Homework 3: *1.4*: 2*, 3*, 5, 6, 7 *1.5*: 1*, 2*, 4* *in back of book

Exercises 1.4

5. Note that $8n + 7 \equiv 7 \pmod{8}$. But by direct checking we see that 7 is not the sum of three squares mod 8. ie: $0^2 \equiv 0 \pmod{8}$, $1^2 \equiv 1 \pmod{8}$, $2^2 \equiv 4 \pmod{8}$, $3^2 \equiv 1 \pmod{8}$, $4^2 \equiv 0 \pmod{8}$, $5^2 \equiv 1 \pmod{8}$, $6^2 \equiv 4 \pmod{8}$, $7^2 \equiv 1 \pmod{8}$. Thus any square is 0, 1, or 4 mod 8. Since we can't add three of these numbers to get 7, seven is not the sum of three squares mod 8, and therefore 8n + 7 is not the sum of three squares, for any n.

6. Manipulating this equation, we see that $x^2 \equiv 1 \iff x^2 - 1 \equiv 0 \iff (x+1)(x-1) \equiv 0 \pmod{p}$. But then we see that p|(x+1)(x-1), which tells us by Theorem 1.3.1 that either p|(x+1) or p|(x-1). In the first case $x \equiv -1$, in the second case $x \equiv 1$. Thus $x^2 \equiv 1 \pmod{p}$ has just two solutions mod p, which are distinct if $p \neq 2$.

7. Expanding, we see that $(p-1)! \equiv 1 \cdot 2 \cdots (p-2) \cdot (p-1) \pmod{p}$, which is a product of p-1 factors. Assuming in general that $p \neq 2$, this is an odd number of factors. From number 6, we see that 1 and p-1 are the only two numbers that are self-inverse mod p. Thus, all n such that $2 \leq n \leq p-2$ have an inverse n^{-1} , which cannot be congruent to n, 1 or p-1. If we pick such an n, we see that in addition to n, n^{-1} must also occur in the product (p-1)!. Thus we can cancel n and n^{-1} in this product. If we now take a remaining factor that is not 1 or p-1, we see that its inverse must by the uniqueness of inverses be distinct from n and n^{-1} , and so must occur in the remaining factors. In this way, any factor of (p-1)! that is not 1 or p-1 is canceled by its inverse, and so $(p-1)! \equiv 1 \cdot (p-1) \equiv -1 \pmod{p}$.