REVIEW FOR MIDTERM II; MAT 312 (SPRING, 08)

- (1) Let X denote an infinite set. Suppose that there is a surjective map $f: \mathbb{P} \longrightarrow X$ from the positive integers \mathbb{P} . Show that X is a "countable set".
- (2) Construct a surjective map $f : \mathbb{R} \longrightarrow \mathbb{P}$ from the real numbers \mathbb{R} .
- (3) Let X, < denote a strict partially ordered set.
 - (a) If X is a finite set show that there always exits at least on minimal element and at least one maximal element.
 - (b) Give an example (of a finite strict partially ordered set) where there are more than one minimal elements and more than one maximal elements.
 - (c) Give an example (of an infinite strict partially ordered set) where there is not maximal elements and no minimal elements.

(4) Set $X = \{1, 2, 3, \dots, 65, 66, 67\}$ and set $Y = \{A \subset X \mid \{1, 2, 3, 4\} \subset A\}$. Express $\mid Y \mid$ as a power of 2.

(5) Set $X = \{2, 3, 4, 5, 6, 7,\}$ and define a relation R on X by $xRy \Leftrightarrow x \mid y$ and $x \neq y$.

- (a) Show that R is a strict partial ordering on X.
- (b) Which elements of X are the minimial elements? For each minimal element describe its immediate successors.

(6) Let $f : X \to Y$ denote a function and define a relation R on X by $xRy \Leftrightarrow f(x) = f(y)$. Show that R is an equivalence relation.

(7) Let Perm(X) denote the set of permutations of the set X, and let $\sigma, \tau \in Perm(X)$ denote two disjoint permutations.

- (a) Show that for any positive integer k the σ^k, τ^k are also disjoint permutations.
- (b) Show that if $\sigma \circ \tau = id$ then both $\sigma = id$ and $\tau = id$ hold.

(8) Define $\sigma \in S(7)$ by

 $\sigma = (2,3)(7,5,3,4,2,6)(1,2,3,4,5)$

and define $\tau \in S(7)$ by the matrix

$$1, 2, 3, 4, 5, 6, 7$$

 $7, 1, 2, 6, 3, 5, 4$

- (a) Compute σ^{-3} .
- (b) Compute $\sigma \tau \sigma^2$.

- (c) Write both σ and τ as a product of disjoint cycles.
- (d) Compute the orders of σ and τ .
- (c) Compute $sgn(\sigma)$ and $sgn(\tau)$. (f) Compute τ^{88} .
- 2