PRACTICE MIDTERM FOR MAT 341

- (1) Consider the function f(x) = 2x 1, 0 < x < 2.
 - (a) Compute the Fourier sine series for f(x). At each $x \in [-4, 6]$ compute the value of this series.

Hint: The Fourier sine series looks like $\sum_{n=1}^{\infty} b_n sin(\frac{n\pi}{2}x)$, where formulae for the coefficients b_n are given on page 70. Since the Fourier sine series for f(x) is equal the usual Fourier series for the odd extension $f_o(x)$ of f(x), the Theorem on page 76 may be applied to answer the convergence question.

(b) Compute the Fourier cosine series for f(x). At each $x \in [-4, 6]$ compute the value of this series.

Hint: The Fourier cosine series looks like $\sum_{n=0}^{\infty} a_n \cos(\frac{n\pi}{2}x)$, where formulae for the coefficients a_n are given on page 70. Since the Fourier cosine series for f(x) is equal to the usual Fourier series for the even extension $f_e(x)$ of f(x), the Theorem on page 76 may be applied to answer the convergence question.

- (2) Set $f(x) = 2 + \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^4} + \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$.
 - (a) Explain why f(x) converges for each value of x. **Hint:** Use Theorem 1 on page 82, and the fact that $\sum_{n=1}^{\infty} \frac{1}{n^q}$ converges if q > 1.
 - (b) Explain why f(x) is a periodic function of period 2π .
 - (c) Explain why f(x) is a continuous function.
 Hint: Use Theorem 1 on page 82 and the remarks about uniform convergence given at the bottom of page 79; in class we proved that if a series of continuous functions converges uniformly on an interval (a, b) to a function f(x) then f(x) must be continuous.
 - (d) For each positive integer n find the value of the integral $\int_{-\pi}^{\pi} f(x)cos(nx)dx$. **Hint:** You could use the series definition of for f(x), and then integrate the corresponding series representation for f(x)cos(nx) term by term (using Table 1 on page 61). Or you could note that this integral is equal to πa_n (when $n \ge 1$), where a_n is the coefficient of cos(nx) in the Fourier series for f(x). What is the value of a_n ?

(3) Set $w(x,t) = sin(rx)e^{st}$.

(a) Show that w(x,t) statisfies

$$\frac{\partial^2 w}{\partial x^2} = \frac{1}{k} \frac{\partial w}{\partial t}$$

iff $-r^2 = \frac{s}{k}$. (b) Show that w(x,t) satisfies all of the following equalities

$$\frac{\partial^2 w}{\partial x^2} = \frac{1}{k} \frac{\partial w}{\partial t}$$

$$w(0,t)=0, w(a,t)=0$$
 iff $r=\frac{n\pi}{a}$ and $s=-\frac{kn^2\pi^2}{a^2}.$

(4) Find u(x,t) which satisfies all the following equalities:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial u}{\partial t}$$
$$u(0,t) = 0, \quad u(\pi,t) = 1$$
$$u(x,0) = \frac{x}{\pi} + 3\sin(2x) - \sin(7x)$$

What is a physical situation which these equations describe? **Hint:** u(x,t) = w(x,t) + v(x) where v(x) is the steady state solution. Note that $w(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) e^{-2n^2 t}$, where the coefficients b_n must be choosen so that the initial condition w(x,0) = u(x,0) - v(x) holds. Physical conditions represented by these equations are discussed on pages 135-139 (see in particular 138-139).

(5) Consider the equations

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$$
$$u(0,t) = T_0, \quad -\kappa \frac{\partial u}{\partial x}(a,t) = (u(a,t) - T_1)h$$

where κ , h are positive constants and T_0, T_1 are constants.

- (a) What is a physical situation that these equations describe? Hint: See pages 135-139.
- (b) Find the "steady state" solution to these equations. **Hint:** $v(x) = \alpha x + \beta$. The first boundary condition becomes v(0) = T_0 ; thus $\beta = T_0$. The second boundary condition becomes $-\kappa v'(a) =$ $(v(a) - T_1)h$; thus $-\kappa \alpha = (\alpha a + T_0 - T_1)h$, from which is deduced $\alpha = \frac{(T_0 - T_1)h}{-\kappa - ah}.$

2

(c) Why is the "steady state" solution important – both physically and mathematically?

Hint: If the problem has a steady state solution v(x) then its physical importance is $limit_{t\to\infty}u(x,t) = v(x)$. Its mathematical importance is that w(x,t) = u(x,t) - v(x) satisfies homogeneous boundary conditions.