ny] :EX Oiy —iy Oﬁx.

For a smooth mapping of manifolds f : M — N we denote by fy, : TM —
TN and f*: T*N — T*M, respectively, the induced mappings on tangent
and cotangent bundles. Other notations, including those traditional for
classical mechanics, will be introduced in the main text.
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2 1. CLASSICAL MECHANICS

1. Lagrangian Mechanics

1.1. Generalized coordinates. Classical mechanics describes systems
of finitely many interacting particles'. A system is called closed if its par-
ticles do not interact with the outside material bodies. The position of a
system in space is specified by positions of its particles and defines a point
in a smooth, finite-dimensional manifold M, the configuration space of a
system. Coordinates on M are called generalized coordinates of a system,
and the dimension n = dim M is called the number of degrees of freedom?.

The state of a system at any instant of time is described by a point
g € M and by a tangent vector v € T, M at this point. The basic prin-
ciple of classical mechanics is Newton-Laplace determinacy principle which
asserts that a state of a system at a given instant completely determines its
motion at all times ¢ (in the future and in the past). The motion is described
by the classical trajectory — a path +(¢) in the configuration space M. In
generalized coordinates v(t) is (qi(t),...,qn(t)) and corresponding deriva-

tives ¢; = % are called generalized velocities. Newton-Laplace principle is

a fundamental experimental fact confirmed by our perception of everyday’s
. N . - dq :
experience. It implies that generalized accelerations §; = — - are uniquely
defined by generalized coordinates g; and generalized velocities ¢;, so that
classical trajectories satisfy a system of second order ordinary differential
equations, called equations of motion. In the next section we formulate the

most general principle governing the motion of mechanical systems.

1.2. The principle of the least action. In Lagrangian mechanics, a
mechanical system with a configuration space M is completely characterized
by its Lagrangian L — a smooth, real-valued function on TM x R — the
direct product of a tangent bundle T'M of M and the time axis®. The motion
of a Lagrangian system (M, L) is described by the principle of the least
action (or Hamilton’s principle), formulated as follows.

Let

PM((qo,to, q1,t1) = {7 : [to, t1] — M, v(to) = qo, v(t1) = @1}

be the space of smooth parametrized paths in M connecting points gg and
q1. The path space PM = PM/(qo,to,q1,t1) is a infinite-dimensional real
Fréchet manifold, and the tangent space T,PM to PM at v € PM con-
sists of all smooth vector fields along the path v in M which vanish at the
endpoints gy and ¢q;. A smooth path I' in PM, passing through v € PM is

1A particle is a material body whose dimensions may be neglected in describing its
motion.

2Sys‘cerns with infinitely many degrees of freedom are described by classical field
theory.

3It follows from Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.
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called a wariation with fized ends of the path v(¢) in M. A variation T is a
family 7.(t) = I'(¢,e) of paths in M given by a smooth map

I': [to, t1] X [~€0,€0] = M

such that T'(¢,0) = ~(¢t) for tg < t < t; and I'(to,e) = qo,I'(¢t1,€) = ¢ for
—egg < € < gp. The tangent vector
or
oy = — e T, PM
! de e=0 !
corresponding to a variation 7. (t) is traditionally called an infinitesimal
variation. Explicitly,

5y(t) = Tu(£)(t,0) € TyyM, to <t <t,

where % is a tangent vector to the interval [—eg,e0] at 0. Finally, a

tangential lift of a path ~(¢) in M is the path +/(¢t) in TM defined by
Y (t) = ’y*(%) € TyyM, ty <t < ti, where % is a tangent vector to
[to, t1] at t. In other words, 7/(t)is the velocity vector of a path v(t) at time
t.

DEFINITION. The action functional S : PM — R of a Lagrangian
system (M, L) is defined by

S(y) = / CL(Y(8), t)dt.

to

PrINCIPLE OF THE LEAST AcTION (Hamilton’s Prinicple). A path
v € PM describes the motion of a Lagrangian system (M, L) between the
position gg € M at time ¢y and the position g1 € M at time ¢; if and only
if it is a critical point of the action functional S,

d
de o S(e) =0

for all variations 7. (t) of y(t) with fixed ends.

The critical points of the action functional are called extremals and
the principle of the least action states that a Lagrangian system (M, L)
moves along the extremals®. The extremals are characterised by equations of
motion — a system of second order differential equations in local coordinates
on T'M. For given local coordinates on M equations of motion have the most
elegant form for the following choice of local coordinates on T'M.

DEFINITION. Let (U, ¢) be a coordinate chart on M with local coordi-
nates q = (q1, - - -, qn). Coordinates

(q,v) = (q1a~-~7Qn7U1,-~-7Un)

4The principle of the least action does not state that an extremal connecting points
qo and g1 is a minimum of S, nor that such an extremal is unique. It also does not state
that any two points can be connected by an extremal.
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on a chart TU on TM, where v = (v1,...,v,) are coordinates in the fi-

bre corresponding to the basis —,..., = for T,M, are called standard
) oq 0qn

coordinates.

Standard coordinates are Cartesian coordinates on ¢,(TU) C TR" =~
R™ x R™ and have the property that for (¢,v) € TU and f € C*°(U),

"9f af
o(f) =Y g () = Vo

i=1
The tangential lift 7/(¢) of a path «(¢) in M in standard coordinates on TU

is (q(t),q(t)) = (q1(t), ..., qn(t),G1(t),...,dn(t)), where dot stands for the
time derivative, so that

L('(t),t) = L(a(t),a(t), t).
Following a centuries long tradition®, we will denote standard coordinates
by
(@,4) = (a1, qns 415 - - - Gn),
where the dot does not stand for a time derivative. Since we only con-
sider paths in T'M that are tangential lifts of paths in M, there will be no

confusion® .

THEOREM 1.1. The equations of motion of a Lagrangian system (M, L)
in standard coordinates on T M are given by the FEuler-Lagrange equations

Setatt.a0.0 — 4 (G (a0.a0.0) =0

PROOF. Suppose first that an extremal (t) lies in a coordinate chart U
of M. Then a simple computation in standard coordinates, using integration
by parts, gives

d
= S
dE o (75)
d h
- ¢ / L(a(t,e),d(t,e),t) dt
de e=0Yto
" [t /9L oL
=Z/(m+.mﬁt
i—1 Y to aq1 an

N ci8L> " oL
= S | Sadt+ ) S04
;/to (8(11‘ dt g, ) °* ; 96

The second sum in the last line vanishes due to the property dq;(t9) =
dqi(t1) =0, i =1,...,n. The first sum is zero for arbitrary smooth functions

t1
to

5Used in all texts on classical mechanics and theoretical physics.
6We reserve notation (a(t),v(t)) for general paths in TM.
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dq; on the interval [tg, 1] which vanish at the endpoints. This implies that
for each term in the sum the integrand is identically zero,

g;(q(t),Q(t),t) - (gi( (t), q(t),t)) 0, i=1.....n

Since the restriction of an extremal of the action functional S to a coordi-
nate chart on M is again an extremal, each extremal in standard coordinates
on T'M satisfies Euler-Lagrange equations. O

REMARK. In calculus of variations, the directional derivative of a func-
tional S with respect to a tangent vector V' € T, PM — the Gato derivative,
is defined by

d

) - 5 )y
ve= - EZOS(’Y)

where 7, is a path in PM with a tangent vector V at 79 = . The result of
the above computation (when ~ lies in a coordinate chart U C M) can be
written as

5y = Z (5 - 457 ) tato.ato.om(oar
(L) - / (5 - 5 5¢ ) a0 oveya

Here V(t Zvl — is a vector field along the path v in M. Formula
9qi

(1.1) is called formula for the first variation of the action with fixed ends.
The principle of the least action is the statement that dyS(y) = 0 for all
V e T,PM.

REMARK. It is also convenient to consider the space PM = {v: [to, t1] —
M } of all smooth parametrized paths in M. The tangent space T PM to

PM at v E PM is the space of all smooth vector fields along the path v in
M (no conditions at the endpoints). The computation in the proof of The-
orem 1.1 yields the following formula for the first variation of the action
with free ends

9L d oL aL
1.2 Sy S = — - — ) vdt+
(1.2) v /to <8q dt 8q> 8q

PROBLEM 1.1. Show that the action functional is given by the evaluation of a
1-form Ldt on TM x R over a 1-chain 4 on T'M x R,

s() = [ Lt

5

t1

to

where 7 = {(7/(¢),t);to <t < t1} and Ldt (w =cL(q,v), w € T(g)TM, c € R.

e5i) =
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PROBLEM 1.2. Let f € C°°(M). Show that Lagrangians systems (M, L) and
(M, L + df) (where df is a fibre-wise linear function on T'M) have the same equations of
motion.

PROBLEM 1.3. Give examples of Lagrangian systems such that an extremal con-
necting two given points (i) is not a local minimum; (ii) is not unique; (iii) does not
exist.

PROBLEM 1.4. For v an extremal of the action functional S, the second variation
of S is defined by

82
= 881852
where ~:, -, is a smooth two-parameter family of paths in M such that the paths v., o and
0,6, in PM at the point 70,0 = v € PM have tangent vectors Vi and V». For a Lagrangian
system (M, L) find the second variation of S and verify that it does not depend on the
choice of ve, ey

5tyv, S

5(751,52)7

e1=eg2=0

1.3. Examples of Lagrangian systems. To describe mechanical phe-
nomena it is necessary to choose a frame of reference. The properties of the
space-time where the motion takes place depend on this choice. The space-
time is characterized by the following postulates”.

NEWTONIAN SPACE-TIME. The space is a three-dimensional affine Eu-
clidean space E3. A choice of the origin 0 € E? — a reference point, estab-
lishes the isomorphism E? ~ R3, where the vector space R? carries Euclidean
inner product and has a fixed orientation. The time is one-dimensional —
a time axis R, and the space-time is a direct product E® x R. An inertial
reference frame is a coordinate system with respect to the origin 0 € E3,
initial time ¢y, and an orthonormal basis in R®. In inertial frame the space
is homogeneous and isotropic and the time is homogeneous. The laws of
motion are invariant with respect to the transformations

r—g-r+rg, t—1+1p,

where r,rg € R3 and ¢ is an orthogonal linear transformation in R3. The
time in classical mechanics is absolute.

The Galilean group is the group of all affine transformations of E3 x R
which preserve time intervals and which for every ¢ € R are isometries in
E3. Every Galilean transformation is a composition of rotation, space-time
translation, and a transformation

r—r+vt, t—1,

where v € R3. Any two inertial frames are related by a Galilean transfor-
mation.

GALILEO’S RELATIVITY PRINCIPLE. The laws of motion are invariant
with respect to the Galilean group.

“Strictly speaking, these postulates are valid only in the non-relativistic limit of special
relativity, when the speed of light in the vacuum is assumed to be infinite.
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These postulate impose restrictions on Lagrangians of mechanical sys-
tems. Thus it follows from the first postulate that the Lagrangian L of
a closed system does not explicitly depend on time. Physical systems are
described by special Lagrangians, in agreement with the experimental facts
about the motion of material bodies.

ExaMPLE 1.1 (Free particle). Configuration space for a free particle is
M = R3, and it can deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

1,2
L—2mr.

Here m > 0 is the mass of a particle and #? = |¢|? is the length square of
the velocity vector i € T.R? ~ R3. Euler-Lagrange equation gives Newton’s

law of inertia,

r=0.
ExaMPLE 1.2 (Interacting particles). Closed system of N interacting
particles in R3 with masses m1,...,my, is described by a configuration
space

M=R¥»N=R3x...xR3
N————
N

with a position vector r = (ry,...,ry), where r, € R? is the position vector
of a-th particle, a = 1,..., N. It is found that the Lagrangian is given by

N
L= img)-U(r)=T-T1,
a=1

where
N
_ S
T = E 5Maly
a=1

is called the kinetic energy of a system and U(r) — the potential energy.
The Euler-Lagrange equations give Newton’s equations

Mmalq = Fq,
where oU
Fo=——
“ or,
is a force on a-th particle, a =1,..., N. Forces of this form are called con-

servative. Tt follows from homogeneity of space that potential energy U (r) of
a closed system of IV interacting particles with conservative forces depends
only on relative positions of the particles, which leads to the equation

N
> F,=0.
a=1

In particular, for a closed system of two particles F; + Fo = 0, which is the
equality of action and reaction forces, also called the Newton’s third law.
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The potential energy of a closed system with only pair-wise interaction
between the particles has the form

U(I‘) = Z Uab(ra — I‘b).

1<a<b<N

It follows from the isotropy of space that U(r) depends only on relative
distances between the particles, so that the Lagrangian of a closed system
of N particles with pair-wise interaction has the form

N
L=) 3mai — > Uawl(lra — 1))
a=1

1<a<b<N

EXAMPLE 1.3 (Universal gravitation). According to the Newton’s law
of gravitation, the potential energy of the gravitational force between two
particles with masses m, and my is
Ulrg —13) = _g Malla_

Irq —
where G is the gravitational constant. The configuration space of IV particles
with gravitational interaction is

M ={(r,...,ry) €R*N |1, #1, fora#b,a,b=1,... N}

EXAMPLE 1.4 (Particle in an external potential field). Here M = R3
and
L=1imi* —U(r, 1),

where potential energy can explicitly depend on time. Equations of motion
are Newton’s equations

mi=F=_—2".
or
If U = U(|r]) — a function only of the distance |r|, the potential field is
called central.

EXAMPLE 1.5 (Charged particle in an electromagnetic field®). Consider a
particle of charge e and mass m in a time-independent electromagnetic field
with scalar and vector potentials ¢(r) and A(r) = (Ai(r), A2(r), As(r)).
The Lagrangian has the form

.2 A
L:W+e<r_¢>,
2 c

where c is the speed of light. Corresponding Euler-Lagarange equation is
Newton equation with the Lorentz force,

mi‘ze(E—l—E/\H),
C

8This is a non-relativistic limit of an example in classical electrodynamics.
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where
_ 9
or

are electric and magnetic fields.

and H =rot A

EXAMPLE 1.6 (Free particle on a Riemannian manifold). Let (M, ds?)
be a Riemannian manifold with the Riemannian metric ds?. In local coor-
dinates z',..., 2" on M,

ds? = g (z)dat @ da”,
where following tradition we are assuming summation over repeated indices.

The Lagrangian of a free particle on M is

L(v) = %(v,v) = %HUHQ, ve T, M,

where ( , ) stands for the inner product in the fibres of TM. Corresponding
functional S is called the action functional in Riemannian geometry. The
Euler-Lagrange equations are

G + %:&%* - %%r%&
and after multiplying by the inverse metric tensor g°¥ and summation over
v they take the form

B+ 19,0t =0, o=1,...,n,

where

~ 99 dxv Ozt Oz
are Christofel’s symbols. The Euler-Lagrange equations of a free particle
moving on a Riemannian manifold are geodesic equations.
Let V be the Levi-Civita connection — the metric connection in the
tangent bundle T'M, and for { € Vect(M) let V¢ be a covariant derivative
with respect to the vector field £. Explicitly,

o — 1 oA <agu/\ agu)\ _ 8guy>
uv

ont 0 0
(Ven = (Gl + T & where €= )30 0 =1(o)

Iz dzh’
For a path v = z(t) in M denote by V; the covariant derivative along =,
dn*(t . ) 17}
(Vo (t) = PO i (w@)a (), where 7= (1)

dt oxH
is a vector field along . The formula (1.1) can now be written in an invariant
form
t1
05 = —/ <Vi,5£ﬂ>dt,

to
which is known as the formula for the first variation of the action in Rie-
mannian geometry.
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EXAMPLE 1.7 (The rigid body). The configuration space of a rigid body
in R? with a fixed point is a Lie group G' = SO(3) of orientation preserving
orthogonal linear transformations in R3. Every left-invariant Riemannian
metric (, )4 on G defines a Lagrangian L : TG — R by

L(v) = 3(v,v)4, v € T,G.

According to the previous example, equations of motion of a rigid body are
geodesic equations on G. Let g = so(3) be the Lie algebra of G. A velocity
vector ¢ € TyG defines the angular velocity of the body by Q = (Lgy-1).g € g,
where L, : G — G are left translations on G. In terms of the angular
velocitiy, the Lagrangian takes the form

L=%(Q,9Q),

where (, ) is an inner product on g = T.G given by the Riemannian metric.
The Lie algebra g — the Lie algebra of 3 x 3 skew-symmetric matrices, has
the invariant inner product (u,v)o = —% Truv (the Killing form), so that
(Q,Q) = (A-Q,Q). A symmetric linear operator A : g — g, positive-
definite with respect to the Killing form, is called the inertia tensor of the
body. The principal azes of inertia of the body are orthonormal eigenvec-
tors e1, es, e3 of A; corresponding eigenvalues I, I, I3 are called principal
moments of inertia. Setting Q = Qreq + Qoes + N3e3”, we get

L= 3(LO} + LO3 + [393).

In this parametrization, the Euler-Langrange equations become the Fuler’s
equations

LY = (I — I3)Q:Q3,
LQ = (I3 — 1) s,
LQs = (I — L) Q.

The Euler’s equations describe the rotation of a free rigid body around a
fixed point with the principal moments of inertia Iy, I, I3 in the system of
coordinates whose axes are the principal axes of inertia.

PROBLEM 1.5. Show that the Euler-Lagrange equations for the Lagrangian L(v) =
[[v]|, v € TyM coincide with the geodesic equations written with respect to a constant
multiple of the natural parameter.

PROBLEM 1.6. Prove that the second variation of the action functional in Rie-
mannian geometry, defined in Problem 1.4, is given by

t1

628 = 7/ (T b1, Saz)dL.
to

Here 61, 022 € T, PM and J = V32 + R(&, )i is second-order linear differential operator

acting on vector fields along the extremal v, called the Jacobi operator, and R is a curvature

operator — a fibre-wise linear mapping R : TM @ TM — End(T'M) of vector bundles,

defined by R(§,1) = VyVe = VeV + Vign : TM — TM, where &, € Vect(M).

9This establishes the isomorphism g ~ R® with the commutator given by the cross-
product.



1. LAGRANGIAN MECHANICS 11

PROBLEM 1.7. Show that there exists a symmetric 3 x 3 matrix A such that
A-Q=AQ + QA, and find A for diagonal A.

PROBLEM 1.8. Derive Euler’s equations for a rigid body. (Hint: Use that L =
f% Tr AQ?, where Q = ¢~ ¢, and derive the Euler-Lagrange equations in the matrix form
AQ 4+ QA = AQ? — Q2A.)

1.4. Symmetries and Noether theorem. To describe the motion
of a mechanical system one needs to solve corresponding Euler-Lagrange
equations — a system of second order ordinary differential equations for
the generalized coordinates. This could be a very difficult problem. There-
fore of particular interest are those functions of generalized coordinates and
velocities which remain constant during the motion.

DEFINITION. A smooth function I : TM — R is called the integral of

motion (first integral, or conservation law) for a Lagrangian system (M, L)
if

L1t =0

for all extremals 7 of the action functional.

DEFINITION. The energy of a Lagrangian system (M, L) is a function
E on TM x R defined in standard coordinates on T'M by

. ~ . 0L, . .
E(q,4,t) =Y d g (@@~ L(a.4.0).
i=1 v

oL
LEMMA 1.1. The energy E = qa—. — L is a well-defined function on
q
TM x R.

ProOF. Let (U, ) and (U',¢’) be coordinate charts on M with the
transition function f = ¢ o' : (U NU") — ¢ (UNU'). We have
q' = f(q) and

n
Ofi
dg; = 3f}

j=1 9%

dg;, i=1,...,n,

n
or dq' = f.«(q)dq, where f.(q) = {g(];; }ij:1 is a matrix-valued function

on (U NU’). By the definition of standard coordinates @' = f.(q)q, so
that ¢ = (q1, ..., ¢n) transform like components of a tangent vector on M.
Therefore dq' = g(q, q)dq+ f«(q)dq for some matrix-valued function g(q, q),
and we compute

oL oL

dL =—dq + ——ddq/
oq’ q+6(1/ q

oL oL oL
= (8q,f*(q) + a—q,g(q, éﬂ) dq + (,qu*(q)dq

oL oL .
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Thus under the change of variables ¢’ = f(q),q = f«(q)q,

oL oL oL oL
2 (q) = = d ¢ == =q—0,
o f«(a) oq M A5y =95
so that E is well-defined. O

COROLLARY 1.2. Under a change of coordinates on M, components of
oL, ( oL oL

—(q, Q) ==, ) transform like components of a 1-form on M.
99 oqu Odn

PROPOSITION 1.1 (Conservation of energy). The energy of a closed sys-
tem is an integral of motion.

PRrOOF. For an extremal v set F(t) = E(vy(t)). We have, according to
the Euler-Lagrange equations,
aB _d (DL 0L 0L 0L 0L
dt dt\oq) 1T 9q1 aq1 T 9q T ot

_ (4 (oL oL\ . 9L _ 0L
“\at\oq) aq)Y ot T o

oL
Since for a closed system — = 0, the energy is conserved. O

ot

Conservation of energy for a closed mechanical system is a fundamental
law of physics which follows from the homogeneity of time. For a general
closed system of NV interacting particles considered in Example 1.2,

N N
E=) md)—L=>Y imatl+U(r).
a=1 a=1

In other words, the total energy £ = T + U is a sum of the kinetic energy
and the potential energy.

DEFINITION. A Lagrangian L : TM — R is invariant with respect to
the diffeomorphism h : M — M, if L(h.(v)) = L(v) for all v € TM. The
diffeomorphism h is called the symmetry of a closed Lagrangian system
(M, L).

Continuous symmetries give rise to conservation laws.

THEOREM 1.3 (Noether). Suppose that a Lagrangian L : TM — R is
invariant under a one-parameter group {h®}ser of diffeomorphisms of M.
Then Lagrangian system (M, L) admits an integral of motion I, given in
standard coordinates on T'M by

s=0 8q

0L, . (dhi(q)
@) (
The integral of motion I is called the Noether integral.

I(q,q) =

i1 8(]1 ds
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-
s=0

are components of the vector field on M associated with the one-parameter
group {h®}scr, it follows from Corollary 1.2 that I is a well-defined function
on T'M. Now differentiating L(hf(v)) = L(v) with respect to s at s = 0 and
using the Euler-Lagrange equations we get

L, L. d (0L ,, OLdd _d (9L,
aq 1 T g4 R} aq dt  dt \oqd )"

PROOF. Since

dhi(a) dhy,(q)
ds |,_, = ds

0=

O

REMARK. Noether theorem generalizes to time-dependent Lagrangians
L :TM xR — R. Namely, on the extended configuration space M1 = M xR
define a time-independent Lagrangian L by

Ll(q7 T, qv T) =1L <q7 (~177—> 7;7
T

where (q, 7) are local coordinates on M; and (q, 7, q, 7) are standard coordi-
nates on TM;. The Noether integral I; for a closed system (My, L1) defines
an integral of motion I for a system (M, L) by the formula

I<qa (.17 t) = Il(q7t7q7 1)

When Lagrangian L does not depend on time, L; is invariant with respect to
the one-parameter group of translations 7 — 7+ s, and the Noether integral

oL
I = =i gives I = —F.
or

Noether theorem can be generalized as follows. For X € Vect(M) let X’
be a vector field on T'M defined by a local flow on T'M induced from the
corresponding local flow on M. In standard coordinates on T'M,

(1.3) X = Zal —‘ and X’:iai( Z G'az (9q
i=1 ¢

3,7=1

PROPOSITION 1.2. Suppose that for the Lagrangian L : TM — R there
exist a vector field X on M and a function F on TM such that for every
path v in M

dL(X")(7(t) = —F(y'(t)).

dt
Then

1= eda g;m, &) — Fla,4)

is an integral of motion for the Lagrangian system (M, L).
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PROOF. Denoting a(t) = (a1(y(t)),. .., an(y(t)) and using Euler-Lagrange
equations, we have along the extremal ~,
dt\"90q) = Oq oq dt’
O

ExXaMPLE 1.8 (Conservation of momentum). Let M = V — a vector
space, and suppose that a Lagrangian L is invariant with respect to a one-
parameter group h*(q) = g+ sv, v € V. According to Noether’s theorem,

is an integral of motion. Now let (M, L) be a closed Lagrangian system of
N interacting particles considered in Example 1.2. We have M =V = R3V
and Lagrangian L is invariant under simultaneous translation of coordinates
ry = (Ta1,7a2,7a3) of all particles by the same vector ¢ € R3. Thus v =

(c,...,c) € R3N and for every ¢ = (cy, 2, c3) € R3,
N
OL OL OL
I= =1 P!+ cgP? 3 P3
; <C1 B + ¢ Dis +c3 57'%;3) e+l +c3

is an integral of motion. The integrals of motion P!, P2, P? define the vector

N
0L
P=) -~ cR?
2. 5,

(or rather a vector in the dual space to R?), called the momentum of the

system. Explicitly,
N
P =Y mgia,
a=1

so that the total momentum of a closed system is the sum of momenta of
individual particles. Conservation of momentum is a fundamental physical
law which reflects the homogeneity of space.

In general, p' = —— are called generalized momenta corresponding to
4ai
. OL ,
generalized coordinates ¢;, and F* = — are called generalized forces. In
di
these notations, the Euler-Lagrange equations have the same form
p=F

as Newton’s equations in Cartesian coordinates. Conservation of momentum
implies Newton’s third law.

EXAMPLE 1.9 (Conservation of angular momentum). Let M =V be a
vector space with Euclidean inner product. Let G = SO(V') be the connected
Lie group of automorphisms of V' preserving the inner product, and let
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g = so(V') be the Lie algebra of G. Suppose that a Lagrangian L is invariant
with respect to the action of a one-parameter subgroup h°(q) = e - g of G
on V, where x € g and e” is the exponential map. According to Noether’s

theorem,
n
oL
;( i gg

is an integral of motion. Now let (M, L) be a closed Lagrangian system of
N interacting particles considered in Example 1.2. We have M =V = R3V
and Lagrangian L is invariant under a simultaneous rotation of coordinates
r, of all particles by the same orthogonal transformation in R3. Thus z =
(u,...,u) €s0(3) & --- ®so(3), and for every u € so(3)

N
N

oL oL oL
I= Z <(“ "Ta)1 o + (u - ra)2 P + (u-1q)3 3?‘(13)

a=1

is an integral of motion. Using a basis in so(3) ~ R? corresponding to the ro-
tations with axes given by the vectors ey, eg, e3 of the standard orthonormal
basis in R3, we get the vector

(or rather a vector in the dual space to so(3)), called angular momentum of
the system. Explicitly,

N
M= Z Melq X Tg,
a=1
so that the total angular momentum of a closed system is the sum of angular
momenta of individual particles. Conservation of angular momentum is a
fundamental physical law which reflects the isotropy of space.

PROBLEM 1.9. Find how total momentum and total angular momentum transform
under the Galilean transformations.

1.5. One-dimensional motion. The motion of systems with one de-
gree of freedom is called one-dimensional. In terms of a Cartesian coordinate
x on M = R the Lagrangian takes the form

L=1imi*-U(z).

The conservation of energy
1
E= §mﬁv2 +U(x)
allows to solve equation of motion in a closed form by formally solving
dx 2

== (E-Uw@)
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and integrating

. \/ﬁ / dz
2J) VE-Ux)
This is the general solution of Newton’s equation
au
Cdx
with two arbitrary constants, the energy E and the constant of integration.
Since kinetic energy is non-negative, for a given value of E¥ the actual
motion takes place in the region of R where U(x) < E. The points where
U(z) = E are called turning points. The motion which is confined between
two turning points is called finite. The finite motion is periodic — the
particle oscillates between the turning points z1(F) and x2(F) with the
period

mx =

zo(FE
T(E) =V2m ( )dix.
w(B) VE-U(x)
If the region U(x) < E is unbounded the motion is called infinite, the
particle eventually goes to infinity.
On the phase plane with coordinates (z,y) the Newton’s equation is
given by a system

. . du
mr =y, Yy=—- dr .
Trajectories correspond to the phase curves (x(t),y(t)), which lie on the
level sets
Y2
2m
of the energy function. The points (zg,0), where is z( is a critical point
of the potential energy U(z), correspond to the equilibrium solutions. The
local minima correspond to the stable solutions and local maxima — to the
unstable solutions. For the values of E which do not correspond to the
equilibrium solutions the level sets are smooth curves. These curves are
closed if the motion is is finite.
The simplest example of a one-dimensional system is a harmonic os-
cillator with U(z) = %k:a:z. For k > 0 the general solution of equations of
motion is

+U(x)=FE

x(t) = Acos(wt + «),
[k
where A is the amplitude, w = \/ — is the circular frequency, and « is the
m

2
phase of a simple harmonic motion with the period T' = “T The energy is

w
E = %mwQA2 and the motion is finite for all £ > 0 with the same period T
for £ > 0. For k < 0 the motion is infinite for all E.

PROBLEM 1.10. Show that for U(z) = —z* there are phase curves which do not
exist for all times. Prove that if U(z) > 0 for all = than all phase curves exist for all times.
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PROBLEM 1.11. The simple pendulum is a Lagrangian system with M = S =
R/27Z and L = %92 + cosf. Find the period T' of the pendulum as a function of the
amplitude of the oscillations.

PROBLEM 1.12. Suppose that the potential energy U(z) is even, U(0) = 0 and
U(z) is one-to-one monotonically increasing function for > 0. Prove that the inverse
function z(U) and the period T(E) are related by the Abel transform

(B _2F/ T(E)dE

and z(U) =

dU \/ﬁ QTrF/

1.6. The motion in a central field and the Kepler problem. The
motion of a system of two interacting particles — the two-body problem —
also can be solved completely. Namely, in this case ( Example 1.2) M = R
and

mlf% + mgf‘%
2 2
Introducing on R® new coordinates

L= —U(’I‘l—I‘QD.

miry + meors
r=r;—r, and R=———=-

mi + mo
we get
L=1uR*+ imi® — U(|r|),
mim
where p = mj +meg is the total mass and m = 172 is the reduced mass
m1 + ma

of a two-body system. The Lagrangian L depends only on the velocity R
of the center of mass and not on its position R. A generalized coordinate
with this property is called cyclic. it follows from the Euler-Lagrange equa-
tions that generalized momentum corresponding to the cyclic coordinate is
conserved. In our case it is a total momentum of the system,

so that the center of mass R moves uniformly. Thus in the frame of reference
where R = 0, the Lagrangian of a two-body problem is reduced to the
Lagrangian of a single particle in the external central field U(|r|).

From conservation of angular momentum M = mr X 7 it follows that
during the motion the position vector r lies in the plane P orthogonal to M
in R3. Introducing polar coordinates (7, ¢) in P we get!’

L= %m(7'“2 + T29b2) —Ul(r).

The coordinate ¢ is cyclic and its generalized momentum mr2y coincides
with [M]| if ¢ > 0 and with —|M]| if ¢ < 0. Denoting this quantity by M,
we get the equation

(1.4) mrip = M,

10Note that here r is not the length of the position vector r.
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which is equivalent to the Kepler’s second law'!. Using (1.4) we get for the
total energy
2

omr?’
Thus the radial motion reduces to a one-dimensional motion with the effec-
tive potential energy

(1.5) E=Im(*+r°¢*)+ U(r) = smi* + U(r) +

2

Ueff(T) = U(T) + o2’
where the second term is called the centrifugal energy. As in the previous

section, is given by

(1.6)

fo M / dr

V.2 ) E=Tess(r)
It follows from (1.4) that ¢ is monotonic function of ¢, given by another
quadrature

(1.7)

B M/ dr
v V2om 7“2\/E—Ueff(r)'

The set Uesp(r) < E is a union of annuli 0 < 75, < 7 < Tpgp < 00,
and the motion is finite if 0 < rpin < 7 < Tiae < 00. Though for a finite
motion r(t) oscillates between 7, and 7,4, corresponding trajectories are
not necessarily closed. The necessary and sufficient condition for a finite
motion to have a close trajectory is that the angle

B M Tmazx dr
v 2m Tmin T.Q V E - Ueff({r)

is commensurable with 27, i.e., ® = 27'(@ for some m,n € Z. If the angle ®

o

n
is not commensurable with 27, the orbit is everywhere dense in the annulus
Tmin S r S T"mazx- If
lim Uegs(r) = lim U(r) = U < oo,
r—00 r—00
the motion is inifnite for £ > U — the particle goes to co with finite velocity
2
—(E=U).
Very important special case is when

U(r) = -

It describes Newton’s gravitational attraction (o > 0) and Coulomb elec-
trostatic interaction (either attractive or repulsive). First consider the case
when « > 0 — the Kepler’s problem. The effective potential energy is

« M2

Uers(r) = T + 2mr2

11t ig the statement that sectorial velocity of a particle in a central field is constant.
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and has the global minimum

0(2772

Vo= "5

at ro = M—Q The motion is infinite for £ > 0 and is finite for Uy < E <
0. The g}?f)licit form of trajectories can be determined by an elementary
integration in (1.7), which gives

M M

1 r o
2m(E - U())
Choosing a constant of integration C' = 0 and introducing notations

FE
P To an (& UO y

@ =cos~ +C

we get the equation of the orbit (trajectory)

(1.8) b 1+ ecosp.
r

This is the equation of a conic section with one focus at the origin. Quantity
2p is called the latus rectum of the orbit, and e is called the eccentricity.
The choice C' = 0 is such that the point with ¢ = 0 is the point nearest to
the origin (called the perihelion). When Uy < E < 0 the eccentricity e < 1
so that the orbit is the ellipse'? with the major and minor semi-axes

p o p M|

a=—"—5=—- b= = )
1—e2 2|E| Vi—e2  \/2m|E]

Correspondingly, 7, = %_;e, Tmaz = 1 P . and the period T of elliptic
orbit is given by

m

T =rn« B

The last formula is Kepler’s third law. When E > 0 the eccentricity e > 1
and the motion is infinite — the orbit is a hyperbola with the origin as
internal focus. When E = 0 the eccentricity e = 1 — the particle starts
from rest at oo and the orbit is a parabola.

For the repulsive case a < 0 the effective potential energy Ucs¢(r) is
always positive and decreases monotonically from oo to 0. The motion is
always infinite and the trajectories are hyperbolas (parabola if E = 0)

p_ —1+4ecosyp
r
with
M? 2EM?
p=— and e=1/1+ 5
am mao

12The statement that planets have elliptic orbits with a focus at the Sun is Kepler’s
first law.
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The Kepler’s problem is very special: for every a € R the Lagrangian
system on R3 with
L=1mi?4+ 2
r
has three extra integrals of motion Wy, W, W3 in addition to the components
of the angular momentum M. Corresponding vector W = (Wy, Wa, W3),
called Laplace-Runge-Lenz vector, is given by

ar
(1.9) W=irxM-—
r
. . . . ar .
Indeed, using equations of motion m¥ = —— and conservation of the angu-
r

lar momentum M = mr X 1, we get
Wi x (rx ) - 95 4 2T
r r3
ar ofr-r)r
= (mf - r)r — (mi - r)r———i—u
r

=0.

r3

The fact that all orbits are conic sections follows from this extra symmetry
of the Kepler’s problem.

PROBLEM 1.13. Prove all the statements made in this section.
PROBLEM 1.14. Show that if
lim Ueff(r) = —0Q,
r—0
then there are orbits with 7, = 0 — “fall 7 of the particle to the center.

PROBLEM 1.15. Prove that all finite trajectories in central field are closed only
when

U(r)=kr?, k>0 and U(r):—%, a>0.

PROBLEM 1.16. Find parametric equations for orbits in Kepler’s problem.

PROBLEM 1.17. Prove that the Laplace-Runge-Lenz vector W points in the direc-
tion of the major axis of the orbit and that [W| = a?e, where e is the eccentricity of the
orbit.

1.7. Legendre transformation. The equations of motion of a La-
grangian system (M, L) in standard coordinates on T'M associated with a
coordinate chart U on M are the Euler-Lagrange equations. In expanded
form, they are given the following system of ordinary differential equations
of second order,

(@) = (gL (@ q))

- (@i i) =
an q,q) g 8q8q q,9)4q; |, =L..,n

1
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In order for this system to be solvable for the highest derivatives for all
initial conditions in TU, the symmetric n X n matrix

0%°L "
HL—{M(%Q)}

ij=1
should be invertible on T'U.

DEFINITION. A Lagrangian system (M, L) is called non-degenerate if for
every coordinate chart U on M the matrix Hp(q,v) is invertible at every
point (q,v) € TU.

For an invariant formulation, consider the 1-form 67, on T'M, defined in
standard coordinates on T'M associated with a coordinate chart U on M by

" 0L oL
0L = ——dg; = -—-dq
— 04 oq
It follows from Corollary 1.2 that 6}, is indeed a well-defined 1-form on T'M.
LEMMA 1.2. A Lagrangian system (M, L) is non-degenerate if and only
if the 2-form df;, on TM is non-degenerate.

PRrOOF. In standard coordinates,
n
O*L O*L
dfr, = ———dg; Ndg; + =————dqg; Ndgq; |,
=2 (648@- BT B, q)

so that 2n x 2n matrix corresponding to the 2-form df;, is non-degenerate
if and only if the n X n matrix Hy, is non-degenerate. O

DEFINITION. Let (U, ¢) be a coordinate chart on M. Coordinates

(puq) - (plv"'ypn’qla"'v(JH)

on the chart T#*U = R" x U on the cotangent bundle 7% M are called standard
coordinates'? if for (p,q) € T*U and f € C>(U)

. )
pz(df):ai, i=1,..

LT

Equivalently, standard coordinates on 7*U are uniquely characterized by
the condition that p = (p',...,p") are coordinates in the fibre corresponding

0 0
to the basis dqu, . .., dq, for T5 M dual to the basis —,..., —— for T; M.
Iq1 Oqn

DEFINITION. The 1-form 6 on T*M, defined in standard coordinates by
n
0= pdg = pdq,
i=1

is called the canonical Liouville 1-form.

13Following tradition, the first n coordinates parametrize the fibre of T*U and the
last n coordinates — the base.
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Corollary 1.2 shows that 6 is a well-defined 1-form on T*M. Invariantly,
the 1-form 6 is defined by 6(u) = p(m«(u)), where u € T(, yT*M and = :
T*M — M is the canonical projection.

DEFINITION. A fibre-wise mapping 77 : TM — T*M is called a Le-
gendre’s transformation associated with the Lagrangian L, if

In standard coordinates the Legendre’s transformation is given by

) oL )
7(q,q) = (p,q), where pzafq(q,q)-

The mapping 77, is a local diffeomorphism if and only if Lagrangian L is
non-degenerate.

DEFINITION. Suppose that the Legendre’s transformation 77, : TM —
T*M is a diffeomorphism. The Hamiltonian H : T*M — R, associated with
the Lagrangian L : TM — R, is defined by

. OL

HOTL:E:qai—L
q

In standard coordinates,

Jq

where q is considered a function of p and q obtained from the equation
oL, . . T .
p= a—q(q, q) by using the implicit function theorem. The cotangent bundle

T*M is called the phase space of the Lagrangian system (M, L). It turns
out on the phase space the equations of motion take a very simple and
symmetric form.

THEOREM 1.4. Suppose that the Legendre transformation 77, : TM —
T*M is a diffeomorphism. Then the Euler-Lagrange equations in standard
coordinates on T M,

d OL OL 1
—— = i=1,...,n
dt 0g; Jq; ’ ’ B

are equivalent to the following system of first order differential equations in
standard coordinates on T* M ,

om . _on
9g; qi = apiu

-0

p:
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Proor. We have

oOH OH
H = il
d p dp + aq dq
oL oL
pdq + qdp — —dq — —-dq
dq 09 p=OL
0
) oL
= (qdp— 3 dq) oL
q p=2k

Thus under the Legendre transform,

._oH 4 ,_4d0L 0L  OH
9= %p ¢ P 0i0q " 8q oq

O

Corresponding first order differential equations on T* M are called Hamil-
ton’s equations (canonical equations).

COROLLARY 1.5. The Hamiltonian H is constant on the solutions of the
Hamilton’s equations.

Proor. For H(t) = H(p(t),q(t)) we have

dH  OH . Q-+ aiH OHOH O0HOH _
dt 8q ap " oq ap Op dq

For the Lagrangian

mr2

L_jf—UU,reW,

of a particle of mass m in a potential field U(r), considered in Example 1.4,
we have

P = —— =mr.

or
Thus the Legendre’s transformation 77, : TR? — T*R3 is a global diffeomor-
phism, linear on the fibres, and
2

. P
H = — L)|. = — .
(i~ Ll _p = 5+ U)
The Hamilton’s equations
. OH p
r a__ 77
dp m
) OH oUu
P=——5-=—""%5>
or Or

. . . ou
are equivalent to Newton’s equations with the force F = ———.

or
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In general, consider the Lagrangian
n
L= 5a()iid; —Ula), a € R",
ij=1

where A(q) = {a”(q)}};—; is a symmetric n x n matrix. We have

and the Legendre’s transformation is a global diffeomorphism, linear on the
fibres, if and only if the matrix A(q) is non-degenerate for all q € R". In
this case,
n . .
H(p,q) = (pq— L(q,4))| _or = > 3ai(@)p'y’ + Ula),

S9a =1

where {a;;(a)}};—; = A~1(q) is the inverse matrix.

PROBLEM 1.18. Show that 01 (v) = dL(m«(v)), where v € T(TM) and 7 : TM —
M is the canonical projection.

PROBLEM 1.19. Prove that the path (t) in M is a trajectory for the Lagrangian
system (M, L) if and only if
d4r(ey(dOL) + dEL(Y' () = 0,
where 4/(t) is the velocity vector of the path 4/(t) in TM.

PROBLEM 1.20. Suppose that for a Lagrangian system (R™, L) the Legendre’s
transformation 7, is a diffeomorphism and let H be the corresponding Hamiltonian. Prove

that for fixed q and q the function pq — H(p, q) has a single critical point at p = g—
q

2. Hamiltonian Mechanics

2.1. Hamilton’s equations. With every function H : T*M — R on
the phase space T*M there are associated Hamilton’s equations — a first-
order system of ordinary differential equations, which in the standard coor-
dinates on T*U has the form

_ o o
The corresponding vector field Xy on T*U,
~(0H 0 OH 0 OH 0 0H 0
X = - — _ - —
n=2 <3p2 9g;  0gi 8pz> op 0q  9dq Op’

i=1
gives rise to a well-defined vector field Xz on T#M, called the Hamiltonian
vector field. Suppose now that the vector field Xz on T*M is complete,
i.e., its integral curves exist for all times. The corresponding one-parameter
group {g'}ier of diffeomorphisms of T*M generated by Xy is defined by
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g (p,q) = (p(t),q(t)), where p(t),q(t) is a solution of the Hamilton’s equa-
tions satisfying p(0) = p,q(0) = ¢, and is called the Hamiltonian phase

flow.

The canonical Liouville’s 1-form 6 on T*M defines a 2-form w = df. In
standard coordinates on T*M it is given by

w= dei/\dqi =dp N dq,
i=1

and is a non-degenerate 2-form. The form w is called the canonical symplec-
tic form on T*M. The symplectic form w for every (p,q) € T*M defines an
isomorphism J : T(’; q)T*M — TpT*M by
w(ul,u2) = J_l(UQ)(Ul), U1, Uy € T(p7q)T*M.
In standard coordinates,
0 0
J(dp) = —, J(dq)=—— d Xy=J(dH).

THEOREM 2.1. The Hamiltonian phase flow on T* M preserves the canon-

ical symplectic form.

PRrROOF. We need to prove that (¢*)*w = w. Since g' is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d (9")'w

dt
where Lx,, is the Lie derivative along the vector field Xp. Since for every
vector field X,

=Lx,w=0,
t=0

dLx(f) = Lx(df),

we have
; OH OH
L) = d(Xn(p)) = ~d (551 ) and Ly lda) = d(Xn(a) = (55 ).
q p
Thus
£XHw = Z (ﬁXH (dpi) ANdg; + dpi A EXH (dqi))
i=1
= _a(%2 Adg; +dp' Ad oH = —d(dH) = 0.
P 9q; op'
O

COROLLARY 2.2. Lx,(0) =d(—H +ix,(0)).

The canonical symplectic form w on T*M defines the volume form
n
Y L UA--Awon T*M, called the Liouville volume form.
n! nl Y——~
n
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COROLLARY 2.3 (Liouville’s Theorem). The Hamiltonian phase flow on
T*M preserves the Liouville volume form.

The restriction of the symplectic form w on T*M to the configuration
space M is 0. Generalizing this property we have the following

DEFINITION. A submanifold . of the phase space T*M is called a La-
grangian submanifold if dim .Z = dim M and w|, = 0.

It follows from Theorem 2.1 that the image of a Lagrangian submanifold
under the Hamiltonian phase flow is a Lagrangian submanifold.

PROBLEM 2.1. Verify that X is a well-defined vector field on T* M.

PROBLEM 2.2. Show that if all level sets of the Hamiltonian H are compact sub-
manifolds of T* M, then the Hamiltonian vector field X g is complete.

PROBLEM 2.3. Let 7 : T*M — M be the canonical prjection, and let .Z be a La-
grangian submanifold. Show that if the the mapping 7|, : £ — M is a diffeomorphism,
then . is a graph of a smooth function on M. Give examples when for some ¢ > 0 the
corresponding projection of ¢*(.Z) onto M is no longer a diffeomorphism.

2.2. The action functional in the phase space. With every func-
tion H on the phase space T*M there is an associated 1-form

0 — Hdt = pdq — Hdt

on the extended phase space T*M x R, called the Poincaré-Cartan form.
Let my : T*M xR — M and 73 : T*M xR — R be the canonical projections,
and let P(T*M xR) be the space of smooth parametrized paths o : [to, t1] —
T*M x R such that m(o(to)) = qo, m1(0(t1)) = ¢1, and ma(o(t)) = t for all
t € [to,t1]. Such paths called are admissible paths in T*M x R. A variation
of an admissible path o is a smooth family of admissible paths o., where
e € [—ep,e0] and 0y = o, and the corresponding infinitesimal variation is

Ooe
00 = Oe

e T,P(T*M x R)
e=0

(cf. Section 1.2). The principle of the least action in the phase space is the
following statement.

THEOREM 2.4 (Poincaré). The admissible path o in T*M x R is an
extremal for the action functional

S(0) = / (pdq — Hdt) = / ‘(b — H)dt

0
g

if and only if its projection onto T*M is a solution of the canonical Hamil-
ton’s equations
OH . OH

p:_aiq’ Q—%-
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PROOF. As in the proof of Theorem 1.1, for an admissible family o.(¢) =
(p(t,e),q(t,e),t) in standard coordinates we compute, using integration by
parts,

d

de

R OH OH _ ;
S(oc) = Z/ (Cli5pZ —p'0¢i — ——06q; — 517%) dt
0 i=1 to

dqi op’
n
7 t1
+ Zp 0Gily, -
i=1

Since dq(tg) = dq(t1) = 0, we conclude that the path o is critical if and only
if p(t) and q(t) satisfy canonical Hamilton’s equations. O

e=l

REMARK. For a Lagrangian system (M, L), every path v(¢) = (q(t)) in
configuration space M connecting points ¢y and ¢, defines an admissible

L
path 4(¢t) = (p(t),q(t),t) in the phase space T*M by setting p = g— If the
q

Legendre’s transformation 7, : TM — T*M is a diffeomorphism, then

5(7) = / (b — H)dt = / L), )t

0 to

Thus the principle of the least action in a configuration space — Hamilton’s
principle, follows from the principle of the least action in a phase space.
In fact, it follows from Problem 1.20 that in this case both principles are
equivalent.

From Corollary 1.5 we immediately get

COROLLARY 2.5. Solutions of canonical Hamilton’s equations lying on
the hypersurface H(p,q) = E are extremals of the functional fg pdq in the
class of admissible paths o lying on this hypersurface.

COROLLARY 2.6 (Maupertuis’ Principle). The trajectory v = (q(7)) of
a closed Lagrangian system (M, L) connecting points qo and g1 and having
the energy E is the extremal of the functional

/ pdq — / ggmqmwm

on the space of all paths in the configuration space M connecting points qq
and q1 and parametrized such that H(g—g(r), q(t)) = E.

The functional

So(v) = / pdq
Y

is called the abbreviated action. The precise formulation of Maupertuis’
princple is due to Euler and Lagrange.
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PrOOF. Every path v = q(7), parametrized such that H(g—é,q) =FE,

lifts to an admissible path o = (g—g(T),q(T),T), a < 17 < b, lying on the

hypersurface H(p,q) = F. O

PROBLEM 2.4 (Jacobi). On a Riemannian manifold (M,ds®) consider a La-

grangian system with L(g,v) = 1|v||> + U(g). Let E > U(q) for all ¢ € M. Show that

the trajectories of a closed Lagrangian system (M, L) with total energy E are geodesics
for the Riemannian metric d5* = (E — U(q))ds® on M.

2.3. The action as a function of coordinates. For a Lagrangian
system (M, L) denote by ~(¢; qo, vo) the solution of Euler-Lagrange equations

doL 0L 0

dtoq oOq
with the initial conditions v(ty) = qo € M, ¥(to) = vo € Ty, M. Fix qo,vo
and tg, and suppose that there exist a neighborhood Vj of v € Ty, M, a
neighborhood U of ¢y € M, and times ¢ such that the mapping

TooM 3 v — q="(t;q,v) € M

is a diffeomorphism between V; and U. For such t, for every ¢ € U there is
a unique extremal ¥(7; g, v) with v € Vj, passing through ¢ and ¢ at times
to and t. Such extremals are said to form a central field. Basic theorems
in the theory of ordinary differential equations guarantee that for times ¢
sufficiently close to ty, every extremal «(¢) can be included into a central
field of extremals.
In standard coordinates this mapping is denoted by qo — q(t) = v(¢; qo, qo)-

We define the action as function of coordinates and time (classical action)

by
t

S(a t o, to) = / L(+/(r))dr,

to
where 7 is the extremal connecting qg and q. For a fixed energy F,
(2.1) S(a,t;qo, to) = So(a, t; qo, to) + E(t — to).

THEOREM 2.7. Under the above assumptions, the differential of the ac-
tion as a function of coordinates with fixed initial point is given by

dS = pdq — Hdt,

where p = g—fi and H = pq — L are determined by the velocity q of the
trajectory v at time t.

PRrROOF. In standard coordinates, let q. be a path in M passing through
q at € = 0 with the tangent vector v € TqM ~ R". For the corresponding
family of extremals v.(7) = v(7;q0,qe) the infinitesimal variation d+ sat-
isfies 6v(tp) = 0 and d7v(t) = v, and it follows from the variation with free
ends formula (1.2) that for fixed ¢,
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oS
This shows that — = p. Now along the extremal ~(¢; qo, q),

dq
d 0s. 08
%S(q(t)ataq()at()) - %q—i_ E - La
sothata—S:L—qu—H. O

ot

COROLLARY 2.8. The classical action satisfies the following nonlinear
partial differential equation

oS oS
2.2 — +H|— =0.
(2 5+t (Geva) =0

This equation is called the Hamilton-Jacobi equation. Hamilton’s equa-
tions can be used for solving the Cauchy problem

(2.3) S(a; )=, = s(a)
for Hamilton-Jacobi equation (2.2) by the method of characteristics, assum-
ing that the Hamiltonian phase flow g’ on the phase space .# = T*M exists.
Namely, consider the Lagrangian submanifold

gz{(p,Q)ET*M:p:aS&((?)}

— a graph of the section ds of the cotangent bundle 7w : T*M — M. The
mapping 7| is one to one and for sufficiently small ¢ — ¢y the restriction
of the projection 7 to the Lagrangian submanifold .#* = ¢'~%_% remains to
be one to one. For such ¢ the mapping ' =7oglo(m,) ' : M - Misa
diffeomorphism and the extremals v(7, qg, qo) in the extended configuration
. OH .
space M x R, where g = 8—(p07 qo) and (pg, qo) € -Z, do not intersect for
p

to < 7 < t. Such extremals are called the characteristics of the Hamilton-
Jacobi equation.

PROPOSITION 2.1. Under the above assumptions, the solution S(q,t) to
the Cauchy problem (2.2)—(2.3) is given by

t

S(avt) = s(ao) + [ LG/

to

where (T) is the characteristic which ends at a given point (q,t) € M x R
and starts at a point (qo,tg) € M x R, uniquely determined by q € M.

ProOF. Using again formula (1.2), where now qo depends on q, we get
that along the characteristic,
oS 0s dqo oL . O

oL .
a - 5 7—'— A ) - a- bl = bl
aq(OI) 8qO<QO) aq 8q(q q) 8q(O.Io o) 9q |
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0 oL . .
since 8—:(%) = a—q(qo,qo) = po. Now as in the proof of Theorem 2.7, we
get along the characteristic, using that qo(¢) depends on q(t),

d os. 08 Os ) oL LN .
@S(Q(t)yt) = a*qQﬂL r aTI(QO)QO - a*q((my(m)% + L(q,q),

so that
a8
> g
T (p,a)
and S satisfies the Hamilton-Jacobi equation. O

We can also consider the action S(q, t; qo,to) as a function of both vari-
ables q and qg. The analog of Theorem 2.3 is the following statement.

PROPOSITION 2.2. Differential of the action as a function of initial and
final points is given by

dS = pdq — podqo — H(p,q)dt + H(po, qo)dto.

PROBLEM 2.5. Prove that solution to the Cauchy problem for the Hamilton-Jacobi
equation is unique.

2.4. Classical observables and Poisson bracket. Smooth real-valued
functions on the phase space T*M are called classical observables. The vec-
tor space C°(T*M) is an R-algebra — an associative algebra over R with
a unit, given by the constant function 1, and with a multiplication given by
the point-wise product of functions. The commutative algebra C'°°(T™*M)
is called the algebra of classical observables. Assuming that the Hamilton-
ian phase flow ¢! exists for all times, the time evolution of every observable
f e C>(T*M) is given by

fi(p,q@) = f(¢'(p,q)) = f(p(t),q(t)), q€ M,peT,M.

Equivalently, the time evolution is described by the differential equation

dit 7 df s+ - d(ft 098) 7
dt — ds |,  ds SZO_XH(ft)

:§<8H8ft 0H8ft>_8H8ft OH Of,

op' d¢;  0¢i p')  O9p da  Dq Jp’

called Hamilton’s equation for classical observables. Setting for f,g €
Co=(T* M),

of 0g Of Og
2.4 =X _ Y
we can rewrite the Hamilton’s equation in the following concise form

d

(2 !
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where it is understood that (2.5) is a differential equation for a family of
functions f; on T*M with the initial condition f;(p,q)|,_; = f(p,q). The
properties of the bilinear mapping

{, }:C®(T*"M) x C®(T*"M) — C>®(T*"M)
are summarized below.

THEOREM 2.9. The mapping { , } satisfies the following properties.
(i) (Relation with the symplectic form)

{f,9} =w(Jdf, Jdg) = w(Xy, Xy).

(ii) (Skew-symmetry)

{fvg} = _{ga.f}
(iii) ( Leibniz rule)

{fg,h} = f{g,h} + g{f. h}.
(iv) (Jacobi identity)

{fidg,p}} + {9 {h f}} +{n,{f,9}} =0
for all f,g,h € C®(T*M).

PROOF. Property (i) immediately follows from the definitions of w and J
in Section 2.1. Properties (ii)-(iii) are obvious. The Jacobi identity is verified
by a straightforward computation, or by the following elegant argument.
Observe that {f, ¢} is a bilinear form in first partial derivatives of f and
g, and every term in the left hand side of the Jacobi identity is a linear
homogenous function of second partial derivatives of f,g and h. Now the
only terms in the Jacobi identity which could actually contain second partial
derivatives of a function h are the following

{f7 {ga h}} + {gv {ha f}} = (XfXg - Xng)(h)‘

However, this expression does not contain second partial derivatives of h
since it is commutator of two differential operators of the first order which
is again an operator of the first order! O

The observable { f, g} is called canonical Poisson bracket of the observ-
ables f and g. The Poisson bracket map { , } turns the algebra of classical
observables C*®°(T*M) into a Lie algebra with a Lie bracket given by the
Poisson bracket. It has an important property that the Lie bracket is a bi-
derivation with respect to the multiplication in C*°(T*M). The algebra of
classical observables C*°(T* M) provides an example of the Poisson algebra
— a commutative algebra over R with a Lie algebra structure satisfying the
derivation property.
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2.5. Canonical transformations and generating functions.

DEFINITION. A diffeomorphism ¢ of the phase space T*M is called a
canonical transformation, if it preserves the canonical symplectic form w on
T*M, i.e., g*(w) = w. By Theorem 2.1, the Hamiltonian phase flow ¢’ is a
one-parameter group of canonical transformations.

PROPOSITION 2.3. Canonical transformations preserve Hamilton’s equa-
tions.

PRrROOF. If an observable f satisfies Hamilton’s equation

d

W oran, ap) = (1. 1,
then, since g*(w) = w, the observable f = f o g satisfies

df - _ -

OT{ = w(JdH, Jdf) = {H, f},

where H = H o g. In other words, if in the standard coordinates p,q we
have w = dp A dq and

=2l a=2"(p.q)
p= 9q p,q), q—ap p,q),
then in the new coordinates (P, Q) = g(p,q) we have w = dP A dQ and
. 0H . OH
= __ =—(P .
P=-7aPQ. Q=35 P.Q

O

Consider now the classical case M = R". For a canonical transformation
(P,Q) = g(p,q) set P = P(p,q) and Q = Q(p,q). Since dP A dQ =
dp Adq onT*M ~ R?", the 1-form pdq—PdQ — the difference between the
canonical Liouville 1-form and its pullback by the mapping g — is closed.
From Poincaré lemma it follows that there exists a function F(p,q) on R?"?
such that

pdq — PdQ = dF(p,q).

. . 0Q 2Qi"
Now assume that at some point (pg, qg) the n xn matrix — = :
op 0P )i
is nondegenerate. Canonical transformation g with this property is called
free. By the inverse function theorem, there exists a neighborhood U of
(Po,qo) in R?™ for which the functions Q, q are coordinate functions. The
function

5(Q,q) = F(p,q)

is called a generating function of the canonical transformation ¢ in U. In
new coordinates Q,q on U we have

oS oS

The converse statement easily follows from the implicit function theorem.
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PROPOSITION 2.4. Let S(Q,q) be a function in some neighborhood U of
a point (Qo, qo) € R?™ such that the n x n matriz

2 2
0°5 (QanO)}

78Q8q(Q0’q0) . {aQiﬁqj

is nondegenerate. Then S is a generating function of a local (i.e., defined
in some neighborhood of (Qq, qo) in R?") free canonical transformation.

n

1,7=1

Suppose there is a canonical transformation (P, Q) = g(p, q) such that
H(p,q) = K(Q) for some function K. Then in the new coordinates Hamil-
ton’s equations have the form

. . oK
Q = 07 P = _%7
and are trivially solved as follows
oK
Q(t) = Q(0), P(t)=P(0) - t%(Q(O))-

Assuming that canonical transformation is free, its generating function S(Q, q)
satisfies the differential equation

(26) 150 @a).q) = K(Q)

where after the differentiation one should substitute q = q(P,Q), defined
by the canonical transformation g~!. Differential equation (2.6) for fixed Q,

as it follows from (2.1), coincides with the Hamilton-Jacobi equation for the
abbreviated action Sy = S — Et with F = K(Q),

050
q (Q.9).q

THEOREM 2.10 (Jacobi). Suppose that there exists a function S(Q,q)
depending on n parameters Q = (Q1,...,Qy) and satisfying the Hamilton-

Jacobi equation (2.6) for some function K(Q) and that the n x n matriz
%8

is non-degenerate. Then (locally) the Hamilton’s equations

0Qoq
_om o
pP= K q= op
reduce to oK
S _ p_ 9K
Q 07 8Q

and are solved explicitly.

o5
0Q
tion theorem, g(p,q) = (P, Q) is a (local) canonical transformation with the
generated function S, and it follows from (2.6) that H(p(P,Q),q(P,Q)) =

K(Q). O

PROOF. Set p = g—S(Q,q) and P = ———(Q,q). By the inverse func-
q
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It seems that finding n-parameter solution of the Hamilton-Jacobi equa-
tion, which is a nonlinear partial differential equation, is a more difficult
problem then solving Hamilton’s equations, which is a system of ordinary
differential equations. It is quite remarkable that for many problems of clas-
sical mechanics one can find n-parameter solution of the Hamilton-Jacobi
equation by the method of separation of variables. By the Jacobi theorem,
this solves the corresponding Hamilton’s equations.

PROBLEM 2.6. Prove Proposition 2.4.

PROBLEM 2.7. Suppose that a canonical transformation g(p,q) = (P, Q) is such
that locally (P,q) can be considered as new coordinates. Prove that Si(P,q) = PQ +
F(p,q), also called a generation function, satisfies

_ o5, o5
p—a—q and Q_GP.

Find the generating function for identity transformation P = p, Q = q.

2.6. Symplectic manifolds. The notion of a symplectic manifold is a
generalization of the example of a cotangent bundle T* M.

DEFINITION. A non-degenerate, closed 2-form w on a manifold .Z is
called a symplectic form, and the pair (A4 ,w) is called a symplectic manifold.

Since symplectic form is non-degenerate, a symplectic manifold .# is
necessarily even-dimensional, dim.# = 2n. Generalizing further the exam-
ple A4 =T*M, we get the following

DEFINITION. A submanifold £ of a symplectic manifold (.#,w) is called
a Lagrangian submanifold, if dim ¥ = %dim/// and the restriction of the
symplectic form w to £ is 0.

Symplectic manifolds form a category. A morphism between (41, w;)
and (Ao, ws), also called a symplectomorphism, is a mapping f : M — M>
such that w; = f*(w2). When #1 = #5 and w; = wy, the notion of a sym-
plectomorphism generalizes the notion of a canonical transformation. The
direct product of symplectic manifolds (.#7,w;) and (.#5,ws) is a symplectic
manifold

(M X M, 7T (w1) + T3 (w2)),

where 71 and 7y are, respectively, projections of .#1 X .#5 onto the first
and second factors in the Cartesian product. In addition to tangent bun-
dles, other examples of symplectic manifolds are given by the real forms of
complex Kéahler manifolds, with a symplectic form being the Kahler form.
In particular, for the case of complex projective varieties, a symplectic form
is the pull-back of the Kahler form of the Fubini-Study metric on CP".
The simplest example of a non-compact symplectic manifold is a sym-
plectic vector space — the pair (V,w), where w is a non-degenerate, skew-
symmetric bilinear form on a vector space V. It is the basis fact of linear
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algebra that every symplectic vector space V has a symplectic basis — a
basis e1,...,en, f',..., f" of V, where 2n = dim V, such that

w(ei,ej):w(fi,fj)zo and w(ei,fj):6g, h,j=1,...,n.

In coordinates (p,q) = (p',...,p" q1,...,q,) With respect to this basis,

V ~R?" and
n
w=dpAdq="_dp' Adg:

i=1
Every symplectic vector space is isomorphic to a direct product of the phase
planes R? with the canonical symplectic form dp A dq.
It turns out that every symplectic manifold locally looks like a symplectic
vector space.

THEOREM 2.11 (Darboux’ Theorem). Let (#,w) be a 2n-dimensional
symplectic manifold. For every point x € M there is a neighborhood U of x
with local coordinates (p,q) = (p',...,p", q1,-..,qn) such that on U

w:dp/\dq:dei/\dqi.

i=1

Coordinates p, q are called canonical or Darboux coordinates. The proof
proceeds by induction on n with two main steps stated as Problems 2.9 and
2.10.

A non-degenerate 2-form w for every x € .# defines an isomorphism
J Tyl — Ty M by

w(u,uz) = J_l(UQ)(u1), ui,ug € Tp M .
In local coordinates x = (1, ..., xay,) for the coordinate chart (U, ¢) on .#,
the 2-form w is given by

2n
_1 ij _ }
w=735 g w(x) dx; A dxj,
ij=1

where {w% (x)}%?:1 is a non-degenerate, skew-symmetric matrix-function on
©(U). Denoting the inverse matrix by {wij(x)}?gzl, we have

2n
J(dz;) = —Zwij(x)ai, i=1,...,2n.
=1 i

DEFINITION. A Hamiltonian system is a pair consisting of a symplectic
manifold (.#,w), called a phase space, and a smooth real-valued function H
on .4, called a Hamiltonian. The motion of a points on the phase space is
described by the vector field

called a Hamiltonian vector field.
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The trajectories of a Hamiltonian system ((.#,w), H) are the integral
curves of a Hamiltonian vector field Xy on .#. In canonical coordinates
(p,q) they are described by the canonical Hamilton’s equations

OH . OH

O0q 4= op’
Suppose now that the Hamiltonian vector field X g on .# is complete. The
phase flow on .4 associated with a Hamiltonian H is a one-parameter group

{9'}1er of diffeomorphisms of .# generated by X . The following statement
generalizes Theorem 2.1.

p:

THEOREM 2.12. The Hamiltonian phase flow on the phase space pre-
serves the symplectic form.

Proor. It is sufficient to show that Lx,w = 0. Using Cartan’s formula
Lx =ixod+doix
and dw = 0, we get for every X € Vect(.#),
Lxw = (doix)(w).
Since ix(w)(Y) = w(X,Y), we have for X = Xy and every Y € Vect(.#)
that
ixy(w)(Y)=w(J(dH),Y)=—dH(Y).
Thus iy, (w) = —dH, and the statement follows from d? = 0. O

COROLLARY 2.13. A wector field X on A is a Hamiltonian vector field
if and only if the 1-form ix(w) is exact.

DEFINITION. A vector field X on a symplectic manifold (.#,w) is called

symplectic vector field, if the 1-form ix(w) is closed, which is equivalent to
5% XW = 0.

The commutative algebra C°°(.#) with a multiplication given by the
point-wise product of functions, is called the algebra of classical observables.
Assuming that the Hamiltonian phase flow g* exists for all times, the time
evolution of every observable f € C*°(.#) is given by

fix) = flg'(x), e,
and is described by the differential equation

dfy

Yt x

7 u(ft)
— the Hamilton’s equation for classical observables. The Hamilton’s equa-
tions for observables on .# have the same form as the Hamilton’s equations

on .# = T*M, considered in Section 2.3. Since
Xu(f) =df Xu) = w(Xg, J(df)) = w(Xg, Xf),

we have the following
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DEFINITION. A Poisson bracket on the algebra C*°(.#) of classical ob-
servables on a symplectic manifold (.#,w) is a bilinear mapping { , } :

C®( M) x C°(M) — C®°(M), defined by
{f,g}:(U(Xf,Xg), fvgecoo(%)

Now the Hamilton’s equation takes the following concise form

df
2. “~ =IH
(2.7 =g,
understood as a differential equation for a family of functions f; on .# with
the initial condition fi|,_, = f. In local coordinates x = (z1,...,%2,) on
M,
2n
_ 9f(x) 9g(x)
{figh(x) = MZI:IWZJ(X) oz Oz;

THEOREM 2.14. The Poisson bracket { , } on a symplectic manifold
(M ,w) is skew-symmetric, satisfies Leibniz rule and the Jacobi identity.

PROOF. The first two properties are obvious. It follows from the defini-
tion of a Poisson bracket and the formula

[Xf’ Xg](h) = (Xng - XfXg)(h) = {gv {f) h}} - {f) {ga h}}a
that the Jacobi identity is equivalent to the property
(2.8) (X5, Xg] = X{1,3-
Let X and Y be symplectic vector fields. Using Cartan’s formulas we get
ixy)(w) = Lx(iy(w)) — iy (Lx (w))
=d(ix oiy(w)) +ixd(iy (w))
=dw(Y,X)) = X, (x ) (w),
where X,,(xy) is a Hamiltonian vector field corresponding to w(X,Y) €
C>®(A). Since 2-form w is non-degenerate, this implies that
(X, Y] = Xox,y),
and setting X = X;,Y = X, we get (2.8). O
From (2.8) we immediately get
COROLLARY 2.15. The subspace Ham(.#) of Hamiltonian vector fields
on M is a Lie subalgebra of Vect(.#). The mapping C(.#) — Ham (A ),

given by f+— Xy, is a Lie algebra homomorphism with the kernel consisting
of locally constant functions on A

In Lagrangian mechanics, a function I on T'M is an integral of motion
for the Lagrangian system (M, L), if it is constant along the trajectories. In
Hamiltonian mechanics, an observable I — a function on the phase space .#
— is called an integral of motion (first integral) for the Hamiltonian system
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(A ,w),H), if it is constant along the Hamiltonian phase flow. According
to (2.7), this is equivalently to the condition

{H,I} =0.

It is said that the observables H and I are in involution (Poisson commute).
From the Jacobi identity for the Poisson bracket we get the following

COROLLARY 2.16 (Poisson’s Theorem). The Poisson bracket of two in-
tegrals of motion is an integral of motion.

Proor. If {H, I} = {H, I} =0, then

{H,{I1,I2}} = {{H, I}, b} — {{H, 2}, 11} = 0.
|

It follows from the Poisson theorem that integrals of motion form a Lie
algebra and, by (2.8), corresponding Hamiltonian vector fields form a Lie
subalgebra in Vect(.#). Since {I,H} = dH(X) = 0, the vector fields X7
are tangent to submanifolds H = E of .# — the level sets of the Hamiltonian
H. This defines a Lie algebra of integrals of motion for the Hamiltonian
system ((.#,w), H) at the level set H = E.

Let G be a finite-dimensional Lie group that acts on a connected sym-
plectic manifold (.#,w) by symplectomorphisms. The Lie algebra g of G
acts on .# by vector fields and the linear mapping g 3 £ — X¢ € Vect(.#)
is a homorphism of Lie algebras,

[X&Xn} :X[E,n]a fﬂ]eg-

The G-action is called Hamiltonian, if X¢ are Hamiltonian vector fields, i.e.,
for every £ € g there is ®¢ € C°°(#), defined up to an additive constant,
such that X¢ = Xo, = J(d®¢). The action is called Poisson, if there is a
choice of functions ®¢ such that the linear mapping ® : g — C®(.#) is a
homorphism of Lie algebras,

(2.9) {(I)& CI)n} = (13[5’,7}, &neag.

DEFINITION. A Lie group G is a symmetry group of the Hamiltonian
system ((#,w), H), if there is a Hamiltonian action of G on .# such that

H(g-x)=H(x), g€G, zeA.
THEOREM 2.17 (Noether theorem with symmetries). If G is a symmetry
group of the Hamiltonian system ((A,w), H), then the functions ®¢, £ € g,

are the integrals of motion. If the action of G is Poisson, the integrals of
motion satisfy (2.9).

PRrROOF. By definition of the Hamiltonian action, for every £ € g,
0= X¢(H) = Xo,(H) = {®¢, H}.
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COROLLARY 2.18. Suppose that for a Lagrangian system (M,L) a Lie
group G acts on the configuration space M such that L(g«(v)) = L(v) for
g € G, veTM. If the Legendre transformation 7, : TM — T*M is a
diffeomorphism, the Lie group G is a symmetry group of Hamiltonian system
((T*M,w), H) corresponding to (M, L), and the G-action on the phase space
T*M is Poisson. In particular, ®¢ = —Ic o7y, where I¢ is a Noether integral
of motion for the one-parameter subgroup of G generated by £ € g.

PROOF. According to Theorem 1.3, Noether integrals are linear in mo-
menta, so that for & = —I¢ o 77, we get, using (1.3),
‘Xq>£ = J(dq)g) = Xé and CI)g = —ixg(e),

where 6 is a canonical Liouville 1-form on T*M. Using Cartan’s formula
and Corollary 2.2, we obtain

Pley) = ~iixe.x,)(0) = —Lx,ix,(0) —ix,Lx(0)
= Xo, (D) = { D¢, Oy}

ExaMPLE 2.1. The Lagrangian

L=1imi*—U(r)
for a particle in R?® moving in a central field (see Section 1.6), is invariant
with respect to the action of the group SO(3) of orthogonal transformations
of the Euclidean space R3. Let w1, us,u3 be a basis for the Lie algebra
so(3) corresponding to the rotations with the axes given by the vectors of
the standard basis eq, ea, e3 for R3, (see Example 1.9 in Section 1.4). These
generators satisfy the commutation relations

[wi, uj] = eijnu,
where 7,5,k = 1,2,3, and g;j; is totally antisymmetric tensor, €123 = 1.
Corresponding Noether integrals of motion are given by ®,, = —M;, where
My = (r X p)1 = r2p3 — r3p2,
My = (r X p)2 = r3p1 — 13,
Mz = (r X p)3 = r1p2 — T2p1.
(It is convenient to lower the indices of the momenta p’ by the Euclidean

metric on R3.) According to Theorem 2.17 and Corollary 2.18, their Poisson
brackets satisfy

{M;, M} = —eijp My,
which is also easy to verify directly using (2.4),
_0fdg 09fdg

{f,9}(x,p) = opor  orop’
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EXAMPLE 2.2 (The Kepler’s problem). For every o € R the Lagrangian
system on R3 with
L=1mi?4+ 2
r
has three extra integrals of motion — the components Wy, Wy, W3 of the
Laplace-Runge-Lenz vector, given by

w=Lm-2
m r
(see Section 1.6). Using Poisson brackets from the previous example, to-
gether with {r;, M;} = —ejry, and {p;, M;} = —ei;ipr, we get by a straight-
forward computation,

2H
{Wi, Mj} = —€ijpWg, and {W;, W;} = kM,
P’ «a
where H = om 7 is a Hamiltonian of the Kepler’s problem.
m T

PROBLEM 2.8 (Coadjont orbits). Let G be a finite-dimensional Lie group, g be
its Lie algebra, and let g* be the dual vector space to g. For u € g* let .# = O, be the
orbit of v under the coadjoint action of G on g*. Show that the formula

w(ui, u2) = u([z1, z2]),

where u1 = ad*z1(u),us = ad*z2(u) € O, and ad” stands for the coadjoint action of
a Lie algebra g on g, gives rise to a well-defined 2-form on .#, which is closed and
non-degenerate. (The 2-form w is called the Kirillov-Kostant symplectic form.)

PROBLEM 2.9. Let (#,w) be a symplectic manifold. For x € .# choose a function
q1 on ./ such that ¢i(z) = 0 and d¢1 does not vanish at z, and set X = —Xg,. Show that
there is a neighborhood U of 2 € .# and a function p* on U such that X(q:) =1 on U,

and there exist coordinates pl, 1,21, .-, 22n—2 on U such that
4] 1o}
X=-- and Y=X,=_—.
opt Iq1

PROBLEM 2.10. Continuing Problem 2.9, show that the 2-form w — dp* A dg1 on
U depends only on the variables z1, ..., 22n,—2 and is non-degenerate.

PROBLEM 2.11. Do the computation in Example 2.2 and show that the Lie algebra
of the integrals My, Ma, M3, W1, Wa, W3 in Kepler’s problem at H(p,r) = E is isomorphic
to the Lie algebra so(4), if F < 0, to the Lie algebra e(3), if £ = 0, and to the Lie algebra
so(1,3),if E > 0.

PROBLEM 2.12 (Symplectic quotients). For a Poisson action of a Lie group G
on a symplectic manifold (./Z,w), define the moment map P : .# — g* by

P()(§) = P¢(z), €9, z €4,

where g is the Lie algebra of G. For every regular value p € g* of the moment map
P such that a stabilizer G, of p acts freely and proper on .#, = P~'(p), the quotient
My, = Gp\ Ay is called a reduced phase space. Show that M, is a symplectic manifold
with the symplectic form uniquely characterized by the condition that its pull-back to .,
coincides with the restriction to .#), of the symplectic form w.
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2.7. Poisson manifolds. The notion of a Poisson manifold generalizes
the notion of a symplectic manifold.

DEFINITION. A Poisson manifold is a manifold .# equipped with a
Poisson structure — a skew-symmetric bilinear mapping

{, }:C®()x C®(M)— C®(M)
which satisfies the Leibniz rule and Jacobi identity.
Equivalently, .# is a Poisson manifold if the algebra A = C*®°(.#) of
classical observables is a Poisson algebra — a Lie algebra such that the Lie

bracket is a biderivation with respect to the multiplication in .4 (a point-
wise product of functions). It follows from the derivation property that in

local coordinates x = (z1,...,x,) on .#, the Poisson bracket has the form
N
_ 0f(x) 99(x)
(oo = 30 a9 R0

The 2-tensor 7;;(x) defines a global section 7 of the vector bundle T.Z AT .#
over .# , called a Poisson tensor.
The evolution of classical observables on a Poisson manifold is given by
the Hamilton’s equations, which have the same form as (2.7),
daf

= Xn(f) = {H. 1}

The phase flow g* for a complete Hamiltonian vector field Xy = {H, -}
defines the evolution operator U; : A — A by

Ui(f)(2) = f(d'(x)), [ €A

THEOREM 2.19. Suppose that every Hamiltonian vector field on a Pois-
son manifold (M ,{ , }) is complete. Then for every H € A, the corre-
sponding evolution operator U, is an automorphism of the Poisson algebra

A, ie.,

(2.10) U({f,9}) ={U(f), U(g)} forall f,g€ A

Conversely, if a skew-symmetric bilinear mapping { , } : C°( M )XC®(M) —
C®(AM) is such that Xy = {H, -} are complete vector fields for all H € A
and corresponding evolution operators Uy satisfy (2.10), then (A, { , }) is
a Poisson manifold.
PRrOOF. Let fy = Ui(f), gt = Ui(g) and hy = Up({f, g}). By definition,
d dh
%{ftvgt} = {{Ha ft}ugt}+{ft7{H7gt}} and d7tt = {H7ht}

If (#,{, }) is a Poisson manifold, then it follows from the Jacobi identity
that

HH, fi} 9} +{fe, AH, 93} = {H, {fe; 9t} },
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so that hy and {f¢, g:} satisfy satisfy the same differential equation (2.7).
Since these functions coincide at ¢t = 0, (2.10) follows from the uniqueness
theorem for the ordinary differential equations.

Conversely, we get Jacobi identity for the functions f,g and H by dif-
ferentiating (2.10) with respect to ¢ at t = 0. O

COROLLARY 2.20. A global section n of T.# NT. M is a Poisson tensor
if and only if
Lxn=0 foral feA.

DEFINITION. The center of a Poisson algebra A is
ZA) ={feA:{f,g} =0 forall ge A}

A Poisson manifold (.#,{ , }) is called non-degenerate, if a center of the
Poisson algebra of classical observables A = C'*°(.#) consists only of locally
constant functions (Z(.A) = R for connected .#).

Equivalently, a Poisson manifold (.#,{ , }) is non-degenerate if the
Poisson tensor 7 for every @ € .# defines an isomorphism J : T} 4 — Ty
by

n(uy,ug) = ua(J(uy)), ui,us € T M.
In local coordinates x = (1, ..., xy,) for the coordinate chart (U, ¢) on .#,
we have

J(dmi):Znij(x)g, i=1,...,n.
j=1 J

Poisson manifolds form a category. A morphism between (.#1,{ , }1)
and (Ao,{ , }2) is a mapping ¢ : #1 — M5 of smooth manifolds such that

{fop,gopti ={f.glaop Vf ge C¥(M).
A direct product of Poisson manifolds (#,{ , }1) and (#1,{ , }1) is a
Poisson manifold (.#) x .#5,{ , }) defined by the property that natural
projections maps m : A1 X Mo — M1 and wo : My X Mo — Mo are
Poisson mappings. For f € C® (.4 x #5) and (x1,x2) € M1 X M denote,
respectively, by fg) and fg) restrictions of f to . x {x2} and {x1} x As.
Then for f,g € C®°( Ay x M>),

{f, 9} (@, a) = {5, )11 (1) + {12, g8 Ya(wa).
Non-degenerate Poisson manifolds form a subcategory of the category of

Poisson manifolds.

THEOREM 2.21. The category of symplectic manifolds is (anti-) isomor-
phic to the category of non-degenerate Poisson manifolds.

ProOOF. According to Theorem 2.14, every symplectic manifold carries
a non-degenerate Poisson structure. Conversely, let (#,{ , }) be a non-
degenerate Poisson manifold. Define the 2-form w on .# by

w(X,Y)=JYY)(X), X,Y € Vect(H),
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where the isomorphism J : T*.# — T.# is defined by the Poisson tensor 7.
In local coordinates x = (z1,...,zy) on A,

w=— Z 0" (x) dz; A dz;,

1<i<j<n
where {n%(x) 7j=1 1s the inverse matrix to {n;;(x)}}';—;. The 2-form w is
skew-symmetric and non-degenerate. For every f € Alet Xy = {f, -} be

the corresponding vector field on .#. The Jacobi identity for the Poisson
bracket { , } is equivalent to Lx,n = 0 for every f € A, so that

Lx,

Since Xy = Jdf, we have w(X, Jdf) = df(X) for every X € Vect(.#), so
that

w=0.

w(Xy, Xg) = {f, 9}

By Cartan’s formula,

dw(X,Y,Z) =1 (Lxw(X,Y) = Lyw(X,Z) + Lzw(X,Y)
_w([X7 Y],Z) +w([X7 Z],Y) —W([Ya Z],X)),

where XY, Z € Vect(.#). Now setting X = XY = X, Z = X}, we get

dw (X5, Xg, Xp) =% (w(Xn, [X7, Xg)) + w(Xp, [Xg, Xp]) + w(Xg, [Xn, Xy]))
=5 (W(Xn, X(19)) +0(Xyp, X(g ) +@(Xg, X, 1))
:% ({hv {fag}} + {fv {97 h}} + {ga {h7 f}})

=0.

The exact 1-forms df, f € A, generate the vector space of 1-forms
Al () as a module over A, so that Hamiltonian vector vector fields X =
Jdf generate the vector space Vect(.#') as a module over A. Thus dw = 0
and (#,w) is a symplectic manifold associated with the Poisson manifold
(A, {, }). It follows from the definitions that Poisson mappings of non-
degenerate Poisson manifolds correspond to symplectomorphisms of associ-
ated Poisson manifolds. O

REMARK. One can also prove the theorem by a straightforward compu-
tation in local coordinates x = (z1,...,x,) on .#. Just observe that the
condition

n(x) | op'l(x) | 9n"(x) -
=0 l=1,...

6.’1}[ + axl + al'] J Z? ] Y Y n7

which is a coordinate form of dw = 0, follows from the condition

> <77ij (x) 873;;?) + i (%) 8Tgl;gx> + 1k (X) 673;;(;)) _o,

Jj=1
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which is a coordinate form of the Jacobi identity, by multiplying it three
times by the inverse matrix using

o) o) e )
> (om0 2550+ B i) ) o

p=1

PROBLEM 2.13 (Dual space to a Lie algebra). Let g be a finite-dimensional
Lie algebra with a Lie bracket [, |, and let g* be its dual space. For f,g € C*°(g") define

{f,9}(w) = u([df, dg]) ,

where u € g* and T, g* ~ g. Prove that { , } is a Poisson bracket. (It was introduced by
Sophus Lie and is called linear, or Lie-Poisson bracket.) Show that bracket is degenerate
and determine the center of A = C*(g*).

PROBLEM 2.14. A Poisson bracket {, } on .# restricts to a Poisson bracket {, }o
on a submanifold .47, if the inclusion ¢ : 4" — .# is a Poisson mapping. Show that the
Lie-Poisson bracket on g* restricts to a non-degenerate Poisson bracket ona coadjoints
orbit, associated with Kirillov-Kostant symplectic form.

PROBLEM 2.15 (Lie-POiSSOH groups). A finite-dimensional Lie group is called a
Lie-Poisson group if it has a structure of a Poisson manifold (G, {, }) such that the group
multiplication G x G — @ is a Poisson mapping, where G X G is a direct product of Poisson
manifolds. Using a basis 01, ..., 0y, of left-invariant vector fields on G corresponding to a
basis 1, ...,z of the Lie algebra g, the Poisson bracket {, } can be written as

{1, 23(9) = D> 17 (9)0i 110, f2,
ij=1
where 2-tensor 77 (g) defines a mapping i : G — A%g by n(g) = >rio 7 (g)z;®@x;. Show
that the bracket {, } equips G with a Lie-Poisson structure if and only if the following
conditions are satisfied: (i) for all g € G,
€% (9) =Y (" (90" (9) + 7" (9)0m" () + " (9)0m" (9))

=1

+ > (d}n” (91" (9) + clyn™ (9)n™ (9) + cipn™ ()’ l(g)) =0,

l,p=1

where [z;,2;] = Y.p_, ckzy; (ii) the mapping 7 is a group l-cocycle with the adjoint
action on A%g, i.e., 7(g192) = Ad g2 - n(g1) + n(g2), 91,92 € G.

PROBLEM 2.16. Show that the second condition in the previous problem trivially
holds when 7 is a coboundary, 1(g) = —r+Ad~'g-r for some r = Z?Fl rie;@r; € A%g,
and then the first condition is satisfied if and only if the element

5(7‘) = [T12,T13 + T23} + [7“1377‘23] € A3g

is invariant under the adjoint action of g on A’g. Here rio = Y7 ra; @ 7; ® 1,

ri3 = szzl riz;®1® x; and ro3 = szzl ril1Qa;® x; are corresponding elements in
the universal enveloping algebra Ug of a Lie algebra g. In particular, G is a Lie-Poisson
group if £(r) = 0, which is called the classical Yang-Bazter equation.

PROBLEM 2.17. Suppose that r = Z?,j:l r¥x; @ x; € A?g is such that the
matrix {r*/} is non-degenerate, and let {r;;} be the inverse matrix. Show r satisfies
the classical Yang-Baxter equation if and only if the map ¢ : A’2g — C, defined by
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_ n ot _ n [ _ n Q. s .
c(z,y) = 327 =y riju'v’, where x = 370wz, y = 30 vz, is a non-degenerate Lie
algebra 2-cocycle, i.e., it satisfies

C(x7 [y7 Z]) + 6(27 [a:,y]) + C(yv [Z7x]) =0, =zy,2¢€g

2.8. Hamilton’s and Liouville’s representations. We complete the
formulation of classical mechanics by describing the process of measurement.

In physics, by a measurement of a classical system we understand the
result of a physical experiment which gives numerical values for classical
observables. The experiment consists of creating certain conditions for the
system and it is always assumed that these conditions can be repeated over
and over. The conditions of the experiment define a state of the system, if
repeating these conditions results in probability distributions for the values
of all observables of the system.

Mathematically, a state p on the algebra A = C*°(.#) of classical ob-
servables on the phase space .# is the assignment

ABfH/LfG@(R),

where Z(R) is a set of probability measures on R — Borel measures on R
such that the total measure of R is 1. For every Borel subset £ C R the
quantity 0 < pus(FE) < 1 is a probability that in the state p the value of
the observable f belongs to E. By definition, the expectation value of an
observable f in the state p is given by the Lebesgue-Stieltijes integral

(1) = | My,

where f17(X) = py ((—00,A)) is a distribution function of the measure dp.
The correspondce f + py should should satisfy the following natural prop-
erties.

S1. |E,(f)| < oo for f € Ag — the subalgebra of bounded observables.

S2. E,(1) =1, where 1 is the unit in A.

S3. For all a,b € R and f,g € A,

Eu(af +bg) = aE,(f) + bE.(9),

if both E,(f) and E,(g) exist.
S4. If fi = po fo with smooth ¢ : R — R, then for every Borel subset
FE CR,

pp (B) = pp, (071 (B)).

It follows from the property S4 and a definition of Lebesgue-Stieltijes
integral, that

E, (o(f)) = / T oV,

In particular, E,L(fz) >0 for all f € A, so that the states define normalized,
positive, linear functionals on the subalgebra Ag.
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Assuming that the functional E,, can be extended to a bounded, piece-
wise continuous functions on .#, one can recover the distribution function
from the expectation values by the formula

prA) =B (6(A = 1)),
where 6(x) is Heavyside step function,

9($>_{1, x>0,

0, z <0.

Indeed, setting 0)(x) = (A — x), we get

1, s> 1,
M@A(f)((_oovs)) = /“Lf (6;1(_0075)) = Mf([/\v OO))v 0<s< 15
0, s <0,

so that

o

E, (601 — /) = / sdpig, () (5) = 1 — pp([N 00)) = s (V).

A probability measure du on .# defines the state u on A by assigning'*
to every observable f a probability measure py on R with the distribution
function

pf(A) =/9(A—f)du= / du,
M AN(f)

where #\(f) = {x € A : f(z) < A\}. It follows from the Fubini theorem
that

o0
(2.11) B0 = [ xdns3) = [ s
- V%

Conversely, for locally compact .# the Riesz-Markov theorem states
that for every positive, linear functional I on the space C.(.#) of continuous
functions on .# with compact support, there exists a unique regular Borel
measure dy on # such that

I(f) = /fd,u for all f € Co(tt).
M
This leads to the following definition.

DEFINITION. The set of states S for a Hamiltonian system with the
phase space . is a set P (M) of probability measures on .#. For every
€ S and f € A the distribution function py is defined by

pr(A) =/9(A—f)du= / dp.
M

AN(f)

MThere should be no confusion in denoting the state and the measure by pu.
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The expectation values of classical observables are given by (2.11). The
states corresponding to Dirac measures du, supported at points x € .# are
called pure states; all other states are called mized states.

Physically, pure states are characterized by the property that a mea-
surement of every observable in the pure state gives a well-defined result.
Mathematically this can be expressed as follows. Let

o2(f) = Eu ((f = Eu()’) = Eu/?) — Eu(/)* 2 0
be the dispersion of the observable f in the state u.

LEMMA 2.1. Thus pure states are the only states in which every observ-
able has zero dispersion.

Proor. It follows from the Cauchy-Bunyakovskii-Schwarz inequality
that 03( f) = 0 if only if f is constant on the support of a probability
measure du. O

In particular, a mizture of a pure states du, and du,, x,y € A, is a
mixed state with the measure

dp = adp, + (1 — a)dpy, 0<a<l,

and ai(f) > 0 for every observable f such that f(x) # f(y).

For a system consisting of few interacting particles (say, a motion of
planets in celestian mechanics) it is possible to measure all coordinates and
momenta, so one considers only pure states. Mixed states necessarily appear
for macroscopic systems, when it is impossible to measure all coordinates
and momenta's.

We end this chapter by presenting two equivalent ways of describing
the dynamics of a Hamiltonian system ((.#,{, }), H) with the algebra of
observables A = C°(.#) and the set of states S = P(. ).

1. Hamilton’s description of dynamics. States do not depend
on time, and time evolution of observables is given by Hamilton’s
equations of motion,

Z—/::O, peS, and %:{H,f} feA
The expectation value of an observable f in the state pu at time ¢
is given by!6

E,(f,) = / £(g' (@) du(z).
M

15Typically, a macroscopic system consists of N ~ 10%* molecules. Macroscopic
systems are studied in classical statistical mechanics.

16Assuming that Hamiltonian vector field X is complete so that the phase flow g°
exists.
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In particular, the expectation value of f in the pure state du,
corresponding to the point x € .# is given by f(g'(x)). Hamilton’s
picture is commonly used for mechanical systems consisting of few
interacting particles.

2. Liouville’s description of dynamics. The observables do not
depend on time

daf
b
dt ) f 6 'A7
and states du(x) = p(z)dz satisfy Liouville’s equation.
d
dlt) — —{H,p}, plx)dz € S.

Here dx is a volume form on .# invariant under the phase flow,

d
whose existence is assumed!”, p(x) = ! is the distributional Radon-

Nikodim derivative, and the Liouville equation is understood in the
distributional sense. The expectation value of an observable f in
the state p at time ¢ is given by

E,(f) = / F(@)p(g~" (2))da
M

Liouiville’s picture, where states are given by generalized distribution
functions on ., is commonly used in statistical mechanics. The equality

Eu(f) = Eu(f) forall feA ues,

which follows from the invariance of the volume form dx and the change
of variables, expresses the equivalence between Liouville’s and Hamilton’s
descriptions of dynamics.

3. Notes and references

Classical references are the textbooks [Arn89] and [LL76], which are written, re-
spectively, from mathematics and physics perspectives. The treatise [AMT78] and the
encyclopaedia surveys [AG90], [AKN97| provide a comprehensive exposition, including
the history and the references to classical works and recent contributions. Monographs
[DFN84], [DFN85] and lecture notes [Bry95] contain all necessary material from differ-
ential geometry and theory of Lie groups, and the reference to other sources. Most of the
problems are fairly standard and are taken from [Arn89],[LL76], [Bry95] and [DFN84].
Problems 2.8 and 2.14 introduce the reader to the orbit method [Kir04], and Problem 2.12
— to the method of symplectic reduction (see [Arn89], [Bry95| and references therein).
Problems 2.15 —2.17 introduce the reader to the theory of Lie-Poisson groups (see [Dri86],
[Dri87],[STS85], and [Tak90] for an elementary exposition).

171t is the Liouville volume form when Poisson structure on .# is non-degenerate.



CHAPTER 2

Foundations of Quantum Mechanics

We recall the standard notations and basic facts from the theory of self-
adjoint operators on Hilbert spaces. Let .57 be a separable Hilbert space
with an inner product (, ) and let A be a linear operator in . with the
domain D(A) C s — a linear subset of 7. Operator A is called closed if
its graph I'(A) = {(p, Ap) € S x A : ¢ € D(A)} is a closed subspace in
A x #. 1f domain of A is dense! in #, i.e., D(A) = J#, the domain D(A*)
of the adjoint operator A* consists of ¢ € # such that there is n € S with

the property that

(A, ) = (¢,m) for all D(A),

and the operator A* is defined by A*p = 7. Operator A is called symmetric
if

(Ap, ) = (¢, Ayp) for all o, € D(A).
By definition, the regular set of a closed operator A with a dense domain
D(A) is the set

p(A) ={A € C|A—\I : D(A) — 4 is a bijection with a bounded inversez},

and for A € p(A), the bounded operator Ry(A) = (A — AI)~! is called the
resolvent of A at A. The regular set p(A) C C is open and its complement
0(A) = C\ p(A) is the spectrum of A. The subset 0;,(A) of o(A) consisting
of eigenvalues of A is called the point spectrum.
An operator A is self-adjoint (or Hermitian) if A = A*. Equivalently,
A is symmetric and D(A) = D(A*), and for such operators c(A4) C R. A
symmetric operator A is called essentially self-adjoint if its closure A = A**
is self-adjont. For a symmetric operator A the following conditions are
equivalent:
(i) A is essentially self-adjoint.
(ii) ker(A* +4il) = ker(A* —iI) = {0}.
(iii) Im(A +il) =Im(A —il) = 2.
A symmetric operator A with D(A) = 4 is bounded and self-adjoint.
An operator A is positive if (Ap,¢) > 0 for all ¢ € D(A), which we de-
note by A > 0. Positive operators satisfy the Cauchy-Bunyakovski-Schwarz

1We consider only linear operators with dense domains.
2By the closed graph theorem, the last condition is redundant.

49
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inequality

(0.1) |(Ap, ) * < (Ap, 0)(Ap,y) forall ¢,¢ € D(A).

In particular, (Ap, ¢) = 0 implies that Ap = 0. Every bounded positive op-
erator is self-adjoint®. We denote by .2 () the Banach algebra of bounded
linear operators on .##. Compact operator A is of trace class, if

> in(A) < o0,
n=1

where p,(A) are singular values of A, p,(A) = \/An(A) > 0, where A\, (A)
are eigenvalues for A*A. A bounded operator A is of trace class if and only
if for every orthonormal basis {ey}>2, for JZ,

Z |(Aey, en)| < oco.
n=1

Since a permutation of an orthonormal basis is again an orthonormal basis,
this condition is equivalent to

i(Aen,en) < 00

n=1

for every orthonormal basis {e,}>°, for .. The trace of a trace class
operator A is defined by

Tr A = i (Aep, en),

n=1

and does not depend on the choice of an orthonormal basis {e, }>2 for /.
Operators of trace class form a two-sided ideal .#7 (von Neumann-Schatten
ideal) in the Banach algebra Z(#) and

TrAB=TrBA forall Ae.%, Be L)

— the cyclic property of the trace. Bounded positive operator A is of trace
class if there is an orthonormal basis {e, }22; for J# such that

Z (Aep, ep) < o0.

n=1
An operator A € £ () is Hilbert-Schmidt if AA* € .. The vector space
% of Hilbert-Schmidt operators in ¢ is a Hilbert space with the inner
product (A, B)y = Tr AB*. The Hilbert-Schmidt space %2 C .#7 is also a
two-sided ideal in the Banach algebra .2 (J¢).

3This is true only for complex Hilbert spaces.
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1. Observables and States

1.1. Physical principles. Quantum mechanics studies the microworld
— the physical laws at the atomic scale. The properties of the microworld are
so different from our everyday’s experience that there is no surprise that its
laws seem to contradict the common sense. The need for quantum mechanics
is a breakdown of classical mechanics at atomic level, its inadequacy to
describe the properties of microscopic systems. Thus classical mechanics and
classical electrodynamics can not explain stability of atoms and molecules.
Neither can these theories reconcile different properties of light, its wave-
like behavior in interference and diffraction phenomena and its particle-like
behavior in photo-electric emission and scattering by free photons.

We will not discuss here these and other basic experimental facts, re-
ferring the interested reader to physics textbooks. Nor will we follow the
historic path of the theory. Instead, we show how to formulate quantum me-
chanics using the general notions of states, observables and time evolution,
described in the previous chapter. The departure from classical mechanics
is that we will realize these notions differently. The fundamental difference
between microworld and the perceived world around us is that in the mi-
croworld every experiment results in interaction with the system and thus
disturbs its properties, whereas in classical physics it is always assumed
that one can neglect the disturbances the measurement brings upon a sys-
tem. This imposes a limitation on our powers of observation and leads to a
conclusion that there exist observables which can not be measured simulta-
neously.

Mathematically, this means that observables in quantum mechanics no
longer commute. Indeed, according to Gelfand-Naimark theorem, every
semi-simple commutative Banach algebra with unit is an algebra of contin-
uous functions on a compact topological space, the spectrum of the algebra.
This is the situation we have in classical mechanics, where the spectrum of
the algebra of classical observables is the phase space. An example of a non-
commutative algebra is given by the Banach algebra of bounded operators
on a complex Hilbert space, and it is this algebra which plays a funda-
mental role in quantum mechanics. Here we formulate the basic principles
of quantum mechanics in the precise mathematical form. At this point it
should be noted that one can not verify directly the principles lying in the
foundation of quantum mechanics. Nevertheless, the validity of quantum
mechanics, whenever it is applicable, is continuously being confirmed by nu-
merouf1 experimental facts which perfectly agree with the predictions of the
theory™.

1.2. Basic axioms.

4This refers to non-relativistic phenomena at atomic scale.



52 2. FOUNDATIONS OF QUANTUM MECHANICS

A1l. With every quantum system there is an associated separable com-
plex Hilbert space 7, in physics terminology called the space of
states®.

A2. The set of observables </ of a quantum system with the Hilbert
space ¢ consists of all self-adjoint operators on 7. The subset
oy = o N L () of bounded observables is a vector space over R.

A3. Set of states . of a quantum system with a Hilbert space 7
consists of all positive (and hence self-adjoint) M € .#; such that
Tr M = 1. Pure states are projection operators onto one-dimensional
subspaces of . For ¢ € 7, ||| = 1, the corresponding projec-
tion is denoted by P,. All other states are called mized states®.

A4. The measurement is a correspondence

g xS DA M)~ pug € 2(R),

which to every observable A € & and state M € .¥ assigns a
probability measure g4 on R. For every Borel subset £ C R,
the quantity 0 < pa(E) < 1 is the probability that for a quantum
system in the state M the result of a measurement of an observable
A belongs to E. The expectation value (the mean-value) of an
observable A € 7 in a state M € . is

(A|M) = / © (),

— o0
where pa(A) = pa((—oo,A)) is a distribution function for the
probability measure 4.

The set of states .¥ is a convex set. According to the Hilbert-Schmidt
theorem on the canonical decomposition for compact self-adjoint operators,
for every M € .7 there exists (finite or infinite) orthonormal set {1, }_; in
S such that

N N
(1.1) M = ZanPwn and TrM = Zan =1,

n=1 n=1
where o, > 0 are non-zero eigenvalues of M. Thus every mixed state is a
convex linear combination of pure states. The following result characterizes
the pure states.

LEMMA 1.1. A state M € . is a pure state if and only if it can not be
represented as a non-trivial convex linear combination in .&.

PRrooOF. Clearly, if M € .¢ can not be represented as a non-trivial con-
vex linear combination of states, then M = Py for some ¢ € 2, ||[¢|| = 1.
Conversely, suppose that

szaMl—l-(l—a)Mg, 0<a<l,

5Spabce of pure states, to be precise.
6In physics terminology, operator M is called the density operator.
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and let 77 = Ci @ 7 be the orthogonal sum decomposition. Since M; and
M> are positive operators, for ¢ € 7 we have

a(Myip, ) < (Pyp, ) =0,

so that (M1, ¢) = 0 for all € 4 and by (0.1) we get M, = 0. Since
M is self-adjoint, it leaves the complimentary subspace Ci invariant, and
from Tr M; = 1 it follows that M; = Py, and therefore, Ma = P, O

Explicit construction of the correspondence & x . — Z(R) is based
on the general spectral theorem of von Neumann, which emphasizes the
fundamental role self-adjoint operators play in quantum mechanics.

DEFINITION. A projection-valued measure on R is a mapping P : Z(R) —
L () of the o-algebra B(R) of Borel subsets of R into the Banach algebra
of bounded operators on .77, satisfying the following properties,

PM1. For every Borel subset E C R, P(FE) is an orthogonal projection,
ie., P(E) = P(E)? and P(E) = P(E)*.

PM2. P(0) =0, P(R) = I, the identity operator on .7#.

PMS3. For every disjoint union of Borel subsets,

E = J:[lEn P(E) = nhfgo; P(E;)

in the strong topology on .Z(.5¢).
It follows from properties PM1-PM3 that
(1.2) P(El)P<E2> = P(E1 N Eg) for all E4, Es € @(R)
With every projection-valued measure P we associate a projection-valued
function

P(A) = P((=o0, ),

called the projection-valued resolution of the identity. It is characterized
by the following properties.

PD1.
P(M)P (1) = P(min{A, u}).
PD2.
lim P(Y) =0, lim P(A) = 1.
PD3.

HEE\{OP(W =P(A).

For every ¢ € S the resolution of the identity P()) defines a distribution
function (P(X)¢, ¢) of the bounded measure on R (probability measure when
o]l = 1). By the polarization identity

(PN)p,¥) = H{PN) (e +¥), 0 +¥) — (PN (¢ —¥), 0 — ¥)
+i(PN) (¢ + i), o + i) — i(P(A)(p — i), o — ith) },
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so that (P(\)p, 1) corresponds to a complex measure on R — a complex
linear combination of measures.

A measurable function f on R is said to be finite almost everywhere
(a.e.) with respect to the projection-valued measure P, if it is finite a.e. with
respect to all measures (P, ), ¥ € . For separable 57 a theorem of von
Neumann states that for every projection-valued measure P there exists
@ € J such that a function f is finite a.e. with respect to P if and only if
it is finite a.e. with respect to the measure (P, ¢).

The next statement is the celebrated general spectral theorem of von
Neumann.

THEOREM 1.1 (von Neumann). For every self-adjoint operator A on
the Hilbert space J€ there exists a unique resolution of the identity P(\),
satisfying the following properties.

(i)
D(A) = {@E%‘/ M2d( )<oo}

and for every ¢ € D(A

Ap = / AdP(N)e,

defined as a limit of Riemann-Stieltjes sums in the strong topology
on . The support of corresponding projection-valued measure P
coincides with the spectrum of A.

(ii) For every continuous function f on R, f(A) is a linear operator on

HC with o dense domain
D(f(A)) = {soeH / FOVRAP(N), )<oo}
/ FN)dP(A

defined for ¢ € D(f(A)) a
and understood as in part (i). The operator f(A) satisfies
FA)" = f(A),

where f is the complex conjugate function to f, and the opera-
tor f(A) is bounded if and only if the function f is bounded. For
bounded continuous functions f and g,

/ FN)gN)AP( N, € 2.

(iii) For every measurable function f on R, finite a.e. with respect to
the projection-valued measure P, f(A) is a linear operator on
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with a dense domain D(f(A)) defined as in (ii), understood in the
weak sense: for every ¢ € D(f(A)) and ¢ € H,

(F(A)p, ) = / T HNAP (),

— a Lebesgue-Stieltjes integral with respect to a compler measure.
The correspondence f +— f(A) satisfies the same properties as in

(iv) For every bounded operator B which commutes with A, that is,
B(D(A)) € D(A) and AB = BA on D(A), operator B commutes
with the resolution of the identity P(\) and, therefore, with every
operator f(A).

We will denote the resolution of the identity for a self-adjoint operator
A, given by the spectral theorem, by P4()\). Conversely, every resolution of
the identity P()), as defined by properties PD1-PD3, by virtue of (i)-(ii)
is a resolution of the identity for a self-adjoint operator. It follows from the
spectral theorem that the spectrum of a self-adjoint A coincides with the
support of its projection-valued measure P4, i.e., A € o(A) if and only if
Pa((A—¢e,A+¢)) #0 for all ¢ > 0.

Now the correspondence &7 x . — Z(R), postulated in A4, associates
to every M € . and A € &/ a probability measure 4 on R, defined by the
celebrated Born-von Neumann formula

(1.3) pa(E) =TrP4s(E)M, E € B(R).
It follows from the Hilbert-Schmidt decomposition (1.1) that

N

NA(E) = Z an(PA(E)wna d)n)a

n=1

so indeed 0 < pa(E) < 1. We denote by pa(A) the distribution function of
the probability measure pa, pa(A) = (Pa(A), 1) for M = Py,

LEMMA 1.2. Suppose that an observable A € &/ and a state M € .
are such that (A|M) exists and AM € % (this is always the case when
A€ o). Then

(A|M) =Tr AM.
In particular, if M = Py and 1 € D(A), then

(AIM) = (Ap,¢) and (A*|M) = | Ay,
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PROOF. Let {e,}7°; be an orthonormal basis for . It follows from
the spectral theorem that

(A|M) —/OO Adpa(N) —/oo D Ad(PA(N) Men, en)
- =1

) 00 o0
= Z/ Ad(Pa(\)Men, en) = > (AMep, en) = Tr AM,
n=17v n=1

where the interchange of the summation and the integration is legitimate
since [%_|Aldpa(X) < oo. In particular, when M = P, and ¢ € D(A),

(AM) = / TP AN, ) = (A0, ).

Finally, it follows from the spectral theorem and the change of variables
formula that

v = [ T NP A, ) = /O TP (N, ) = (A%M).

—0o0

O

REMARK. It is convenient to approximate a unbounded self-adjoint op-
erator A by bounded operators A, = f,(A), where f, = X[_p ) — a char-
acteristic function of the interval [—n,n]. Assuming that (A|M) exists, we

have
n

Mpa(A) = lim (A4, |M).

n

(A|M) = / " Adpa()) = lim

—
oo n—oo [ _

DEFINITION. Self-adjoint operators A and B commute if the correspond-
ing projection-valued measures P4 and Pp commute, P4(E1)Pg(F3) =
PB(EQ)PA(El) for all El, Es> € %(R)

The following two results, which follow from the spectral theorem, are
very useful in applications.

ProPOSITION 1.1. The following statements are equivalent.

(i) Self-adjoint operators A and B commute.

(il) For all \,p € C, Im \,Im p # 0,

RA(A)R,(B) = Ru(B)R(A).
(iii) For all u,v € R,
eiuAeivB _ eivBeiuA‘

(iv) For all u € R, the operators e™4 and B commute.

Slightly abusing notations”, we will often write [4, B] = AB — BA =0

for commuting self-adjoint operators A and B.

"In general, for unbounded self-adjoint operators A and B the commutator [A, B] =
AB — BA is not necessarily closed, i.e., it could be defined only for ¢ = 0.
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PROPOSITION 1.2. Let A = {Ay,..., A} be a finite set of self-adjoint,
pair-wise commuting operators on 7. Then there exists a unique projection-
valued measure Pa on the Borel subsets of R™ having the following proper-
ties.

(i) In the strong operator topology,

i%:/‘Mwm k=1,....n,

where A\, is the k-th coordinate function on R™.

(ii) For every measurable function f on R™, finite a.e. with respect to
the projection-valued measure Pa, f(A1,...,Ay) is a linear opera-
tor on € defined by

f(Alv'-'7An): fdPA7
R?’L
where the integral us understood in the weak operator topology. The
correspondence f— f(A1,...,Ay) satisfies the same properties as
in the part (ii) of the spectral theorem.

The support of the projection-valued measure Pao on R™ is called the joint
spectrum of the commutative family A = {Ay,..., A,}.

REMARK. According to von Neumann theorem on a generating operator,
for every commutative family A of self-adjoint operators (not necessarily
finite) on a separable Hilbert space % there is a generating operator — a
self-adjoint operator R on 5 such that all operators in A are functions of

R.

It seems natural that simultaneous measurement of a finite set of ob-
servables A = {A;,..., A, } in the state M € . should be described by the
probability measure pa on R™ given by the following generalization of the
Born-von Neumann formula,

(1.4) pa(E) =Tr(Pa,(Ey)...Pao,(E))M), E=E) x---xE, € B(R").

However, formula (1.4) defines a probability measure on R™ if and only if
P(E) =Pa,(E1)...Pa,(Ey) is a projection-valued measure on R". Since a
product of orthogonal projections is an orthogonal projection only when the
projection operators commute, we conclude that the operators Aq,..., A,
form a commutative family. This result agrees with the requirement that
simultaneous measurement of several observables should be independent of
the order of the measurements of individual observables. We summarize
these arguments as the following axiom.

A5. A finite set of observables A = {A;,...,A,} can be measured
simultaneously (simultaneously measured observables) if and only
if they form a commutative family. Simultaneous measurement of
the commutative family A C & in the state M € . is described
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by the probability measure ua on R” given by

ua(E) =TrPa(E)M, E € Z(R"),
where PA is the projection-valued measure from Proposition 1.2.
Explicitly, PA(E) = P4, (E1)...Pa, (Ey) for E=E; x--- X E,, €
ZB(R™). For every Borel subset E C R™ the quantity 0 < pua(E) <1
is the probability that for a quantum system in the state M the

result of the simultaneous measurement of observables Aq,..., A,
belongs to E.

The axioms A1-A5 are known as Dirac-von Neumann axioms.
PROBLEM 1.1. Prove property (1.2).
PROBLEM 1.2. Prove that the state M is a pure state if and only if Tr M? = 1.

PROBLEM 1.3. Prove all the remaining statements in this section.

1.3. Heisenberg’s uncertainty relations. The variance of the ob-
servable A in the state M, which measures the mean deviation of A from
its expectation value, is defined by

i (A) = (A= (AIM)I)*|M) = (A*|M) — (A|M)* > 0,

provided the expectation values (A%|M) and (A|M) exist. It follows from
Lemma 1.2 that for M = Py, where ¢ € D(A),

oir(4) = I(A = (AIM)DY* = [|AY|* — (A, ).

LEMMA 1.3. For A € o/ and M € .¥ the variance op(A) = 0 if and only
if Im M is an eigenspace for the operator A with the eigenvalue a = (A|M).
In particular, if M = Py, then v is an eigenvector of A, Ay = arp.

PROOF. It follows from the spectral theorem that
oo
)= [ (= aPdua.
—00
so that op(A) = 0 if and only if the probability measure p4 is supported
at the point a € R, i.e., pa({a}) = 1. Since pa({a}) = Tr Pa({a})M and

Tr M = 1, we conclude that this is equivalent to Im M being an invariant
subspace for Ps({a}). O

Now we formulate generalized Heisenberg’s uncertainty relations.

PRrROPOSITION 1.3 (H. Weyl). Let A, B € o and let M = Py, be the pure
state such that ¢ € D(A) N D(B) and Ay, By € D(A) N D(B). Then

03 (A)o,(B) > L[4, B]|M).

The same inequality holds for all M € ., where by definition (i[A, B]|M) =
limy, o0 (i[An, By | M).
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Proor. Let M = Py. Since
[A—(A|M)I, B — (B|M)I] = [A, B,
it is sufficient to prove the inequality
(A%|M)(B?|M) >
We have for all @ € R,
0 < (A +iaB)p|* =a*(By, By) — ia(Ap, BY) +ia( By, Ap) + (A, Ayp)
=a*(B*, ¥) + a(i[A, Blp, ¥) + (A%, ¥),

so that necessarily 4(A%y, ) (B%), ) > (i[A, Bl, ). The same argument
works for the mixed states. Since

i (Ao (B) = lim o3, (An)oi; (Bn)

(see the remark in the previous section), it is sufficient to prove the inequality
for bounded A and B. Then using the cyclic property of the trace we have
for all @ € R,

0 <Tr((A+iaB)M(A +iaB)*) = Tr((A 4 iaB)M(A — iaB))
=a’Tr BMB +ia Tr BMA —ia Tr AMB + Tr AM A
=a? Tr MB? + a Tr(i[A, B]M) + Tr M A%,
and the inequality follows. O

1(ilA, B]|M)?.

Heisenberg’s uncertainty relations express quantitatively the fact that
observables which do not commute can not be measured simultaneously,
even in a pure state. This manifests a fundamental difference between the
classical mechanics and the quantum mechanics.

1.4. Dynamics. Though quantum observables &7 do not form an alge-
bra with respect to an operator product®, a real vector space % of bounded
obsevables has a structure of a Lie algebra with the bracket

i[A, B] = i(AB — BA), A,B € .

In analogy with classical mechanics, the time evolution of a quantum system
is determined by a quantum observable H € &, called a Hamiltonian
operator (Hamiltonian for brevitiy). The analog of the Hamilton’s picture
in classical mechanics (see Section 2.5 in Chapter 1) is the Heisenberg’s
picture in quantum mechanics, where the states do not depend on time and
bounded observables satisfy Heisenberg’s equations of motion

dA

(15) E = {H7 A}h? A S %)
where
(1.6) { =301

8The product of two non commuting self-adjoint operators is not self-adjoint.
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is called the quantum bracket. The positive number i — the Planck con-
stant, is one of the fundamental constants in physics®. Introducing the one-
parameter strongly continuous group U(t) of unitary operators associated
with the self-adjoint operator H,

(1.7) Ut)=e 7, teR,

the solution to the Heisenberg’s equations of motion with the initial condi-
tion A(0) = A can be written as

(1.8) A(t) = U(t) AU ().

The evolution operator U; : @ — % is defined by Uy(A) = U~L(t)AU (),
and extends to the whole set & of quantum observables. The quantum
dynamics of an observable A € &7 is given by A(t) = U;(A), and in this
sense all quantum observables (not necessarily bounded) satisfy Heisenberg’s
equations of motion. An observable A whose time evolution (1.8) does not
depend on t is called a quantum integral of motion, or a constant of motion.
An observable A is an integral of motion if and only if it commutes with the
Hamiltonian H, so that, in agreement with (1.5),

(A, H}p, = 0.

By Stone theorem, every strongly-continuous one-parameter group of
uinitary operators'® U(t) is of the form (1.7), where

t)—1 t)—1
D(H):{SOE%!PIHO%@ exists} and H(p:ih%ir%%gp

Thus quantum dynamics is described by the strongly continuous one-parameter
group of unitary operators.

The analog of the Liouville’s picture in classical mechanics (see Section
2.5 in Chapter 1) is the Schrédinger’s picture in quantum mechanics, where
observables do not depend on time and the evolution of states is given by

dM
dt
The solution to (1.9) with the initial condition M (0) = M can be written

as

(1.10) M(t) = Uty MU ().

It follows from the cyclic property of the trace that for A € 2,
(A()|M) = Te(UT () AU (M) = Te(AU () MU(t)) = (A|M (1)),

which establishes the equivalence between Heisenberg’s and Schrodinger’s
pictures. A quantum integral of motion A in Schrodinger’s picture is defined

(1.9) = —{H M},, Mec..

9The Planck constant has a physical dimension of the action. Its value i =
1.054 x 10727 erg x sec, which is determined from the experiment, manifests that quantum
mechanics is a microscopic theory.

10According to von Neumann theorem, on a separable Hilbert space every weakly
measurable one-parameter group of unitary operators is strongly continuous.
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the property that the expectation value (A|M(t)), where M(t) is given by
(1.10), does not depend on ¢ for any M € ..

It follows from (1.9) that the time evolution of a pure state M = P, is
given by M(t) = Py ), where (t) = U(t)1). The vector 1(t) satisfies the
time-dependent Schrédinger equation

L dy
(1.11) ih— = Hy
with the initial condition ¢ (0) = 1. A state M € . is called stationary if
M(t) = U(t)MU~1(t) does not depend on time, i.e., [M,U(t)] = 0 for all ¢.
According to Proposition 1.1, this is equivalent to [M, H| = 0.

LEMMA 1.4. The pure state M = Py, is stationary if and only if 1 is the

eigenvector for H,

Hy = E.
Corresponding eigenvalue E is called the energy and

Y(t) = e KEy.

PRrOOF. It follows from U(t) Py = P,U(t) that ¢ is a common eigenvec-
tor for unitary operators U (¢) for all t, U(t)y = c(t)v, |c(t)| = 1. Since U(t)
is strongly continuous one-parameter group of unitary operators, continuous
function ¢(t) = (U(t)1), 1) satisfies the equation c(t1 +t2) = c(t1)c(t2) for all

t1,t2 € R, so that c(t) = e~ 72 for some E € R. Thus by the Stone theorem
¥ € D(H) and Hi = Ev. O

The eigenvalue equation H1y = Ev is called the stationary Schrodinger
equation.

PROBLEM 1.4. Show that if an observable A is such that for every state M the
expectation value (A|M (t)) does not depend on ¢, then A is a quantum integral of motion.

PROBLEM 1.5. Show that the solution of the initial value problem for the time-
dependent Schrodinger equation (1.11) is given by

v = [ TP (A,

where P(A) is the resolution of identity for the Hamiltonian H.

2. Quantization

To study the quantum system one needs to describe its Hilbert space
of states 7 and the Hamiltonian H — a self-adjoint operator in S which
defines the evolution of a system. When the quantum system has a classical
analog, the procedure of constructing the corresponding Hilbert space ¢
and the Hamiltonian H is called a quantization of a classical system. Heuris-
tically, a quantization of a classical Hamiltonian system'! ((.#,{, }),h) is

U1y this chapter we denote classical observables, including the Hamiltonian, by lower-
case roman letters.
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a one-to-one mapping Q : A — & from the set of classical observables
A = C®(A) to the set o/ of quantum observables — the set of all self-
adjoint operators on a Hilbert space 7. The map Q depends on a param-
eter A > 0, is a linear mapping between the subspaces of bounded classical
and quantum observables, and for all f, g € A satisfies

3Q7HQNAM) + QAN — fg. QTHHQ), Q9)In) — {f. 9}

as h — 0. The latter property is the so-called correspondence principle. In
particular A — Q(h) = H — the Hamiltonian for a quantum system.

Since quantum mechanics is different from classical mechanics, the cor-
respondence [ +— Q(f) can not be an isomorphism between the Lie algebras
of bounded classical and quantum observables with respect to classical and
quantum brackets. It becomes an isomorphism only in the limit A — 0
when, according to the correspondence principle, quantum mechanics turns
into the classical mechanics. Since quantum mechanics provides a more
accurate and refine description then classical mechanics, quantization of a
classical system may not be unique. However, for many “real” quantum
systems — the systems describing actual physical phenomena, the corre-
sponding Hamiltonian H is defined uniquely by its classical analog.

2.1. Heisenberg’s commutation relations. The simplest classical
system with one degree of freedom is described by the phase space R? with
coordinates p, ¢ and the Poisson bracket { , }, associated with the canonical
symplectic form w = dp A dq. In particular, the Poisson bracket between
the classical observables p and ¢ — the momentum and the coordinate of a
particle, has the following simple form

It is another postulate of quantum mechanics that under the quantization,
the classical observables p and ¢ correspond to the quantum observables P
and @) — self-adjoint operators P and () on a Hilbert space ¢, satisfyng
the following properties.

C1. There is a dense D C 2 such that P: D — D and Q : D — D.
C2. For ally € D,

(PQ — QP)Y = —ih.
C3. Every bounded operator on 7 which commutes with P and @ is
a multiple of the identity operator I.

Property C2 is called Heisenberg’s (canonical) commutation relation
for one degree of freedom. In terms of the quantum bracket (1.6) it take the
form

(2.2) PR =1,

which is exactly the same as the Poisson bracket (2.1). The operators P
and @ are called, respectively, the momentum operator and the coordinate
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operator. The correspondence p — P, ¢ — @ with P and @ satisfying C1-
C3 is the cornerstone for the quantization of classical systems. The validity
of (2.2), as well as of quantum mechanics as a whole, is confirmed by the
agreement of the theory with numerous experiments.

It follows from the Heisenberg’s uncertainty relations (see Proposition
1.3), that for any pure state M = Py, with ¢ € D,

h

om(P)oy(Q) > 3

This is a fundamental result saying that it is impossible to measure the
coordinate and the momentum of quantum particle simultaneously: the
more accurate is the measurement of one quantity, the less accurate is the
value of the other. It is often said that quantum particle has no observed
path, so that “quantum motion” differs dramatically from the motion in
classical mechanics.

Now it is straightforward to consider a classical system with n degrees of
freedom, described by the phase space R?® with coordinates p = (p!,...,p")
and q = (q1,...,qn), and the Poisson bracket { , }, associated with the
canonical symplectic form w = dp A dq. The Poisson brackets between
the classical observables p and q — the momenta and the coordinates of a
particle, have the following form

(23) {qk7QI} :07 {pk7pl}207 {pkaql} :5lk, k,l: 1,...77’1,.

Corresponding quantum momenta and coordinate operators P = (P!, ..., P")
and Q = (Q1,...,Q,) leave a dense domain D C 4 invariant and satisfy
Heisenberg’s commutation relations for n degrees of freedom,

(2.4) {Qr, Qi}n=0, {P* PY,=0, {P*Q}n=0F, kil=1,... n.

It is also assumed that every bounded operator on S# which commutes with
all operators P and Q is a multiple of the identity operator I.

Algebraically, Heisenberg’s commutation relations give rise to an irre-
ducible representation of a Heisenberg algebra b,, with n degrees of freedom,
defined as follows.

DEerINITION. The Heisenberg algebra b,, with n degrees of freedom is a
Lie algebra with the generators =¥, ..., 2", y1, ..., yn,c and the relations

2%, ] =0, [y, =0, [zF,y]=0dFc, ki=1,...,n
Equivalently, the Heisenberg algebra b, is a one-dimensional central ex-
tension of the abelian Lie algebra R?",
0—>R—bH, —R" -0,

by the Lie algebra 2-cocycle given by the canonical symplectic form w on R?".
The corresponding element c is called the central element of the Heisenberg
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algebra b,. Explicitly, the Heisenberg algebra is a nilpotent subalgebra of
the Lie algebra of (n + 2) X (n + 2) matrices with the elements

0 up w9 Uy &

0 0 0 0 ot
n 2
Zuk:c +vyk + ac= 00 0 0w
k=1 0 0 0 0 "

0 0 0 0 0]

It follows from (2.4) that Heisenberg’s commutation relations correspond
to the irreducible representation p of h, on the Hilbert space J by skew-
Hermitian operators, defined by p(z*) = —iP*, p(yx) = —iQr, k=1,...,n
and p(c) = ihl. The operators P* and @ are necessarily unbounded (see
Problem 2.1), so that rigorous definition of the mapping p requires a caution.
To exclude the “pathological” representations, we will assume that p is an
integrable representation, i.e., it can be integrated to an irreducible unitary
representation of the Heisenberg group H,, — a connected, simply-connected
Lie group with the Lie algebra h,. Explicitly, the Heisenberg group is a
unipotent subgroup of the Lie algebra SL(n + 2, R) with the elements

1 up us Up
01 0 0 o!
0 0 1 0 o2
g I D
0 0 0 1 o
0 0 0 0 1]

Abstractly, the Heisenberg group H,, is generated by two n-parameter abelian
subgroups e"X = ezzzlukzk, eVV = eXk=1v"Uk and a one-parameter center

e, which satisfy the relations

(2.5) VY = eWeeVYeX  where uv = E wpv®.
k=0

Indeed, it readily follows from the commutation relations of the Heisenberg
algebra and the Campbell-Baker-Hausdorff formula that

1
WX VY _ o3 [uX,VY]e(uX—l—vY)

and

1
VY euX _ e*Q[uX,vY]e(uX—}—vY)’

which imply (2.5). In the matrix realization, e%X = I + uX, e¥¥ =TI +vY
and e*® = I + ac, where I is the (n + 2) x (n + 2) identity matrix.

The exponential map b, — H,, is onto, so that an irreducible unitary
representation R of the Heisenberg group H,, in the Hilbert space 7 is
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defined by two strongly continuous n-parameter abelian groups of unitary
operators

U(u) = R(e™Y), V(v) = R(""),
satisfying H. Weyl relations
(2.6) UV (v) = ™V (v)U(u),

where by the Schur lemma R(e®¢) = ¢!"[. Trreducible representation p of

the Heisenberg algebra is integrable if p = dR, where R is an irreducible

integrable representation of the Heisenberg group. According to the Stone

theorem,

oU (u) and Qp =i oV (v) ’
avk

v=0

Py =1

k=1,...,n.
a'l,Lk y 7n

u=0

REMARK. Not every irreducible representation of Heisenberg algebra is
integrable, so that H. Weyl relations can not be obtained from the Heisen-
berg’s commutation relations. However, the following heuristic argument
(which ignores the subtleties of dealing with unbounded operators) is com-
monly used in physics textbooks. Consider the case of one degree of freedom
and start with

{P7 Q}h =1
Since quantum bracket satisfies the Leibniz rule, i.e., it is a derivation, we
have (for a “suitable” function f)

{f(P),Q}n = f(P).
In particular, choosing f(P) = e~ = U(u), we obtain
U)Q — QU(u) = hulU(u) or U(w)QU(u)™' = Q + hul.
This implies (for a “suitable” function g)

U(u)g(Q) = 9(Q + hul)U(u),
and setting g(Q) = e~"% = V(v), we get H. Weyl relation.

We will prove in Section 3.1 that all integrable irreducible representations
of the Heisenberg algebra §,, having the same value on the central element ¢
are unitary equivalent. This justifies the following mathematical formulation
of the Heisenberg’s commutation relations for n degrees of freedom.

HEISENBERG’S COMMUTATION RELATIONS. Momenta and coordinate
operators P and Q for a quantum particle with n degrees of freedom corre-
spond to the integrable irreducible representation p of the Heisenberg algebra
b, with the property p(c) = ihl.

PROBLEM 2.1. Prove that there are no bounded operators on the Hilbert space 3¢
satisfying [A, B] = I.
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2.2. Coordinate and momentum representations. We start with
the case of one degree of freedom and consider two natural realizations of
the Heisenberg’s commutation relation. They are defined by the property
that one of the self-adjoint operators P and @ is “diagonal” (i.e., is a mul-
tiplication by a function operator in the corresponding Hilbert space).

In the coordinate representation, # = L*(R,dq) is the Hilbert L2-space
on the configuration space R with the coordinate g, which is a Lagrangian
subspace of R? defined by the equation p = 0. Set

@ ={ver: [~ letwPin <)
—00
and for ¢ € D(Q) define the operator @ as a “multiplication by ¢ operator”,
(Qp)(a) = ap(a), g € R,

justifying the name coordinate representation. Coordinate operator @ is
obviously self-adjoint and its projection-valued measure is given by

(2.7) (P(E)¢)(q) = xe(@)¢(q),

where x g is the characteristic function of a Borel subset £ C R.
Recall that a self-adjoint operator A has an absolutely continuous spec-
trum if for every ¢ € €, ||¢|| = 1, the probability measure

vy(E) = (Pa(E)Y,¥), E € BR),
absolutely continuous with respect to the Lebesgue measure on R.

LEMMA 2.1. Coordinate operator (Q has an absolutely continuous spec-
trum o(Q) = R, and every bounded operator B which commutes with Q is
a function of Q, B = f(Q) with f € L*°(R).

PROOF. Clearly suppP4 = R and vy (E) = [5 |4(q)|?dgq, which proves
the first statement. Now a bounded operator B on ¢ commutes with @ if
and only if iBP(E) = P(E)B for all E € #(R). Using (2.7) we get that for
every F € Z(R) with finite Lebesgue measure,

B(xg) = f&:

where measurable fg satisfies supp fg C E. Using the commutativity prop-
erty once again, we get that for By C Ea, fg,|p, = f&,|g,- Thus there exists
a measurable function f on R such that f|; = fg|g for every E € A(R).
The linear subspace spanned by all xg € L?(R) is dense in L?(R), and we
get that

(Be)(@) = f(a)plq) forall e L*(R).
Since B is a bounded operator, ||B|| = ||f||cc < o0 and f € L®(R). O

We say that the coordinate operator ) has simple, absolutely continuous
spectrum R.
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REMARK. By the Schwartz kernel theorem, the operator B can be rep-
resented an integral operator with a distributional kernel K (g, ¢’). Then the
commutativity BQ = @B implies that, in the distributional sense,

(¢—d)K(q,q) =0,
so that K is “proportional” to the Dirac delta-function, i.e.,

K(q.q') = f(9)0(q—¢),

with some f € L*°(R). This argument is usually given in the physics text-
books.

REMARK. The operator () has no eigenvectors — the eigenvalue equation

Qp=Ap

has no solutions in L?(R). However, in the distributional sense, this equation
for every A € R has a unique (up to a constant factor) solution ¢y(q) =
d(¢— ), and these “generalized eigenfunctions” combine to a Schwarz kernel
of the identity operator I on L?(R). This reflects the fact that operator Q
is diagonal in the coordinate representation.

For a pure state M = Py, ||¢| = 1, corresponding probability measure
tg on R is given by

Ha(E) = vy(E) = /E W(q)2dg, E € B(R).

Physically, this is interpreted that in the state P with the “wave function”
¥ (q), the probability of finding a quantum particle between ¢ and ¢ + dg
is [1(q)|?dgq. In other words, the modulus square of a wave function is the
probability distribution for the coordinate of a particle.
Corresponding momentum operator P is given by a differential operator
hd
 idg
with D(P) = W12(R) — a Sobolev space of absolutely continuous functions
f on R such that f and its derivative f’ (defined a.e.) are in L?(R). The

operator P is self-adjoint and it is straightforward to verify that on D =
C°(R) — the space of smooth functions on R with compact support,

QP — PQ = ihl.

REMARK. Operator P on 7 has no eigenvectors — the eigenvalue equa-
tion
Pp=pep, peR,
has a solution
©(q) = const x /"
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which does not belong to L?(R). The family of “normalized generalized

eigenfunctions”

1

epla) = —==e"/"

combines to a Schwartz kernel of the inverse A-dependent Fourier transform
operator, which diagonalizes the momentum operator P. Indeed, in the
distributional sense,

/OO op(@) e (q)dg = 6(p — p').

—0oQ

PRrROPOSITION 2.1. Coordinate representation defines an irreducible, in-
tegrable representation of the Heisenberg algebra.

PRrROOF. To show that coordinate representation is integrable, let U(u) =
e~ and V(v) = e~ ™% be the corresponding one-parameter groups of
unitary operators. Clearly, (V(v)p)(q) = e ™p(q) and it easily fol-
lows from the Stone theorem (or by the definition of a derivative) that
(U(uw)p)(q) = ¢(¢—hu), so that the operators U(u) and V' (v) satisfy H. Weyl
relation (2.6). Such realization of H. Weyl relation is called Schrddinger
representation.

To prove that coordinate representation is irreducible, let B be a bounded
operator commuting with P and . By Lemma 2.1, T = f(Q) for some
f € L>*(R). Now commutativity between 7" and P implies that

TU(u) =U(u)T forall wue€R,

which is equivalent to f(q — hu) = f(q) for all ¢,u € R, so that f = const
a.e. on R. N

To summarize, the coordinate representation is characterized by the
property that the coordinate operator () is a multiplication by ¢ operator
and the momentum operator P is a differentiation operator,

h d
Q=q and P=—-——.
i dgq
Similarly, momentum representation is defined by the property that the
momentum operator P is a multiplication by p operator. Namely let ¢ =
L?(R, dp) be the Hilbert L2-space on the “momentum space” R with the
coordinate p, which is a Lagrangian subspace of R? defined by the equation
q = 0. The coordinate and momentum operators are given by
. d )
@ =ih— and P =p,
dp
and satisfy the Heisenberg’s commutation relation. In the momentum rep-
resentation, the modulus square of the wave function ¢ (p) of a pure state
M = Py, ||7|| = 1, is the probability distribution for the momentum of the
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quantum particle, i.e., the probability that a quantum particle has momen-
tum between p and p + dp is |¢(p)|2dp.

Let %, : L>(R) — L?(R) be the h-dependent Fourier transform operator,
defined by

@(p) = Fnle)(p) = \/ﬁ e~ /M (q)dg.

Here integral is understood as the limit ¢ = hmnﬂoo (p, in the strong topol-
ogy on L*(R), where
1 no.
on(p) = e~/ (q)dg.

V 27Th —-n

It is well-known that .# is a unitary operator on L?(R) and

Q:yﬁQyi;7 P:g?ﬁpy]—;ly

so that coordinate and momentum representations are unitary equivalent.
In particular, since the operator P is obviously self-adjoint, this immedi-
ately shows that the operator P is self-adjoint, and that the momentum
representation is integrable.

For n degrees of freedom, the coordinate representation is defined by
setting .# = L?(R",d"q), where d"q = dqi . .. dqy, is the Lebesgue measure
on R", and

h 0 h 0 h 0
Q_q_(q17"'7qn)7 P = Zaq (la(ﬂ7,laqn>

Here R" is the configuration space with the coordinates q — a Lagrangian
subspace of R?" defined by the equations p = 0. The coordinate and mo-
menta operators are self-adjoint and satisfy Heisenberg’s commutation rela-
tions. Projection-valued measured for the operators () are given by

(PL(E)9)(Q) = Xz-1(gy (@)(a),

where F € #B(R) and 7, : R™ — R is a canonical projection onto the k-th
component, k = 1,...,n. Correspondingly, the projection-valued measure
P for the commutative family Q = (Q1,...,Qn) (see Proposition 1.2) is
defined on the Borel subsets E C R"™ by

(P(E)¢)(a) = xe(a)¢(q).

The family Q has absolutely continuous joint spectrum R™.

Coordinate operators @1, ..., Q, form a complete system of commuting
observables. This means, by definition, that none of these operators is a
function of the other operators, and that every bounded operator commuting
with Q1,...,Qy is a function of @1, ..., @y, i.e., is a multiplication by f(q)
operator for some f € L°°(R™). The proof repeats verbatim the proof of
Lemma 2.1. For the pure state M = Py, ||¢|| = 1, the modulus square
|4(q)|? of the wave function is the density of a joint distribution function
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pq for the commutative family Q, i.e., the probability of finding a quantum
particle in a Borel subset E C R"” is given by

4Q(B) = / ()P
E

The coordinate repsentation defines an irreducible, integrable represen-
tation of the Heisenberg algebra b,. Indeed, corresponding n-parameter
groups of unitary operators U(u) = e*F and V(v) = e7VQ are given by

(U)p)(a) = p(a—fu), (V(v)e)(a)=e Vip(q),

and satisfy H. Weyl relations (2.6). The same argument as in the proof of
Proposition 2.2 shows that this representation of the Heisenberg group H,,,
called the Schrodinger representation for n degrees of freedom, is irreducible.

In the momentum representation, J# = L2 (R™,d"p), where d"p =
dp'...dp" is the Lebesgue measure on R”, and

N, 0 . 0 . 0 N
Q—zhap = <zhap1,...,zhapn> , P=p=(p1,...,pn)
Here R” is the momentum space with the coordinates p — a Lagrangian
subspace of R?" defined by the equations q = 0.

The coordinate and momentum representations are unitary equivalent
by the Fourier transform. As in the case n = 1, the Fourier transform
Fp: L2(R",d"q) — L?(R™,d"p) is a unitary operator defined by

(D) = Fn()(p) =(2mh) /2 / P/ (q)d"g
R’ﬂ

= lim (2rh)~"/ / el (q)d"q,

o0
lql<N

where the limit is understood in the strong topology on L?(R", d"p). As in
the case n = 1, we have

Qkathygl, szyhpkﬂgl, k=1,...,n.

In particular, since operators ]51, ey B, are obviously self-adjoint, this im-
mediately shows that P, ..., P, are also self-adjoint.

REMARK. Following Dirac, physicists use to denote a vector ¢ € 7 by
a ket vector 1), a vector ¢ € J* in the dual space to S (H* ~ A is
a complex anti-linear isomorphism) — by a bra vector (p|, and their inner
product — by (¢|¥). In standard mathematics notation,

(¥, 0) = (pl) and (A, p) = (p|AlY).

where A is a linear operator. From physics point of view, Dirac’s notations
are intuitive and convenient for working with coordinate and momentum
representations. Denoting by |q) = 6(q — q) and |p) = (2rh)~"/2ePa/h
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the set of generalized common eigenfunctions for the operators Q and P
respectively, we formally get

Qla) =d|qa), P|p)=plp),

where operators Q act on ¢, and

(aly) = /5(01 - q)¥(q)d"q = ¥(q),

RTL

(plv) = (2072 [ Py = (o),
R’VL
as well as (q|q') = d(q—d'), (p|p’) = d(p — p’). Though in our exposition
we are not using Dirac’s notations, this could help the interested reader to

“translate” the notations used in physics textbooks to the standard mathe-
matics notations.

PROBLEM 2.2. Give an example of non-integrable representation of the Heisenberg
algebra.

PROBLEM 2.3. Prove that there exists ¢ € s = L*(R, dq) such the vectors P(E)y,
E € B(R), where P is a projection-valued measure for the coordinate operator @, are dense
in 2.

PROBLEM 2.4. Find the generating operator for the commutative family Q =
(Q1,...,Qn). Does it have a physical interpretation?

PROBLEM 2.5. Find the projection-valued measure for the commutative family
P = (Pi,..., P,) in the coordinate representation.

2.3. Free quantum particle. Free classical particle with one degree
of freedom is described by the phase space R? with coordinates p, ¢ and the
2

Poisson bracket (2.1), and by the Hamiltonian function h(p, q) = 2pim The
Hamiltonian operator of a free quantum particle with one degree of freedom
is .
=5
and in coordinate representation is given by
n? d?
“om

It is a self-adjoint operator on . with D(H) = W?22(R) — a Sobolev space
of functions in L?(R), whose generalized first and second derivatives are in
L*(R).

The operator H is positive with absolutely continuous spectrum [0, co)
of multiplicity two. Indeed, let $§ = L?(Rsq, C?;do) be the Hilbert space of
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C?-valued measurable functions ¥ on the semi-line R~ = (0, c0), which are
square-integrable with respect to the measure do(E) = /5% dFE,

o= (DB g [
o= {wE) = (105 1012 = [Qon(BP + )P )do(B) < o0}

2
Since in momentum representation H is a multiplication by ;; operator,
m

under the isomorphism L?(R, dp) ~ 9,

ST ) o,

L(R,dp) 5 9 (p) — U(E) = <¢<_ 2mE)

the operator H becomes a multiplication by E operator, HU(E) = EV(E).

REMARK. The Hamiltonian operator H has no eigenvectors — the eigen-
value equation

Hy = Ev

has no solutions in L?(R). However, for every E > 0 this differential equation
has two linear independent bounded solutions

wi(Q) _ L eii\/QmEq/7‘17
27h

which do not belong to L?(R). In the distributional sense, these solutions
combine to a Schwartz kernel of the unitary operator establishing the iso-
morphism between 7 = L?(R, dp) and the Hilbert space § in which H acts
as a multiplication by E operator.

The Schrodinger equation for a free particle,

L dy(t) _
1717 = Hw(t), 1/)(0) =1,

is easily solved by the Fourier transform. Indeed, in the momentum repre-
sentation it takes the form

0 (p, ? p 7
in?? D _ P ), .0 = ).
so that
int

b(p.t)=e " (p).

Therefore in the coordinate representation solution is given by

(2.8) w@wzvém/iJ@“;@”wm@.

The formula (2.8) describes the motion of a quantum particle and admits
the following physical interpretation. Suppose that the initial condition ¥ is
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such that its Fourier transform @ZA) = Fr(v) is a smooth function supported
in a neighborhood Uy of pyp € R\ {0} such that 0 ¢ Uy and

[%W@W@—L

Such states are called “wave packets”. Then for every compact subset £ C R
we have

. 2 _
(2.9) tg;Zwmw|@—o

Since
> 2
/ (g, t)"dg = 1
—00
for all ¢, it follows from (2.9) that as [t| — oo, quantum particle “leaves”
every compact subset of R, so that the motion is infinite. To prove (2.9),

observe that the function x(p,q,t) = —% + % — the “phase” in integral
representation (2.8), has the property that |g—;§| > C > 0 for all p € Uy,
q € E and large enough |t|. Integrating by parts we get

¥(g,t @)/ ey (p)dp

)_v%mle

1 /n 0 i’(p) itx(q,p;t)/h
—‘w%m/% e | © ”
Uo

dp

so that uniformly on F,

w@o=o<;) as [i] — oo,

By repeated integration by parts, we obtain that for every n € N uniformly

on FE,
1
=0|—].

To describe the motion of a free quantum particle in unbounded regions,
we use the stationary phase method. In its simplest form it is stated as
follows.

THE METHOD OF STATIONARY PHASE. Let f,g € C®°(R), where f is
real-valued and g has compact support, and suppose that f has a single
non-degenerate critical point g, i.e., f'(z9) =0 and f”(z¢) # 0. Then

o 2 1/2 : im 7 1
N f(z) _ iN f(zo)+Tsgnf’ (zo) -
/oo ‘ g(x)d$ (le//(x0)|> ‘ ’ g(mO) o (N>

as N — oo.



74 2. FOUNDATIONS OF QUANTUM MECHANICS

Applying the stationary phase method to the integral representation
(2.8) (and setting N = t), we find that the critical point of x(g,p,t) is
po = 24 with x"(po) = —= # 0, and

2 .
m m miq i B
1/} q At a4 + O(t 1)

= (g, )+0(t_1) as ¢ — oo.

Thus as t — oo, the wave function (g, t) is supported on EUO — a domain
where the probability of finding a particle is asymptotically different from
zero. At large ¢ the points in this domain move with constant velocities
v = %, p € Up. In this sense, the classical relation p = mwv remains valid in
the quantum picture. Moreover, the asymptotic wave function 1y satisfies

/_Z |¢0(q,t)|2dq:\/?/_‘: J

and, therefore, describes the asymptotic probability distribution. Similarly,
setting N = —|t|, we can describe behavior of the wave function (q,t) as
t — —o0.

Hﬂﬂﬂmzl

REMARK. In the weak topology on ¢ the vector ¢(t) — 0 as [t| — oo.
Indeed, for every ¢ € S we get by the Parseval identity

Q) = / D(p)é(p)e b dp,

and the integral goes to zero as |[t| — oo by the Riemann-Lebesgue lemma.

Classical free particle with n degrees of freedom is described by the
phase space R?" with coordinates p = (p',...,p") and q = (q1,.-.,qn), the
Poisson bracket (2.3), and the Hamiltonian function

hpa) = & = @ F @)
2m 2m

The Hamiltonian operator of a free quantum particle with n degrees of
freedom is

)

2m 2m
and in the coordinate representation is
h2
H=——A,
2m
where ) )
0 0
A =

dq7 9q;
is the Laplace operator'? in the Cartesian coordinates on R™. The Hamilton-
ian H is a self-adjoint operator on J# = L?(R", d"q) with D(H) = W*2(R")

1214 4 negative of the Laplace-Beltrami operator of the standard Euclidean metric on
R"™.
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— the Sobolev space on R™. In the momentum representation,

p2

2m
— a multiplication by a function operator on . = L?(R", d"p).

The operator H is positive with absolutely continuous spectrum [0, o)
of infinite multiplicity. Namely, let S"! = {n € R™ : n? = 1} be the
(n — 1)-dimensional unit sphere in R", dn be the measure on S"~! induced
by the Lebesgue measure on R™, and let

o= 5" = Cilflf = [ 17)Pdn < oc).

Sn—=

Let 9, = L?(Rwg, b;do,,) be the Hilbert space of h-valued measurable
functions'® ¥ on R, square-integrable on R with respect to the measure

don(E) = (2mE)3 £,

m:{w:&wm e~ [ ||\P<E>||%dan<E><oo}.

2
Since in the momentum represntation H is a multiplication by zp— operator,
m

under the isomorphism L?(R", d"p) ~ $,,
L*(R",d"p) > ¢(p) — ¥(E)(n) = ¢(V2mEn) € Hy
the operator H becomes a multiplication by E operator, HU(E) = EV(E).

REMARK. As in the case n = 1, the Hamiltonian operator H has no
eigenvectors — the eigenvalue equation

Hy = Evy
has no solutions in L?*(R"). However, for every E > 0 this differential
equation has an infinitely many linear independent bounded solutions
Ynla) = (2mh) 3 (NVIMERa/
parametrized by the unit sphere S"~!. These solutions do not belong to
L?(R™), but in the distributional sense they combine to a Schwartz kernel

of the unitary operator establishing the isomorphism between the Hilbert
spaces ¢ = L?(R",d"p) and $),.

As in the case n = 1, the Schrédinger equation for free particle,

L dy(t
im0 _ ), wo) = v,
is solved by the Fourier transform,
i(qp—Qpit> /R A
vlat) = eny /2 [\ )y,

]Rn

13 That is, for every f € b the function (f, ¥) is measurable on Rxg.
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Eor a wave packet — an initial condition v such that its Fourier transform
¥ = Fp(¢) is a smooth function supported on a neighborhood Uy of pg €
R™\ {0} such that 0 ¢ Uy and

/ [i(p)2d"p = 1,
Rn

quantum particle “leaves” every compact subset of R™ and the motion is
infinite. Asymptotically as |t| — oo, the wave function ¥(q,t) is different
from 0 only when q = £¢, p € Uj.

2.4. Examples of quantum systems. Here we describe quantum sys-
tems that correspond to classical Lagrangian systems introduced in Section
1.3 of Chapter 1. In Hamiltonian formulation, the phase space of these sys-
tems is a symplectic vector space R?" with canonical coordinates p,q and
symplectic form w = dp A dq.

EXAMPLE 2.1 (Newtonian particle). Classical particle in R™ moving a
potential field v(q) is described by the Hamiltonian function
p?
h(p,q) = o— +v(q).

2m
Assume that the Hamiltonian operator for the quantum system is given by
P2
H=—+YV,
2m

so that coordinate and momenta operators satisfy Heisenberg equations of
motion
To determine the operator V', we require that the classical relation q = P
m

between the velocity and the momentum of a particle is preserved under the
quantization, i.e.,

. P

Q-—.

m
Since {P?,Q}; = 2P, it follows (2.10) that this condition is equivalent to
V,Qr] =0, k=1,...,n.

According to Section 2.2, V is a function of commuting operators Q1, ..., Qn,
and the natural choice!® is V' = v(Q). Thus the Hamiltonian operator of a

Newtonian particle is
2

P
H= %—’—U(Q))

and in coordinate representation it is a Schrddinger operator

h2
(2.11) H= —%A—J—v(q)

Mconfirmed by the agreement of the theory with the experiments.
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with the real-valued potential v(q).

The sum of two unbounded, self-adjoint operators is not necessarily self-
adjoint, and one needs to describe admissible potentials v(q) for which H
is a self-adjoint operator on L?(R",d"q). If a potential v(q) is real-valued,
locally integrable function on R", differential operator (2.11) defines a sym-
metric operator H with the domain C3(R™) — twice continuously differ-
entiable functions on R™ with compact support. Potentials for which the
operator H has no self-adjoint extensions are clearly non-physical. It may
also happen that H has several self-adjoint extensions which are specified
by some boundary conditions at infinity, which are again non-physical. The
only physical case is when the symmetric operator H admits a unique self-
adjoint extension, i,e., H is essentially self-adjoint'®. In Chapter 3 we present
necessary conditions for the essential self-adjointness. Here we only mention
the von Neumann criterion that if A is a closed operator and D(A) = 5,
then H = A*A is a positive self-adjoint operator.

ExaMPLE 2.2 (Interacting particles). A closed system of N interacting
particles on R? is described by the canonical coordinates r = (ry,...,ry),
the canonical momenta p = (p1,-..,PnN), Ta,Pa € R3, and by the Hamil-
tonian function

N2
(2.12) hpr) =S 2o 4 o(r),

2m
a=1 @

where m, is the mass of the a-th particle, a = 1,..., N. Corresponding
Hamiltonian operator H in the coordinate representation has the form

h2
(2.13) H=-) ——A,+u(r)

In particular, when

U(I') = Z U(ra - rb)a

1<a<b<N

the Schrodinger operator (2.13) describes the N-body problem in quantum
mechanics. The fundamental quantum system is the complex atom, formed
by a nuclei of charge Ne and mass M and by N electrons of charge —e and
mass m. Denoting by R € R3 the position of a nuclei, and by rq,...,ry
positions of the electrons and assuming that the interaction is given by the
Coulomb attraction, we get for the Hamiltonian function (2.12)

P2 N e
P, p,R1) = 577 Z Z|R—ra| >

7’
1<a<b<N [ta — 1

2

15The closure H = H** is self-adjoint.
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where P is the canonical momentum of a nuclei. Corresponding Schrédinger
operator H in the coordinate representation has the form'6

e Z T Z|Rﬂva| >

r, — 13|
1<a<b<N [ta — 1

2

In the case of the hydrogen atom, N = 1, and the Hamiltonian is

h? h? e?
H=——A ——A— —
2M ™7 2m™ e, — x|
where r, is the position of the proton, and r. is the position of the elec-
tron. As the first approximation, the proton can be considered as infinitely
heavy, so that the hydrogen atom is described by an electron in an attrac-
tive Coulomb field —e?/|r|, where now r = r. — r,. The corresponding

Hamiltonian operator takes the form
h2 2
(2.14) A
2m |r|

We will solve the Schrodinger equation with this Hamiltonian H in Chapter
3.

EXAMPLE 2.3 (Charged particle in an electromagnetic field). Classical
particle of charge e and mass m moving in the time-independent electro-
magnetic field with scalar and vector potentials ¢(r) and A(r), r € R3, is
described by the Hamiltonian function

npe) =5 (b CAm) +eplr)

Corresponding Hamiltonian operator in the coordinated representation is
given by

1 (ho 2
2.15 H=—|[-—--A
(2.15) s (555~ SAD) +eotw)

— the Schrédinger operator of a particle in an electromagnetic field.

ol®

2.5. Harmonic oscillator. The simplest classical system with one de-
gree of freedom is a harmonic oscillator, described by the phase space R?
with the canonical coordinates p, ¢, and the Hamiltonian function

2 2 2
p mw-q
h(p,q) = — + .
pa)= 5

Here positive w = 4/ % (see Section 1.5 in Chapter 1) has a physical meaning
of the frequency of oscillations. Namely, the Hamilton’s equations

. . P
p={hp}=-mw?q, ¢={hq}= -~

16Ignoring the fact that electron has spin, see Chapter 6.
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with the initial conditions pg, g9 are readily solved

(2.16) p(t) = po coswt — mwqp sin wt,
1
(2.17) q(t) = qo coswt + —pg sin wt,
mw

and describe the harmonic motion.
Corresponding Hamiltonian operator is
PZ me 2
H=—+ @ ,
2m 2

and in the coordinate representation /# = L%(R,dq) is a Schrédinger oper-
ator with a quadratic potential,

h? d? mw?q?

2m dq? 2
The harmonic oscillator is the simplest non-trivial quantum system whose
Schrodinger equation can be solved explicitly. It appears in all problems
involving quantized oscillations, namely in molecular and crystalline vibra-
tions. The exact solution of the harmonic oscillator, described below, has
remarkable!” algebraic and analytic properties.

Set temporarily m = 1 and consider the operators
1 1
wQ +1P), a*= w@ —iP),

V2wh ( ) vV 2wh ( )
defined on W1H2(R) N WLQ(]R). It is not difficult to show that a* is the
adjoint operator to a and a** = a, so that a is a closed operator. From the
Heisenberg’s commutation relation (2.2) we get

(2.18) a=

(2.19) [a,a*] =1
on W22(R) N W22(R). Indeed,
P? + w2Q? w P2 +u0%Q% 1
a oo T aunDdl 2wh 2
and
P? + w2Q? iw P2 +u0%Q% 1
@ 2wh 2un ¢ 2%wh 2"

so that (2.19) holds on W22(R) N W\Q’Q(R), and
H=wh(a*a+ 3I) = wh(aa* — 3I).

In particular, it follows from the von Neumann criterion that the Hamilton-
ian operator H is self-adjoint.

17Algebraic structure of the exact solution of the harmonic oscillator plays a funda-
mental role in quantum elecrodynamics and in quantum field theory in general.
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The operators a,a* and N = a*a satisfy the commutation relations of a
nilpotent Lie algebra:
(2.20) [N,a] = —a, [N,a"|=a", J[a,a"]=1.

It is due to this Lie-algebraic structure that the Heisenberg’s equations of
motion for and the Schrédinger equation for the harmonic oscillator can be
solved exactly.

Indeed, the Heisenberg’s equations of motion for the operators a and a*
have the form

a={H,a}p=—iwa and a" ={H,a"}=iwa",
and are readily solved
a(t) = e “tag, a*(t) = e“lay,

where ag, af, are the initial conditions. Returning to the operators

P =i %h(*_a)v Q:\/%(a*+a)7

we get

(2.21) P(t) = Py coswt — wQ sin wt,
1

(2.22) Q(t) = Qo coswt + — Py sinwt.
w

Therefore (note that we have set m = 1), solutions of classical and quantum
equations of motion for the harmonic oscillator have the same form!
Now consider the Schrédinger equation

Hy = B

for the harmonic oscillator. We will show that the Hamiltonian H has purely
discrete spectrum by determining explicitly the eigenvalues — the energy
levels of the harmonic oscillator, and the corresponding complete system of
the eigenvectors. First, suppose that the following properties hold.

I. There exists a non-zero ¢ € S such that
Hy = Ev.
II. For all n € N, ¢ € D(a™) N D((a*)").

Then the following statements hold.
(a) There exists ¢y € 2, ||¢o] = 1, such that

Hipo = 24y

— the ground state vector for the harmonic oscillator.
(b) The vectors

_ (@)" _
(2.23) U = mwoe%, n=0,1,2,...,
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satisfy

(2.24) a*hp = Vn+ 111, apthy = Va1,
and are the orthonormal eigenvectors for H with the eigenvalues
hw(n+ 3),

Hipp = hw(n + 3)tn.
(c¢) Operator H is essentially self-adjoint on the Hilbert space J# — a
closed subspace of 7, spanned by the orthonormal set {1, }5° .

It is easy to prove these statements. If a non-zero v € S satisfies
properties I-II, then rewriting commutation relations (2.20) as

Na=a(N—-1I) and Na* =a"(N+1),
we get for all n > 0,
(2.25) Na™p = (E —n)a™p and N(a*)" = (E+n)(a™) .
Since N > 0 on D(N), it follows from the first equation in (2.25) that there

0
exists ng > 0 such that ™) # 0 but a™0 14 = 0. Setting ¢y = ||a 03” e X
an
we get
(2.26) apg=0 and Ny =0.

Since H = hw(N + 3I), this proves (a). To prove (b) we observe that it
follows from the commutation relation (2.19) and the Leibniz rule that

(2.27) [a, (a*)"] = n(a*)""H,
and we get
1(a*)™bol|* = ()"0, (a*)™bo) = (sbo, a™ " a(a*) o)
= n(to,a" " (a*)" o) + (o, a™ (a*) " arko)
= (@) ol = - = nl|goll? = m!

The first equation in (2.24) is trivial, the second equation follows from (2.26)-
(2.27), and we conclude that v, are normalized eigenvectors of H with the
eigenvalues hw(n + 3). The last fact also follows from the second equa-
tion in (2.25). The eigenvectors 1), are orthogonal since the corresponding
eigenvalues are distinct and the operator H is symmetric. Finally, property
(c¢) immediately follows from the fact that, according to (b), the subspaces
Im (H +4il)| 4, are dense in J7.

REMARK. Since coordinate representation of the Heisenberg’s commu-
tation relations is irreducible, it is tempting to conclude from the properties
(a)-(c) that s = . Namely, it follows from the construction that the
linear span of vectors v, — a dense subspace of 73, is invariant for the
operators P and (). However, we can not immediately conclude that the
projection operator Iy onto the subspace 54) commutes with P and Q).
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By using the coordinate representation, we can prove properties I-11
and that s = 7. Namely, equation aiyg = 0 becomes a first order linear
differential equation

d
<h + wq) ¢0 = 07
dgq

so that

and

N e
ol = /25 [ =1
—0oQ0

Correspondingly, the eigenfunctions

nla) = o= ( — (wq - hi}))n%

w2
are of the form P,(q)e " , where P,(q) are polynomials of degree n. Thus
to prove that the functions {1,,}5°, form an orthonormal basis in L?(R), it

is sufficient to show that the system of functions {g"e~9"}°2 is complete in
L?(R). Namely, suppose that f € L?(R) is such that

/ f(q)q"e_qqu =0 forall n=0,1,2,...
—0o0
For z € C let
Fe) = [ et
—0oQ

Clearly, the integral is absolutely convergent for all z € C and defines an
entire function. We have

o
F(”)(O) = z"/ f(q)q"e_quq =0 forall n=0,1,2,...,
—0Q

so that F(z) = 0 for all z € C. This implies that for the function g(¢) =
f(q)e’q2 € L'(R) N L*(R) we have .Z(g) = 0, where .Z is the “ordinary”
(h = 1) Fourier transform. Thus g = 0 and, therefore, f = 0.

The polynomials P, are expressed through classical Hermite-Tchebyscheff
polynomials H,, defined by

Ho(q) = (1) — e~ n=0,1,2...

Namely, using the identity
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Jw 1 -4 q? w
inl) = {5 ( hq)

We summarize these results as follows.

we obtain

THEOREM 2.1. The Hamiltonian

h2 d2 mw2q2
©2dg? 2
of a harmonic oscillator with one degree of freedom is a self-adjoint operator
on s = L*(R) with the domain D(H) = W%2(R) HWQ’Q(R), and with pure
point spectrum

Hwn: anH n2071?27"'
with the energy levels E, = hw(n + %) The corresponding eigenfunctions
Yy, form an orthonormal basis for 7€ and are given by

mw 1 —mw g2 mw
2.2 n(q) = ¢ — UH, (=
23) o= e (y59).

where Hy(q) are classical Hermite-Tchebyscheff polynomials.

PRrROOF. Consider the operator H defined on the Schwartz space .7 (R)
of rapidly decreasing functions. Since the operator H is symmetric and has
a complete system of eigenvectors in . (R), the subspaces Im(H + il) are
dense JZ, so that H is essentially self-adjoint. The proof that its self-adjoint
closure (which we continue to denote by H) has the domain W?22(R) N

/W?Q’Q(R), is left to the reader. O

REMARK. Since the energy levels of the Hamiltonian H are equidistant
by hAw, the quantum harmonic oscillator describes the system of identical
“quanta” with the energy hw. The state |0) = 19, in Dirac’s notations, is
the vacuum state with no quanta present and with the vacuum energy %hw,
and the states |n) = 1, consist of n quanta with the energy hw(n + 3).
According to (2.24), the operator a* adds one quant to the state |n) and
is called a creation operator, and the operator a destroys one quant in the
state |n) and is called an annihilation operator.

Example of harmonic oscillator illustrates the dramatic difference be-
tween the quantum motion and the motion in classical mechanics. The

classical motion in the potential V(q) = %mquQ is finite: a particle with

\/%, whereas there is always an non-
zero probability of finding quantum particle outside the classical region.
Thus for the ground state energy E = %fzw this probability is

2 [
lo(q)|?dg = —= / e dx ~ 0.1572992070.
/|q>\/,fw VT 1

energy E moves in the region |wq| <
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Harmonic oscillator with n degrees of freedom is a classical system de-
scribed by the phase space R?" with the canonical coordinates p, q, and by

the Hamiltonian function

P’

2m
where v(q) is a positive-definite quadratic form on R™. By applying an
orthogonal transformation to both coordinates q and momenta p, we can
assume that the form v(q) is diagonal and

2 n 2.2
h(p,aq) = om +Z#
j=1

h(p,qa) = o — +v(q),

with wy,...,w, > 0. The motion of the system is described by an indepen-
dent harmonic motions in (pj, ¢;)-planes with frequences wj, j =1,...,n.
Corresponding Hamiltonian operator is
H=-— 7%
2m i Z

J=1
and in the coordinate representation # = L?(R" d"q) is a Schrédinger
operator with quadratic potential,

K2 n mw2q2
H=—A — 1
2m + Z 2
j=1
Hamiltonian H is a self-adjoint operator with D(H) = W22(R")nW22(R")
and a pure discrete spectrum. Corresponding eigenfunctions

Vi(a) = Y, (1) - - - Y, ()
where k = (ky,..., k) and vy, (g;) are eigenfunctions (2.28) with w = wy,
form an orthonormal basis for L?(R™). Corresponding energy levels are
given by
Ei = hwi (k1 + 5) + - + o (kn + 3)-

The spectrum of H is simple if and only if Aws, ..., hw, are linear indepen-
dent over Z. The highest degeneracy case is w1 = -+ = w, = w, when the
multiplicity of the eigenvalue

Be=hw) (kj+})

=1
is the partition function p,(|/k|) — the number of representations of the
integer |k| = k1 4+ -+ + ky, as a sum of n non-negaitve integers. Setting

m = 1 and introducing the operators'®

: x 1 , ,
(wQj +1F;), aj= (wQj; —iPj), j=1,...,n,

V2wh

18Here using the standard Euclidean metric on R™, we lowered the indices for P7.

2.29) a; =
(220) ;= ——

>t
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we get commutation relations for creation and annihilation operators for n
degrees of freedom,

(2.30) laj,a)] =0, aj,a;] =0, laj,a]=6ul, jl=1,....n,

which generalize relation (2.18) for the one degree of freedom. The opera-
tors aj, a;f and N; = a;aj, j =1,...,n, satisfy commutation relations of a
nilpotent Lie algebra, a direct sum of n copies of the nilpotent Lie algebra
(2.20). In particular, the operator

n
N = E a;a;
Jj=1

satisfies
[Nvaj]:_a‘j7 [Nva;]:a';v jzlv"'vna
and H = hw(N + 21).

PROBLEM 2.6. Show that (H|M) > ihw for every M € .#, where H is the
Hamiltonian of harmonic oscillator with one degree of freedom.

PROBLEM 2.7. Let q(t) = Acos(wt + ) be the classical trajectory of the harmonic

oscillator with m = 1 and the energy E = “22‘42 , and let po be the probability measure on
R supported at the point ¢(t). Show that the convex linear combination of the measures

ta, 0 < a < 2, is the probability measure on R with the distribution function p(q) =
0(A%—q?)
/A2 —q2 ’

PROBLEM 2.8. Show that when n — oo and & — 0 such that hw(n + 1) = LQAZ
remains fixed, the envelope of the distribution function |t (¢)|? on the interval |q| < A
coincides with the classical distribution function u(q) from the previous problem. (Hint:
Prove the integral representation

where 0(q) is the Heavyside step function.

2n+1

N

— 2 > — 2 n nTm
e Hn(q) = / e ¥ y" cos(2qy — ) dy,
0]

and derive the asymptotic formula
_j2__ 1 Y(g2gn 14 2 _ 2 _ LQW
bala) =/ = mcos{zh(A sin~' & 4 g/ =7 - = )+0(1)}

WhenﬁHOandn+%:“’2‘f, lg] < A.)

PROBLEM 2.9. Complete the proof of Theorem 2.1.

PROBLEM 2.10. Show that the operators E;; = afa;, i,57 = 1,...,n, satisfy the
commutation relations of the Lie algebra sl(n, C).

2.6. Holomorphic representation and Wick symbols. Let
oo
P =Se={alzo  llel? =) leal* < o0
n=0

be the Hilbert ¢2-space. The choice of an orthonormal basis {1}, for
L?(R, dq), given by the eigenfunctions (2.28) of the Schrédinger operator for
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the harmonic oscillator, defines the Hilbert space isomorphism L?(R, dq) ~
2,

LA(R,dq) 59 =Y enthn > ¢ = {ea}olg € £,

n=0

where
tn = (@, %n) = / $(@)hn(a)da,

since the functions 1, are real-valued. Using (2.24) we get
a*¢ = cha*¢n = Z V4 1cepnir = Z \/ﬁcn—lwna (NS D(a*),
n=0 n=0 n=1
and
ap =) cnathy =) Vicabn-1 =) vVt leapidn, ¢ € D(a),
n=0 n=0 n=0

so that in ¢2 creation and annihilation operators a* and a are represented
by the following semi-infinite matrices:

V1

o O O

0

0

0 VI
N, a=10

Ve 0

o&oo
=
co oo

As the result,

SO O = O
o N OO
W o oo

so that the Hamiltonian of the harmonic oscillator is represented by a diag-
onal matrix,

H = hw(N + 3) = diag{3hw, $hw, Shw, ... }.

This representation of the Heisenberg’s commutation relations is called
representation by the occupation numbers, and has the property that in this
representation the Hamiltonian H of the harmonic operator is diagonal.

Another representation where H is diagonal is constructed as follows.
Let 2 be the space of entire functions f(z) with the inner product

(fo) =+ [[ s
C
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where d?z = %dz A dZ is the Lebesgue measure on C ~ R2. It is easy to
check that 2 is a Hilbert space with the orthonormal basis

Zn

fn(z):ﬁ7 n:O71727"'

The correspondence
K 90—{Cn}nOHf chfn 7

establishes the Hilbert space isomorphism 62 ~ 9. The realization of a
Hilbert space 77 as the Hilbert space & of entire functions is called a holo-
morphic representation. In the holomorphic representation,

and H = M( d 1),

o=z a=

dz’ dz

and it is very easy to show that a* is the adjoint operator to a. The mapping

H > = chqzjan chfn

n=0

establishes the isomorphism between the coordmate and holomorphic rep-
resentations. It follows from the formula for the generating function for
Hermite-Tchebyscheff polynomials,

= 2" 2
§ :Hn(Q)f — quzfz ,
n!

n=0

that the corresponding unitary operator U : 57 — & is an integral operator

vite) = [ " Ue, q)v(a)dg

—00

T

Another useful realization is a representation in the Hilbert space 2 of
anti-holomorphic functions f(z) on C with the inner product

-4 e

d

dz’

This representation is used to introduce the so-called Wick symbols of the
operators. Namely, let A be an operator in 2 which is a polynomial with
constant coefficients in creation and annihilation operators a* and a. Using
commutation relation (2.19), we can move all operators a* to the left of the

with the kernel

given by

a* =2z a=
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operators a, and represent A in the Wick normal form as the following finite
sum

(2.31) A= Ap(a

By definition, the Wick symbol A(Z, z) of the operator A is
(2.32) A(z,2) =D Apz'a™

It is a restriction of a polynomial A(v, z) in variables v and z to v = Z.
In order to define Wick symbols of bounded operators in &, we consider
the family of coherent states, or Poisson vectors ®, € 9, v € C, defined by

®,(2) =", zeC.
They satisfy the properties
(2.33) a®, =v®, and f(0)=(f®,), f€ P, veC.

Indeed, the first property is trivial, whereas the “reproduction property”
immediately follows from the formula

(2.34) ©,(2) = Y falv) ful2)

where f,(2) = fu(z), n=0,1,2..., is the orthonormal basis for 2.
We also have

(2.35) / (£, @) (g B)e " 2.

Now for the operator A in the Wick normal form (2.31) we get, using the
first property in (2.33),

(AD., &) ZAlm )", 05) = Ay (a™ P, d' D)

ly,m
= A(v, 2)(®, Dp).
Therefore,
(A(I)Z7 (I)ﬁ)
(@27 q)fl)
since by the reproduction property, (®,, ;) = ®,(v) = e¥?

A(v, z) = =e P(AD,, Dy),

DEFINITION. The Wick symbol A(Z, z) of a bounded operator A in the
Hilbert space Z is a restriction to v = Z of an entire function A(v,z) in
variables v and z, defined by

Av, z) = e #(AD,, Dp).

In the next theorem, we summarize the properties of the Wick symbols.
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THEOREM 2.2. Wick symbols of the bounded operators on & have the
following properties.

(i) If A(z, z) is the Wick symbol an operator A, then the Wick symbol
of the operator A* we have A*(zZ,z) = A(z,z) and

A*(v,z) = A(Z, D).
(ii) For f € 9,

(Af)() =~ / / A(z,0) [ (0)e ") 2,
C

(iii) A real-analytic function A(Z,z) if a Wick symbol of a bounded op-
erator A in 2 if and only if it is a restriction to v = Z of an entire
function A(v, z) in variables v and z with the property that for every
f € D the integral in part (ii) is absolutely convergent and defines
a function in 9.

(iv) If A1(z,2) and Ax(Zz,z) are the Wick symbols of operators A; and
Ao, then the Wick symbol of the operator A = A1 As is given by

Az 2) = % / / Ar(Z,0) Ag (B, 2)e - -2) g2
C

ProOOF. We have
A*(v,2) = e F(ATD,, Dy) = e (D, ADy) = e (AP, D) = A(Z,7),

which proves (i). To prove (ii), we use the reproduction property to get

(Af)(2) = (Af, @:) = (f, A"®;) = i//f(v)(A*q)Z)(v)e|“|2d2v.
c

Using the reproduction property once again we have
(A70)(0) = (A" @2, Dy) = A%(0,2)(D2, By) = " A(Z,0),

which proves (ii). Property (iii) follows from the definition and the uniform
boundness principle, which is needed to show that the operator A on 2,
defined by the integral in (ii), is bounded. We leave the standard details to
the reader. Finally, to prove (iv) we get, using (2.35) and (i),

A(z,2) = e 1P (41450, 0.) = e 71717 (4,8, A70.)

1 -
= //(AQCI)Z,CI)U)(A’{@Z’q)v)e—(|v|2+z|2)d2v
s

C
1 _
= // A1(2,0) Az (0, 2)e” 2 @=2) g2y,
s
C
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REMARK. Properties (i) and (iv) remain valid for the operators of the
form (2.31).

A matriz symbol ;1(2, z) of a bounded operator A in the Hilbert space
2 is a restriction to v = Z of an entire function A(v, z) in variables v and z,
defined by the following absolutely convergent series

oo

(2.36) A(U,Z> = Z (Afmafn)fn(v)fm(z)

m,n=0

The matrix and normal symbols are related as follows.

LEMMA 2.2. For a bounded operator A in the Hilbert space 9,
Av, z) = e A(v, 2).

PRrOOF. Using (2.34) we get

r i Fu(v) fm(2 //(Afm)(ﬂ)fn(U)e"“'2d2u

'mn 0
// (AD.)(@)Bp(@)e " d2u = (AD., By) = " A(v, 2).

Changing the order of summation and integration is justified by the absolute
convergence. O

It is straightforward to generalize these constructions to n degrees of
freedom. The Hilbert space %, defining the holomorphic representation is

the space of entire functions f(z) of n complex variables z = (z1,..., z,)
with the inner product
(f.9) = / f@)g@e " s < oo,

where |z|? = 22 +--- 4 22 and d2”z =d?z ---d*z, is the Lebesgue measure
on C" ~ R?". The functions

2L 2

fm(z)zl'in, mi,...,m,=0,1,2,...,

VM. My
form an orthonormal basis for Z,,. Corresponding creation and annihilation
operators are given by

0

sz ’
The Hilbert space 2, of anti-holomorphic functions f (z) on C" is defined
by the inner product

(.9) = Wn/f ey < o,

* .
a; =zj, aj = j=1,...,n.
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and the creation and annihilation operators are given by
0
*

(Z‘:Z‘, a-zi_ ,
J J 8Zj

J
The coherent states are @y (z) = €%, where vz = v121 + -+ + v,2,, and
satisfy the reproduction property

f(v):(fvév)y fe.@n, veC".

The Wick symbol A(z,z) of a bounded operator A on P, is defined as
a restriction to v .= z of an entire function A(v,z) of 2n variables v =
(v1,...,0,) and z = (z1,..., 2,), given by

A(v,z) = e V2(AD,, Dg).

7=1,...,n.

We have

(4n@ = [Aavi@e i, e,

Cn
and the Wick symbol A(z,z) of the operator A = A; A is given by

1 .
Ma2) = [ M@ v)Aa)e IOy,
ﬂ-’fL
C7l
where A;(z,z) and Ay(z,z) are the Wick symbols of the operators A; and
As.

The matrix symbol A(Zz,z) of a bounded operator A on 2, is defined
as a restriction to v .= Zz of an entire function A(v,z) of 2n variables
v = (v1,...,v,) and z = (21,...,2,), given by the following absolutely
convergent series

A(V,Z) = Z (Afk7fm>fm<v>fk<z)a
k,m=0
where k = (k1,...,k,), m = (myq,...,m,) are multi-indices, and fm(z) =

fm(z). The matrix and Wick symbols of a bounded operator A are related
by

A(v,z) = e"?A(v,z).
PROBLEM 2.11. Find an explicit formula for the unitary operator establishing the
Hilbert space isomorphism %,, ~ L*(R", d"q).

PROBLEM 2.12. Prove that for bounded operator A the functions A(v,z) and
A(v,z) are entire functions of 2n variables.

PROBLEM 2.13. Let A be a trace class operator on %, with the Wick symbol
A(z,z). Prove that

TrA= i/A(Z,z)e_\zwdnz.
7-[-774
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