
MIDTERM II; MAT 312 (SPRING, 08)

Instructions: Do problems 1,2,3 below; also do one of problems 4 or 5 (not
both).

(1) Let X denote a set and let P (X) denote the collection of all subsets of
X. For a given S ∈ P (X) define a relation ∼ on P (X) as follows: for any
A, B ∈ P (X) we have that A ∼ B iff (A ∩ Bc) ∪ (B ∩ Ac) ⊂ S. Prove that
∼ is an equivalence relation on P (X).
Solution: We must show that the relation is reflexive, symmetric and tran-
sitive.

Reflexive: For any A ∈ P (X) note that A ∩ Ac = ∅ and ∅ ⊂ S. Thus
(A ∩ Ac) ∪ (A ∩ Ac) ⊂ S, showing that A ∼ A.

Symmetry: For any A, B ∈ P (X) we have that

(A ∩ Bc) ∪ (B ∩ Ac) = (B ∩ Ac) ∪ (A ∩ Bc).

Thus we have that A ∼ B ⇒ (A ∩ Bc) ∪ (B ∩ Ac) ⊂ S ⇒ (B ∩
Ac) ∪ (A ∩ Bc) ⊂ S ⇒ B ∼ A.

Transitive: For any A, B, C ∈ P (X) note that

(A ∩ Bc) ∪ (B ∩ Ac) ∪ (B ∩ Cc) ∪ (C ∩ Bc) = (A ∪ B ∪ C) ∩ (A ∩ B ∩ C)c

and

(A ∩ Cc) ∪ (C ∩ Ac) = (A ∪ C) ∩ (A ∩ C)c ⊂ (A ∪ B ∪ C) ∩ (A ∩ B ∩ C)c.

Thus we have that A ∼ B and B ∼ C ⇒ (A ∪ B ∪ C) ∩ (A ∩ B ∩ C)c ⊂ S

⇒ (A ∪ C) ∩ (A ∩ C)c ⊂ S ⇒ A ∼ C.

(2) Set X = {2, 4, 5, 6, 8, 10, 12, 24} and define a relation R on X by
xRy ⇔ 2x | y

(a) Show that R is a strict partial ordering on X.
Solution: Must show that R is antisymmetric and transitive.

Antisymmetric: Suppose that xRy and yRx; then y = 2xm and
x = 2yn. Substituting 2xm for y in x = 2yn we get that x =
4xmn, where x, m, n are possitive integers; dividing by x we get
that 1=4mn, which is impossible. This contradiction shows that if
xRy is true then yRx is not true.

Transitive: Suppose that xRy and yRz; thus y = 2xm and z =
2yn. Substituting 2xm for y in z = 2yn we get z = (2x)(2mn).
Thus 2x | z so xRz.

(b) Sketch the Hasse diagram for this relation.

The bottom line of the Hasse diagram consists of 2,5,6; the next line up
consists of 4,10,12; and the top line constists of 8,24. There is a verticle line
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segment between the following pair of numbers: (2, 4), (5, 10), (6, 12), (2, 12),
(4, 8), (12, 24), (4, 24).

(3) Set σ = (8, 5, 2)(3, 5, 7)(1, 2, 8, 6, 4); thus σ is in the permutation group
on 8 letters S(8).

(a) Compute σ−2.
Solution: Since σ is represented by the matrix
1 2 3 4 5 6 7 8
8 5 2 1 7 4 3 6
it follows that σ−1 is represented by
1 2 3 4 5 6 7 8
4 3 7 6 2 8 5 1
and since σ−2 = (σ−1)2 it follows that σ−2 is represented by
1 2 3 4 5 6 7 8
6 7 5 8 3 1 2 4 n

(b) Write σ as a product of disjoint cycles.
Solution: σ = (1, 8, 6, 4)(2, 5, 7, 3)

(c) Show that σ90 = σ−2.
Solution: order(σ) = lcm(4, 4) = 4; thus σ4 = id. σ90 = σ92σ−2 =
(σ4)23σ−2 = (id)23σ−2 = σ−2.

(d) Compute sgn(σ).
Solution: sgn(σ) = sgn((1, 8, 6, 4))sgn((2, 5, 7, 3)) = (−1)3(−1)3 =
+1.

(4) For any positive integer n let S+(n) denote the permuations in S(n)
which have sign equal +1, and let S−(n) denote the permuations which
have sign equal -1. Prove that the S+(n) and S−(n) have the same number
of elements. (Hint: first show that the map f : S(n) −→ S(n), defined by
f(σ) = (1, 2)σ for all σ ∈ S(n), maps S+(n) into S−(n).)
Solution: If sgn(σ) = +1 then sgn(f(σ)) = sgn((1, 2))sgn(σ) = (−1)(+1) =
−1; so f maps S+(n) into S−(n).

It will suffice to show that f : S+(n) −→ S−(n) is a bijective map.
To see that f is one-one suppose that f(σ) = f(τ) for σ, τ ∈ S+(n); this

means that
(1, 2)σ = (1, 2)τ.

If we multiply each side of the preceeding equation by (1, 2) (on the left)
then we get

(1, 2)2σ = (1, 2)2τ

which becomes
σ = τ

because (1, 2)2 = id.
To see that f : S+(n) −→ S−(n) is onto, choose any τ ∈ S−(n) and

set σ = (1, 2)τ . Note that sgn(σ) = sgn((1, 2))sgn(τ) = (−1)(−1) = +1;
so σ ∈ S+(n). Note also that f(σ) = f((1, 2)τ) = (1, 2)2τ = τ (because
(1, 2)2 = id).
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(5) Suppose that the permutations σ, τ ∈ S(n) are both transpositions
which commute (i.e. στ = τσ). Then show that either σ and τ are disjoint
permutations, or σ = τ .
Solution: σ = (a, b) and τ = (c, d) for some integers 1 ≤ a, b, c, d ≤ n with
a 6= b and c 6= d.

Case I: Suppose that a = c, b = d or a = d, b = c. In this case the
permutations (a, b) and (c, d) are equal.

Case II: Suppose that a 6= c, a 6= d, b 6= c, b 6= d. In this case the permua-
tions (a, b) and (c, d) are disjoint.

Case III: Suppose that If σ and τ are not disjoint and not equal; for
example suppose that a = c, b 6= c, b 6= d. Then στ = (a, b)(a, d) = (a, d, b)
and τσ = (a, d)(a, b) = (a, b, d). Since (a, d, b) 6= (a, b, d) it follows that
στ 6= τσ. This contradicts our assumption that σ and τ commute. This
contradiction shows that case III does not occur.


