Homework 2: 1.2: 3,7,8,10; 1.3: 2,6, 7,8
Exercises 1.2

3. The Fibonacci sequence is defined recursively (inductively) by ay = a1+
ag_o. Let P(n) be the assertion: a, and a,_; are relatively prime. Then
we see that a; = a; = 1, and so the base case P(2) holds. Now suppose
P(k) holds. Using the inductive definition axi; = ax + ax_1, we see by
Lemma 1.1.4 in section 1.1 that (axy1,ax) = (ax +ax—1,ar) = (ag_1, ax). But
by assumption, (ax_1,ar) = 1, so axy1 and ay are relatively prime. Thus
P(k) = P(k+ 1), and so by the principle of induction P(n) holds for all
n € C.

7. Let P(n) be the assertion
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Which is the assertion P(k + 1). Thus P(n) holds for all n by induction.

8. (i) Proof by induction. P(n):5/n° —n. As 1°—1=0=15-0, P(1) holds.
Now assume P(k). Specifically, say k° — k = 5g. Then (k+1)> — (k+ 1) =
kP + 5k + 10k + 10> + 5k +1—k —1 = (K> — k) + 5(k* + 2k3 + 2k3 + k) =
5q + 5(k* + 2k® + 2k3 + k), which is divisible by 5. Thus P(k + 1) holds, and
so P(n) holds for all n by induction.

(i) P(n) : 8]3*® — 1. Clearly P(1) holds. Now assume P(k). Write
3% — 1 = 8¢. Then 3%* = 8¢+ 1, and so 32+ — 1 = 320 .32 _ 1 =
(8¢ +1)-9—1 = 8(9g + 1). Thus 8/32*+Y — 1 and so P(k + 1) holds.
Therefore P(n) holds for all n by induction.

10. We will prove that there cannot be any nonempty set with no least
element, which is a restatement of the well-ordering principle. As suggested,
let X be an arbitrary set of positive integers with no least element, and define
L to be the set of all positive integers n such that n is not greater than or
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equal to any element in X. Let P(n) be the assertion n € L. As 1 < n for
every positive integer n, 1 € L, and so P(1) holds. Now assume P(k), so
k < x for each x € X. But then if £+ 1 ¢ L, we must have k+ 1 € X: there
would exist an x € X such that x < k4 1, but then £k < x < k+ 1, and so
x = k+ 1. Furthermore, k < x for every x € X implies k + 1 < x for every
r € X, so that k£ + 1 would be a least element. As X has no least element
this is a contradiction, so we must have k+1 € L. Thus P(k) = P(k+ 1),
and so by induction P(n) holds for all n. But then every n is not in X. In
other words, X is empty, and we have proved the well-ordering principle.

Exercises 1.3

2. If n is composite, that is n = pg, then we have either p < /n or ¢ < \/n
(or both if n = p?). But then using the sieve method n would have been
eliminated as a multiple of the smallest prime in the decomposition of n,
once primes less than or equal to y/n had been accounted for.

6. If n were not prime, say n = pq, with p,q > 1, then 2" — 1 = (2? — 1)(1 +
2P 2% ...+ 2@=DP Ty polynomial long division (Observe z = 1 is a root of
x9—1). But then 2" — 1 would be composite. Thus if 2" — 1 is not composite,
n must be prime.

7. Similarly, if n = pm where p,m > 0 and p is an odd prime, then 2" + 1 =
(2™ 4+ 1) (- - - + 2m=YP) 50 2" + 1 would be composite.

8. Suppose for contradiction that there were only finitely many primes of
the form 4k + 3. Call them py, ps,...p,. Since 3 =4 -0+ 3 is prime, we may
assume p; = 3. As suggested, let N = 4(pops ... pn)+3. First note that none
of the p; divide N. If N is prime, then we have immediately a contradiction
because N is distinct from all of the p;. Thus, we investigate the case when
N is not prime. If this were the case, then as N is not divisible by any of the
finitely many primes of the form 4k+3, N must be a product of primes not of
the form 4k + 3. Since 2 does not divide NV, we may assume N = ¢1G2q3 - - - @
as a product of (not necessarily distinct) primes of the form 4k + 1. But then
we note that for each i, ¢; = 1(mod 4). Thus N =¢; -+ ¢, =1---1 = 1(mod
4). Which is a contradiction, as N = 3(mod 4) by definition. Thus if our list
P1, - - . pp Were complete, we would be able to construct a number N which is
neither prime nor composite, which is of course a contradiction, so our list
cannot be complete.



