Practice Final Exam MAT 125 Spring 2008

Answer each question in the space provided and on the back of the sheets. Write full solutions, not just answers: unless otherwise marked, answers without justification will get little or no partial credit. Cross out anything the grader should ignore and circle or box the final answer. Do **NOT** round answers.

No books, notes, or calculators!

- 1. Compute the following limits by distinguishing between " $\lim f(x) = \infty$ ", " $\lim f(x) = -\infty$ ", and "limit does not exist even allowing for infinite values".
 - (a) $\lim_{x \to -1} x^3 + 7x^2 1$ (b) $\lim_{x \to \infty} x \tan \frac{1}{x}$ (c) $\lim_{x \to 5} \frac{x^2 - 4x - 5}{x - 5}$ (d) $\lim_{x \to 0} x^4 \cos \frac{\pi}{x}$ (e) $\lim_{x \to 0} \frac{e^x - 1 - x - x^2/2}{x^3}$ (f) $\lim_{x \to \infty} \frac{x^3 + 1001x + 77}{x^3 - x^2 + 99}$ (g) $\lim_{x \to \pi/2} \frac{\cos x}{2x - \pi}$ (h) $\lim_{x \to \infty} (xe^{1/x} - x)$
- 2. Compute the derivatives of the following functions
 - (a) $f(x) = x^3 12x^2 + x + 137\pi$ (b) $f(x) = (2x + 1) \sin x$ (c) $g(s) = \sqrt{1 + e^{2s}}$ (d) $h(t) = \frac{1 + e^t}{1 - e^t}$ (e) $f(x) = (2x + 2)^{100}$ (f) $g(x) = x^{\sin x}$

3. Let $f(x) = xe^{-x^2}$.

(a) Find asymptotes of f(x) (hint: $f(x) = \frac{x}{e^{x^2}}$)

- (b) Compute the derivative of f(x)
- (c) On which intervals is f(x) increasing? decreasing?
- (d) Sketch a graph of f(x) using the results of the previous parts and the fact that f(0) = 0.
- 4. Let $f(x) = -2x^3 + 6x^2 3$.
 - (a) Compute f', f''.
 - (b) On which intervals is f(x) increasing/decreasing?
 - (c) On which intervals is f(x) concave up/down?
 - (d) Find all critical points of f(x). Which of them are local maximums? local minimums? neither? Justify your answer.
- 5. It is known that the polynomial $f(x) = x^3 x 1$ has a unique real root. Between which two whole numbers does this root lie? Justify your answer.
- 6. It is known that for a rectangular beam of fixed length, its strength is proportional to $w \cdot h^2$, where w is the width and h is the height of the beam's cross-section. Find the dimensions of the strongest beam that can be cut from a 12" diameter log (thus, the cross-section must be a rectangle with diagonal 12").
- 7. The curve defined by the equation

$$y^2(y^2 - 4) = x^2(x^2 - 5)$$

is known as the "devil's curve". Use implicit differentiation to find the equation of the tangent line to the curve at the point (0; -2).

8. Find the most general function f(x) satisfying

(a)
$$f''(x) = \cos x$$

(b) $f'(x) = \frac{x^2 + x + 1}{x}$