MIDTERM II; MAT 312 (SPRING, 08)

Instructions: Do problems 1,2,3 below; also do one of problems 4 or 5 (not both).

(1) Let X denote a set and let P(X) denote the collection of all subsets of X. For a given $S \in P(X)$ define a relation \sim on P(X) as follows: for any $A, B \in P(X)$ we have that $A \sim B$ iff $(A \cap B^c) \cup (B \cap A^c) \subset S$. Prove that \sim is an equivalence relation on P(X).

Solution: We must show that the relation is reflexive, symmetric and transitive.

Reflexive: For any $A \in P(X)$ note that $A \cap A^c = \emptyset$ and $\emptyset \subset S$. Thus $(A \cap A^c) \cup (A \cap A^c) \subset S$, showing that $A \sim A$.

Symmetry: For any $A, B \in P(X)$ we have that

$$(A \cap B^c) \cup (B \cap A^c) = (B \cap A^c) \cup (A \cap B^c).$$

Thus we have that $A \sim B \Rightarrow (A \cap B^c) \cup (B \cap A^c) \subset S \Rightarrow (B \cap A^c) \cup (A \cap B^c) \subset S \Rightarrow B \sim A.$

Transitive: For any $A, B, C \in P(X)$ note that

 $(A \cap B^c) \cup (B \cap A^c) \cup (B \cap C^c) \cup (C \cap B^c) = (A \cup B \cup C) \cap (A \cap B \cap C)^c$

and

$$(A \cap C^c) \cup (C \cap A^c) = (A \cup C) \cap (A \cap C)^c \subset (A \cup B \cup C) \cap (A \cap B \cap C)^c.$$

Thus we have that $A \sim B$ and $B \sim C \Rightarrow (A \cup B \cup C) \cap (A \cap B \cap C)^c \subset S$ $\Rightarrow (A \cup C) \cap (A \cap C)^c \subset S \Rightarrow A \sim C.$

(2) Set $X = \{2, 4, 5, 6, 8, 10, 12, 24\}$ and define a relation R on X by $xRy \Leftrightarrow 2x \mid y$

(a) Show that R is a strict partial ordering on X.

Solution: Must show that R is antisymmetric and transitive.

Antisymmetric: Suppose that xRy and yRx; then y = 2xm and x = 2yn. Substituting 2xm for y in x = 2yn we get that x = 4xmn, where x, m, n are possitive integers; dividing by x we get that 1=4mn, which is impossible. This contradiction shows that if xRy is true then yRx is not true.

Transitive: Suppose that xRy and yRz; thus y = 2xm and z = 2yn. Substituting 2xm for y in z = 2yn we get z = (2x)(2mn). Thus $2x \mid z$ so xRz.

(b) Sketch the Hasse diagram for this relation.

The bottom line of the Hasse diagram consists of 2,5,6; the next line up consists of 4,10,12; and the top line constists of 8,24. There is a verticle line

segment between the following pair of numbers: (2, 4), (5, 10), (6, 12), (2, 12), (4, 8), (12, 24), (4, 24).

(3) Set $\sigma = (8, 5, 2)(3, 5, 7)(1, 2, 8, 6, 4)$; thus σ is in the permutation group on 8 letters S(8).

- (a) Compute σ⁻².
 Solution: Since σ is represented by the matrix

 2 3 4 5 6 7 8
 8 5 2 1 7 4 3 6
 it follows that σ⁻¹ is represented by
 2 3 4 5 6 7 8
 4 3 7 6 2 8 5 1
 and since σ⁻² = (σ⁻¹)² it follows that σ⁻² is represented by
 1 2 3 4 5 6 7 8
 6 7 5 8 3 1 2 4 n

 (b) Write σ as a product of disjoint cycles.
 Solution: σ = (1, 8, 6, 4)(2, 5, 7, 3)
 (c) Show that σ⁹⁰ = σ⁻².
- c) Show that $\sigma^{30} = \sigma^{-2}$. **Solution:** $order(\sigma) = lcm(4, 4) = 4$; thus $\sigma^4 = id$. $\sigma^{90} = \sigma^{92}\sigma^{-2} = (\sigma^4)^{23}\sigma^{-2} = (id)^{23}\sigma^{-2} = \sigma^{-2}$.
- (d) Compute $sgn(\sigma)$. **Solution:** $sgn(\sigma) = sgn((1, 8, 6, 4))sgn((2, 5, 7, 3)) = (-1)^3(-1)^3 = +1.$

(4) For any positive integer n let $S^+(n)$ denote the permuations in S(n) which have sign equal +1, and let $S^-(n)$ denote the permuations which have sign equal -1. Prove that the $S^+(n)$ and $S^-(n)$ have the same number of elements. (Hint: first show that the map $f: S(n) \longrightarrow S(n)$, defined by $f(\sigma) = (1, 2)\sigma$ for all $\sigma \in S(n)$, maps $S^+(n)$ into $S^-(n)$.) Solution: If $sgn(\sigma) = +1$ then $sgn(f(\sigma)) = sgn((1, 2))sgn(\sigma) = (-1)(+1) = -1$; so f maps $S^+(n)$ into $S^-(n)$.

It will suffice to show that $f: S^+(n) \longrightarrow S^-(n)$ is a bijective map.

To see that f is one-one suppose that $f(\sigma) = f(\tau)$ for $\sigma, \tau \in S^+(n)$; this means that

$$(1,2)\sigma = (1,2)\tau$$

If we multiply each side of the preceeding equation by (1,2) (on the left) then we get

$$(1,2)^2 \sigma = (1,2)^2 \tau$$

which becomes

$$\sigma=\tau$$

because $(1, 2)^2 = id$.

To see that $f: S^+(n) \longrightarrow S^-(n)$ is onto, choose any $\tau \in S^-(n)$ and set $\sigma = (1,2)\tau$. Note that $sgn(\sigma) = sgn((1,2))sgn(\tau) = (-1)(-1) = +1$; so $\sigma \in S^+(n)$. Note also that $f(\sigma) = f((1,2)\tau) = (1,2)^2\tau = \tau$ (because $(1,2)^2 = id$). (5) Suppose that the permutations $\sigma, \tau \in S(n)$ are both transpositions which commute (i.e. $\sigma\tau = \tau\sigma$). Then show that either σ and τ are disjoint permutations, or $\sigma = \tau$.

Solution: $\sigma = (a, b)$ and $\tau = (c, d)$ for some integers $1 \le a, b, c, d \le n$ with $a \ne b$ and $c \ne d$.

Case I: Suppose that a = c, b = d or a = d, b = c. In this case the permutations (a, b) and (c, d) are equal.

Case II: Suppose that $a \neq c, a \neq d, b \neq c, b \neq d$. In this case the permuations (a, b) and (c, d) are disjoint.

Case III: Suppose that If σ and τ are not disjoint and not equal; for example suppose that $a = c, b \neq c, b \neq d$. Then $\sigma \tau = (a, b)(a, d) = (a, d, b)$ and $\tau \sigma = (a, d)(a, b) = (a, b, d)$. Since $(a, d, b) \neq (a, b, d)$ it follows that $\sigma \tau \neq \tau \sigma$. This contradicts our assumption that σ and τ commute. This contradiction shows that case III does not occur.