
Homework 3: 1.4 : 2*, 3*, 5, 6, 7 1.5 : 1*, 2*, 4*
*in back of book

Exercises 1.4
5. Note that 8n + 7 ≡ 7(mod 8). But by direct checking we see that 7 is
not the sum of three squares mod 8. ie: 02 ≡ 0(mod 8), 12 ≡ 1(mod 8),
22 ≡ 4(mod 8), 32 ≡ 1(mod 8), 42 ≡ 0(mod 8), 52 ≡ 1(mod 8), 62 ≡ 4(mod
8), 72 ≡ 1(mod 8). Thus any square is 0, 1, or 4 mod 8. Since we can’t add
three of these numbers to get 7, seven is not the sum of three squares mod
8, and therefore 8n + 7 is not the sum of three squares, for any n.

6. Manipulating this equation, we see that x2 ≡ 1 ⇐⇒ x2 − 1 ≡ 0 ⇐⇒
(x + 1)(x − 1) ≡ 0(mod p). But then we see that p|(x + 1)(x − 1), which
tells us by Theorem 1.3.1 that either p|(x + 1) or p|(x− 1). In the first case
x ≡ −1, in the second case x ≡ 1. Thus x2 ≡ 1(mod p) has just two solutions
mod p, which are distinct if p 6= 2.

7. Expanding, we see that (p− 1)! ≡ 1 · 2 · · · (p− 2) · (p− 1)(mod p), which
is a product of p− 1 factors. Assuming in general that p 6= 2, this is an odd
number of factors. From number 6, we see that 1 and p− 1 are the only two
numbers that are self-inverse mod p. Thus, all n such that 2 ≤ n ≤ p − 2
have an inverse n−1, which cannot be congruent to n, 1 or p− 1. If we pick
such an n, we see that in addition to n, n−1 must also occur in the product
(p − 1)!. Thus we can cancel n and n−1 in this product. If we now take a
remaining factor that is not 1 or p − 1, we see that its inverse must by the
uniqueness of inverses be distinct from n and n−1, and so must occur in the
remaining factors. In this way, any factor of (p− 1)! that is not 1 or p− 1 is
canceled by its inverse, and so (p− 1)! ≡ 1 · (p− 1) ≡ −1(mod p).
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